# DSC291: Machine Learning with Few Labels

Reinforcement learning for text generation

Zhiting Hu Lecture 19, February 24, 2023



#### When (clean) supervised data is available

#### Inspirational success

**Language Modeling** 

**Machine Translation** 

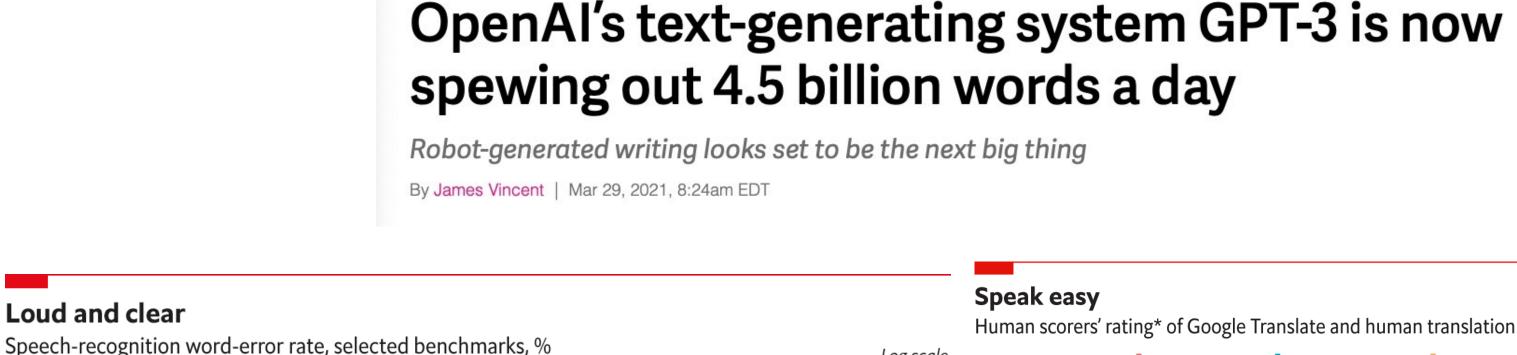
**Summarization** 

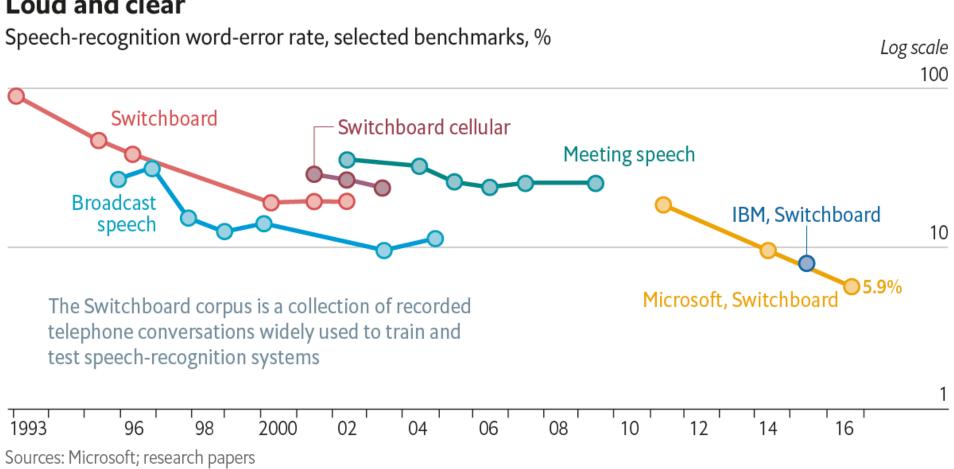
**Description Generation** 

Captioning

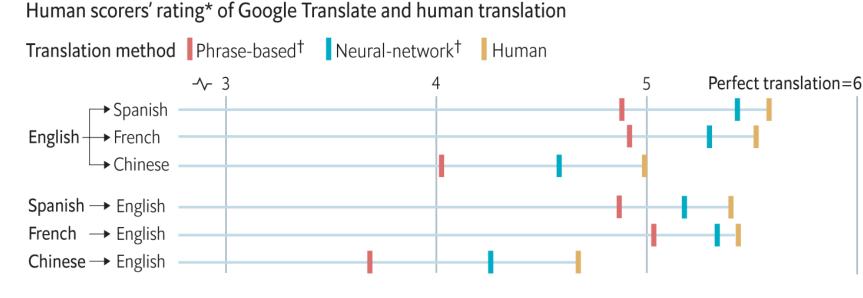
**Speech Recognition** 

 $\bullet \bullet \bullet$ 





TECH ARTIFICIAL INTELLIGENCE



Pour l'ancienne secrétaire d'Etat, il s'agit de faire oublier un mois de cafouillages et de convaincre l'auditoire que M. Trump n'a pas l'étoffe d'un président

#### Phrase-based<sup>†</sup>

For the former secretary of of bungling and convince the audience that Mr Trump has not the makings of a president

#### Neural-network<sup>†</sup>

For the former secretary of state, state, this is to forget a month it is a question of forgetting a month of muddles and convincing the audience that Mr Trump does not have the stuff of a president

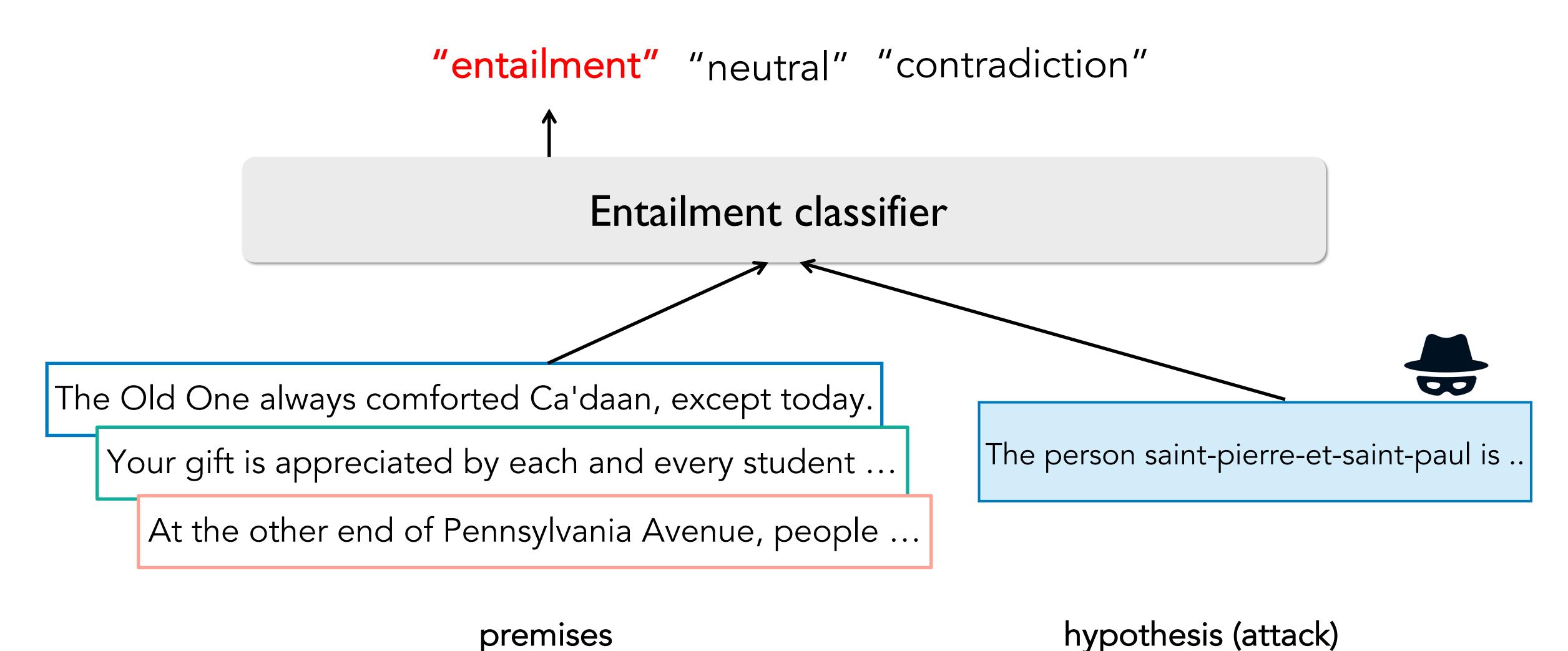
The former secretary of state has to put behind her a month of setbacks and convince the audience that Mr Trump does not have what it takes to be a president

Source: Google

\*0=completely nonsense translation, 6=perfect translation †Machine translation

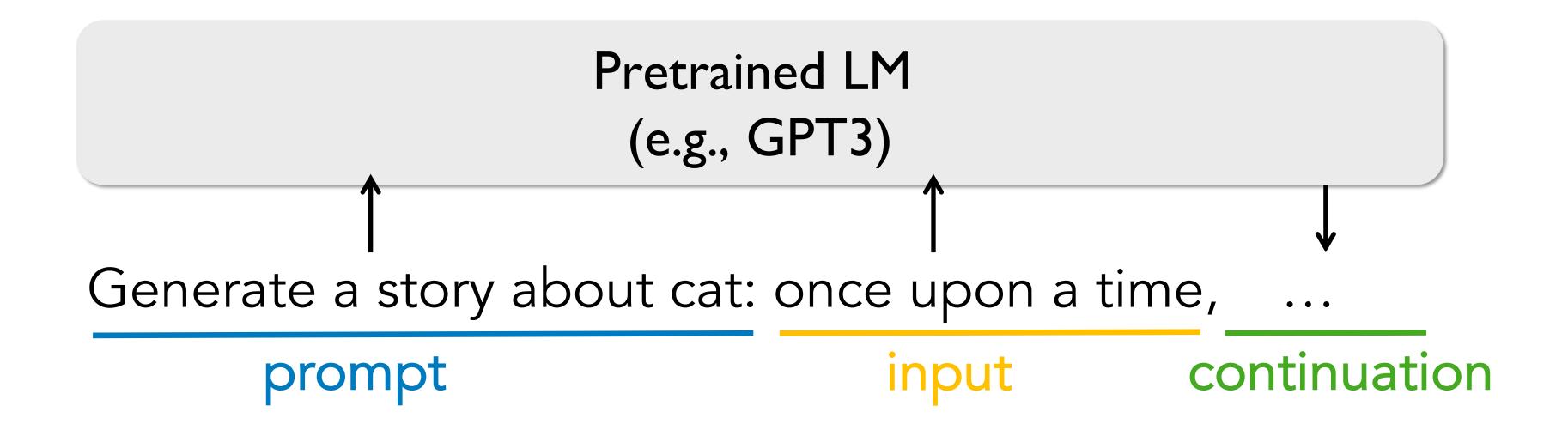
premises

#### Ex1: Adversarial attacks



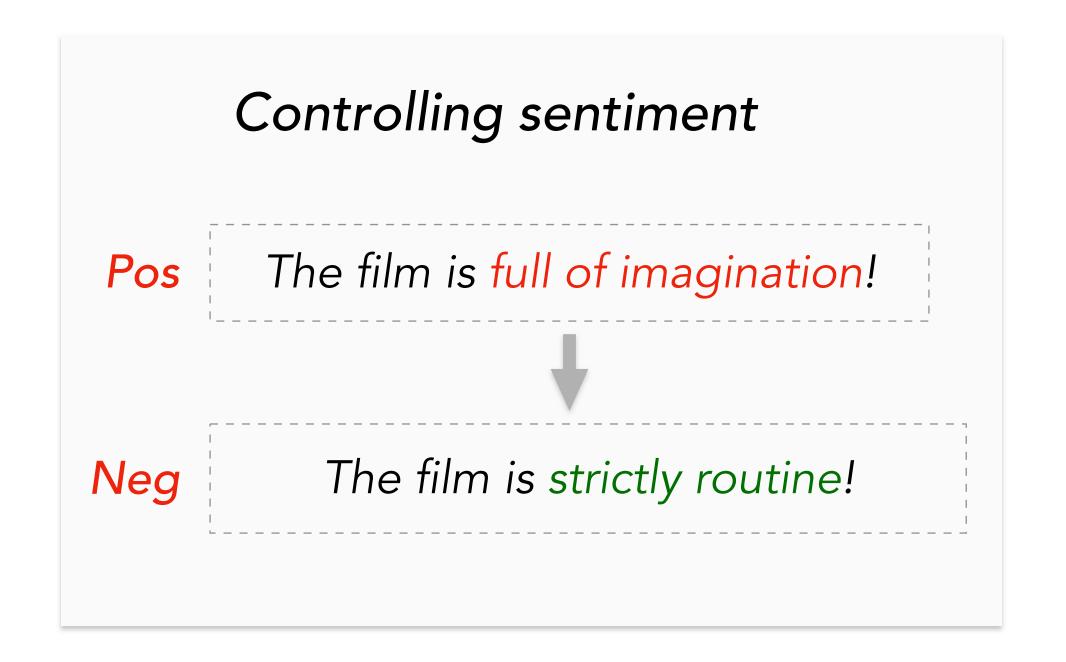
3

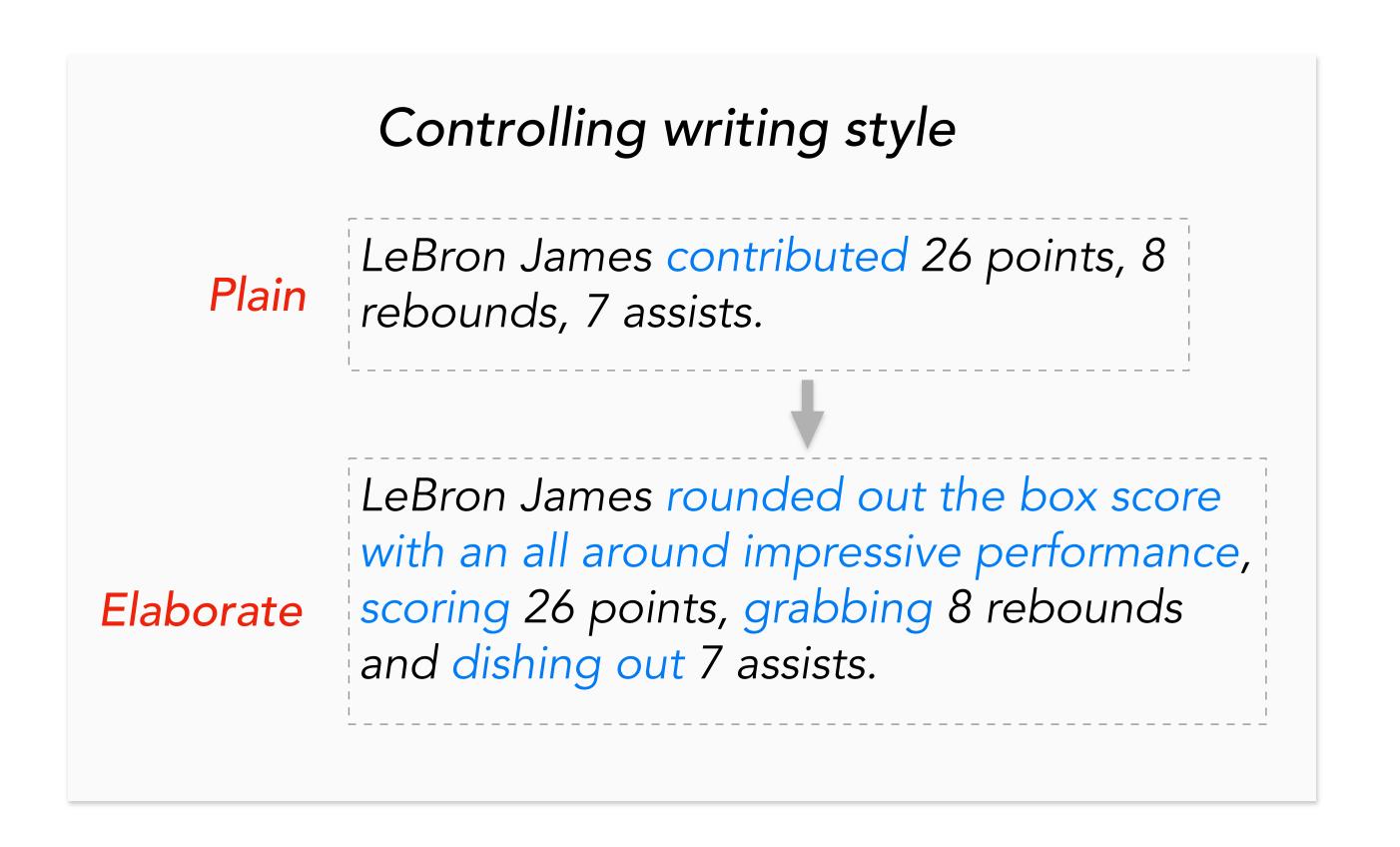
Ex2: Prompt generation



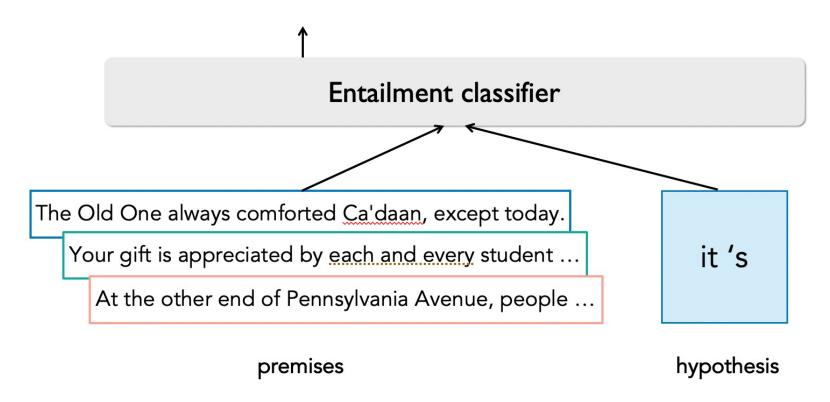
Automatically generating prompts to steer pretrained LMs

#### Ex3: Controllable generation

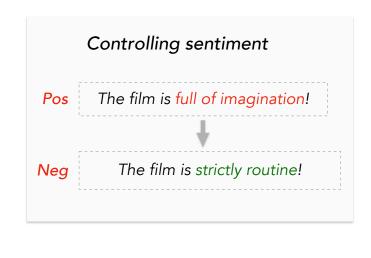


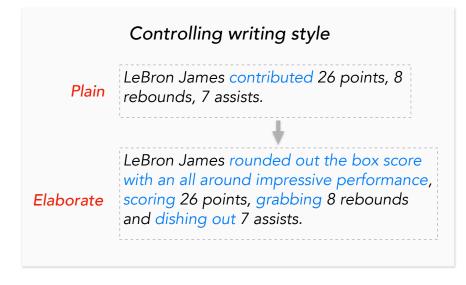


#### Adversarial attacks



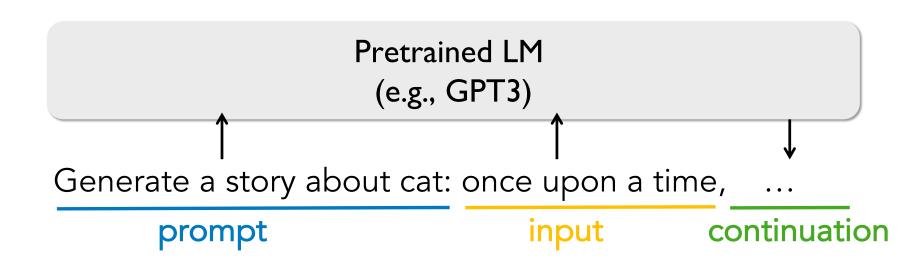
#### Controllable generation





[Hu et al., 2017] [Lin et al., 2020]

#### Prompt generation

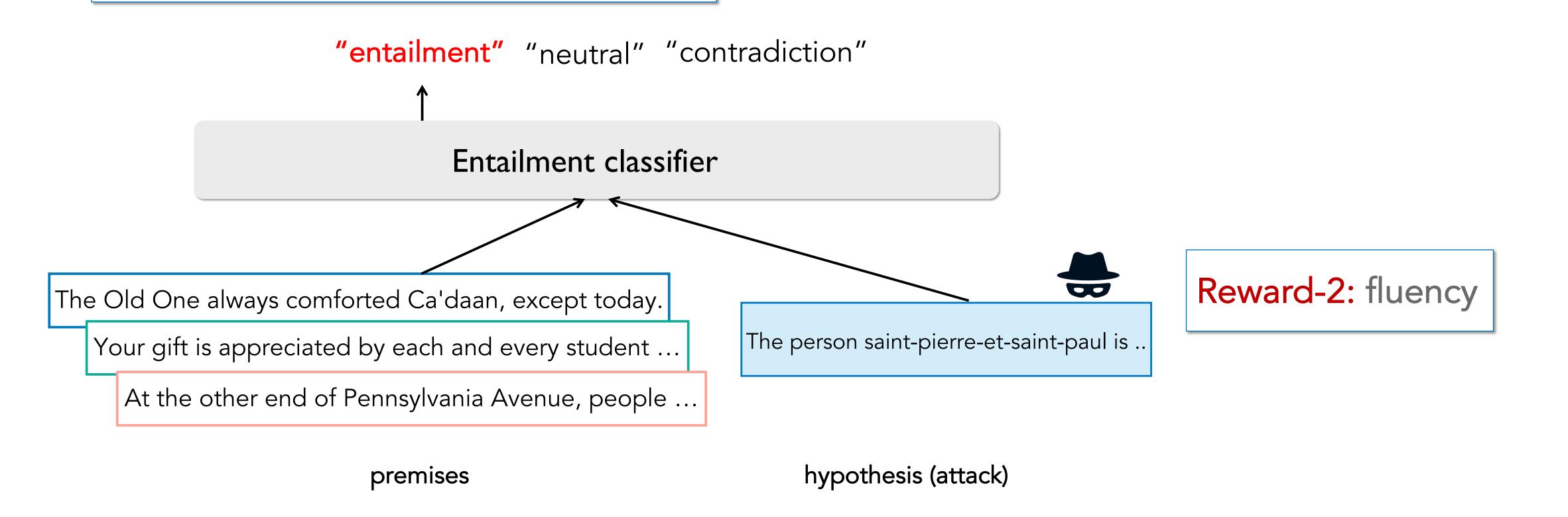


#### Learning Text Generation from Reward

Adversarial attacks

Reward-1: success rate of attack

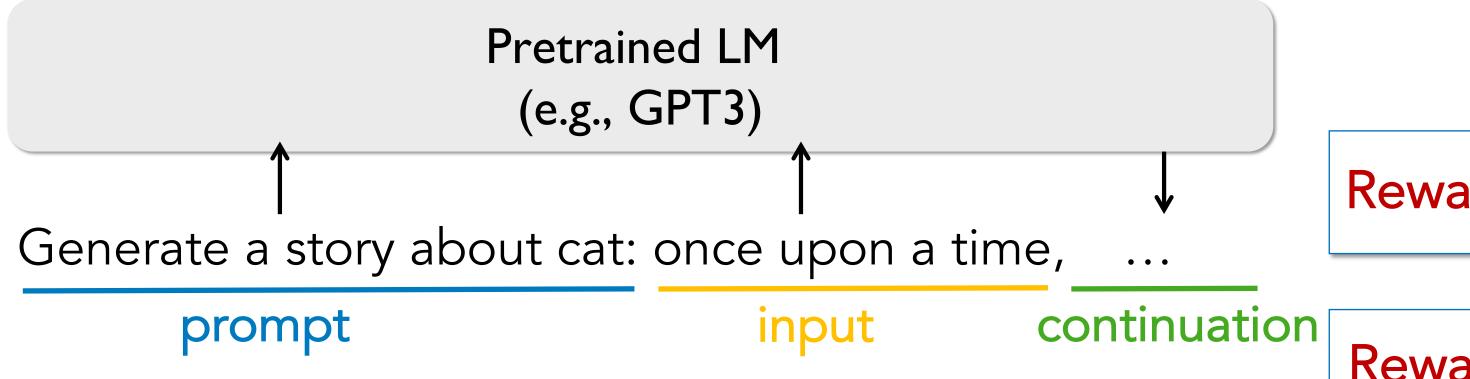
Compose Reward-1 + Reward-2, and run Reinforcement Learning



#### Learning Text Generation from Reward

Prompt generation

Compose Reward-1 + Reward-2, and run Reinforcement Learning



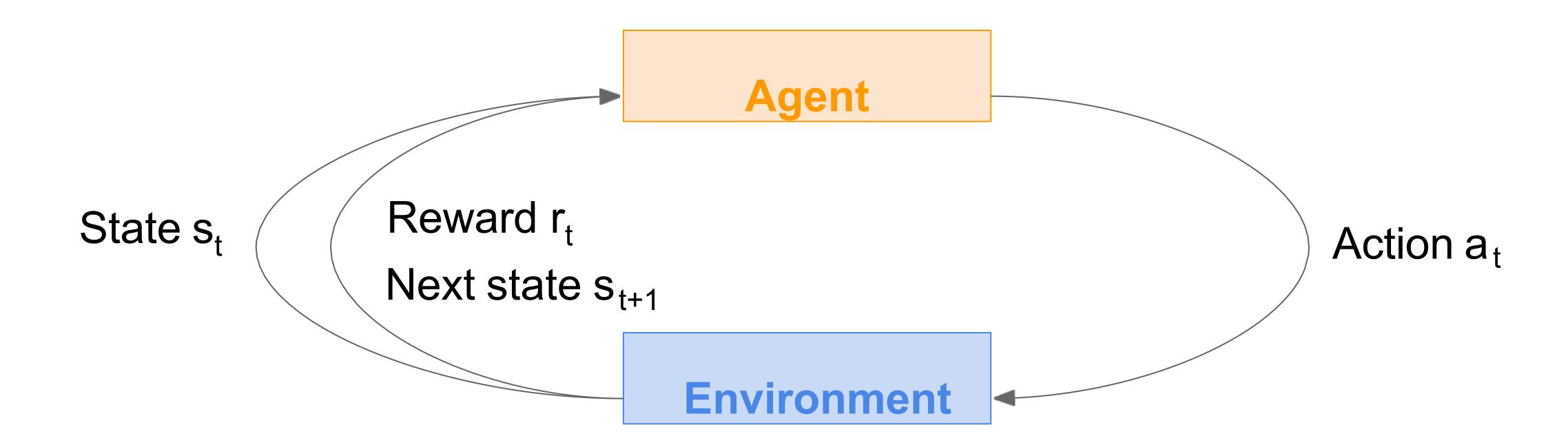
Reward-1: topic classification accuracy

Reward-2: fluency

Automatically generating prompts to steer pretrained LMs

#### Reinforcement Learning (RL)

- Plug in arbitrary reward functions to drive learning
- Fertile research area for robotic and game control



#### Reinforcement Learning (RL)

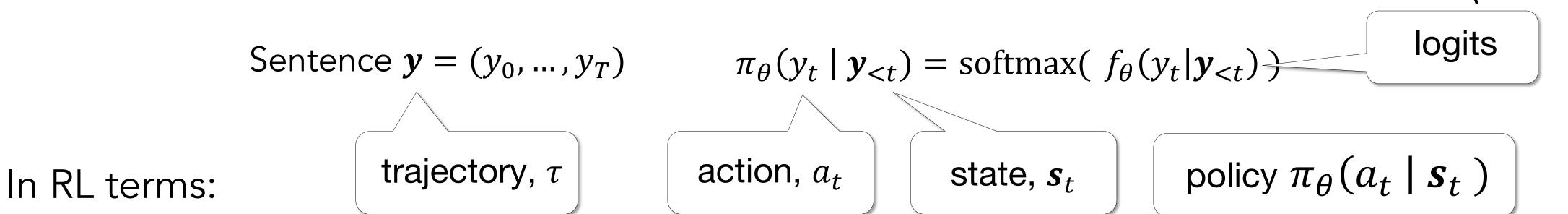
- Plug in arbitrary reward functions to drive learning
- Fertile research area for robotic and game control

But ... limited success for training text generation

- Challenges:
  - Extremely large sequence space: (vocab-size) $^{\text{text-length}} \sim (10^4)^{20}$
  - Sparse reward: only after seeing the whole text sequence

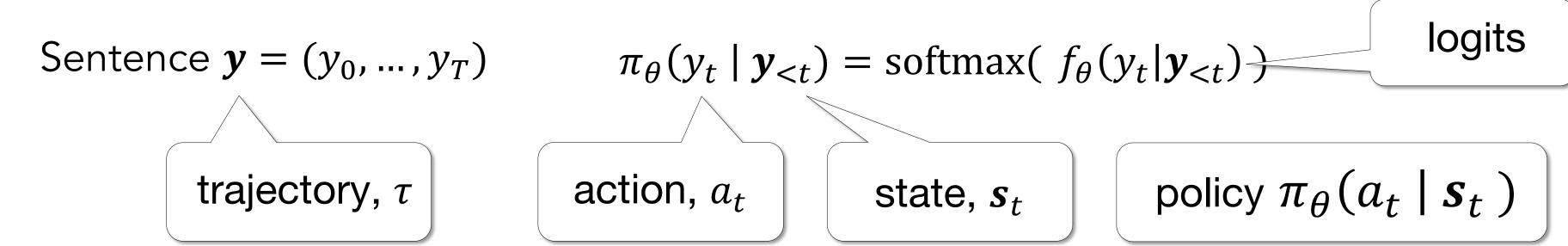
heta

• (Autoregressive) text generation model:



 $r_t=0$   $r_{t+1}=0$   $r_T=\frac{\text{sequence}}{\text{reward}}$ 

• (Autoregressive) text generation model:



In RL terms:

- Reward  $r_t = r(s_t, a_t)$ 
  - Often sparse:  $r_t = 0$  for t < T
- The general RL objective: maximize cumulative reward  $J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t=0}^{\tau} \gamma^t r_t \right]$
- Q-function: expected future reward of taking action  $a_t$  in state  $s_t$

$$Q^{\pi}(\boldsymbol{s}_{t}, a_{t}) = \mathbb{E}_{\pi} \left[ \sum_{t'=t}^{T} \gamma^{t'} r_{t'} \mid \boldsymbol{s}_{t}, a_{t} \right]$$

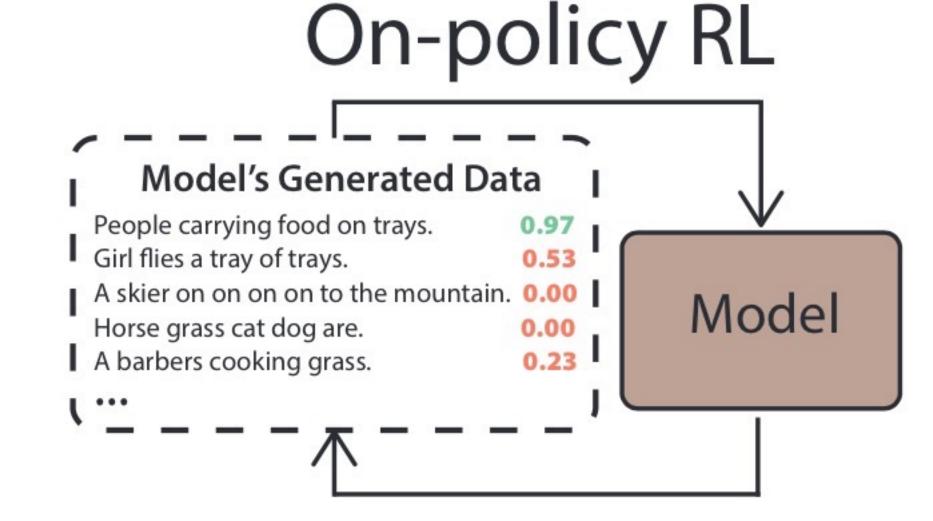
- On-policy RL
  - Most popular, e.g., Policy Gradient (PG)

$$abla_{ heta} J(\pi_{ heta}) = -\mathbb{E}_{ au \sim \pi_{ heta}} \left[ \sum_{t=0}^{T} \hat{Q}(oldsymbol{s}_{t}, a_{t}) 
abla_{ heta} \log \pi_{ heta} \left( a_{t} \mid oldsymbol{s}_{t} 
ight) 
ight]$$

Generate text samples from the current policy  $\pi_{\theta}$  itself



Extremely low data efficiency: most samples from  $\pi_{\theta}$  are gibberish with zero reward



(Static) Training Data
A skier is skiing down a mountain.
A dog are wags its tail down the boy.
Men paddle her wings on the lake.
The woman is carrying two trays of food.
A barber is giving a haircut.

Model

Model

- Off-policy RL
  - e.g., Q-learning
  - Implicitly learns the policy  $\pi$  by approximating the  $Q^{\pi}(s_t, a_t)$
  - Bellman temporal consistency:  $Q^*(s_t, a_t) = r_t + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$
  - Learns  $Q_{\theta}$  with the regression objective:

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \left[ \frac{1}{2} \left( r_t + \gamma \max_{a_{t+1}} Q_{\bar{\theta}}(\boldsymbol{s}_{t+1}, a_{t+1}) - Q_{\theta}(\boldsymbol{s}_t, a_t) \right)^2 \right]$$
Arbitrary policy

• After learning, induces the policy as  $a_t = \operatorname{argmax}_a Q_{\theta^*}(\mathbf{s}_t, a)$ 

(Static) Training Data
A skier is skiing down a mountain.
A dog are wags its tail down the boy.
Men paddle her wings on the lake.
The woman is carrying two trays of food.
A barber is giving a haircut.

Model

Model

- Off-policy RL
  - e.g., Q-learning
  - Implicitly learns the policy  $\pi$  by approximating the  $Q^{\pi}(s_t, a_t)$
  - Bellman temporal consistency:  $Q^*(s_t, a_t) = r_t + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$
  - Learns  $Q_{\theta}$  with the regression objective:

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \left[ \frac{1}{2} \left( r_t + \gamma \max_{a_{t+1}} Q_{\bar{\theta}}(\boldsymbol{s}_{t+1}, a_{t+1}) - Q_{\theta}(\boldsymbol{s}_t, a_t) \right)^2 \right]$$

Arbitrary policy

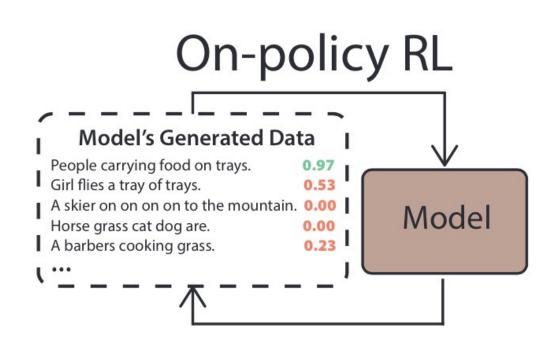
Regression target is unstable

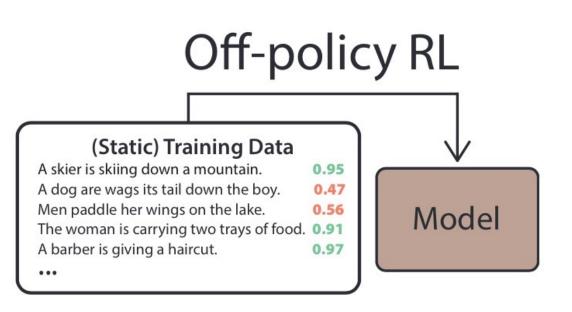
- Bootstrapped  $Q_{\overline{ heta}}$
- Sparse reward  $r_t = 0 \ (t < T)$ : no "true" training signal
- After learning, induces the policy as  $a_t = \operatorname{argmax}_a Q_{\theta^*}(\mathbf{s}_t, a)$

- On-policy RL, e.g., Policy Gradient (PG)
  - Exploration to maximize reward directly
- Extremely low data efficiency

- Off-policy RL, e.g., Q-learning
- Unstable training due to bootstrapping & sparse reward
- Slow updates due to large action space
- Sensitive to off-policy data quality

... Limited success for training text generation





#### New RL for Text Generation: Soft Q-Learning (SQL)

(Hard) Q-learning

Goal

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t=0}^{T} \gamma^t r_t \right]$$

Induced policy

$$a_t = \operatorname{argmax}_a Q_{\theta^*}(\mathbf{s}_t, a)$$

SQL

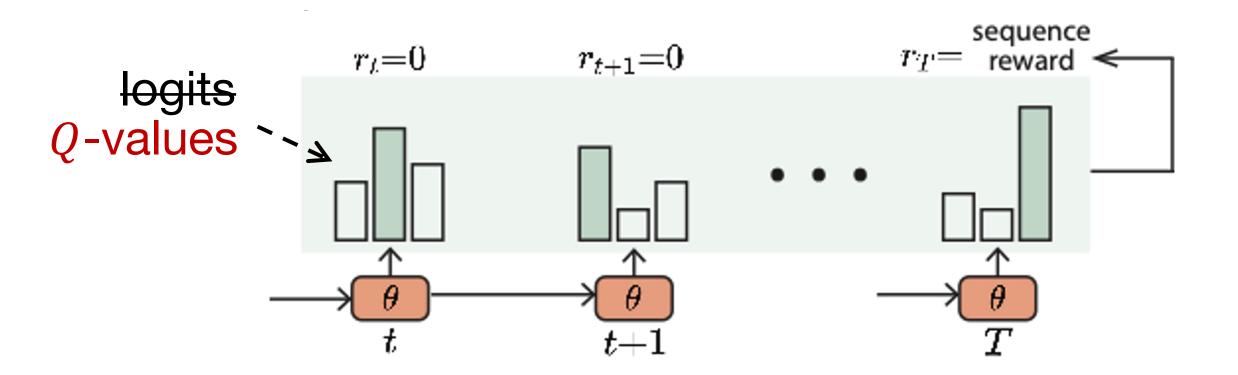
Goal: entropy regularized

$$J_{ ext{MaxEnt}}(\pi) = \mathbb{E}_{ au \sim \pi} \left[ \sum_{t=0}^{T} \gamma^{t} r_{t} + \alpha \mathcal{H} \left( \pi \left( \cdot \mid \boldsymbol{s}_{t} 
ight) 
ight) \right]$$

Induced policy

$$\pi_{\theta^*}(a_t \mid \mathbf{s}_t) = \operatorname{softmax}(Q_{\theta^*}(a_t \mid \mathbf{s}_t))$$

Generation model's "logits" now act as Q-values!



### New RL for Text Generation: Soft Q-Learning (SQL)

(Hard) Q-learning

Goal

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t=0}^{T} \gamma^t r_t \right]$$

Induced policy

$$a_t = \operatorname{argmax}_a Q_{\theta^*}(\mathbf{s}_t, a)$$

- Training objective:
  - Based on temporal consistency

SQL

Goal: entropy regularized

$$J_{\text{MaxEnt}}(\pi) = \mathbb{E}_{\tau \sim \pi} \left[ \sum_{t=0}^{T} \gamma^{t} r_{t} + \alpha \mathcal{H} \left( \pi \left( \cdot \mid \boldsymbol{s}_{t} \right) \right) \right]$$

Induced policy

$$\pi_{\theta^*}(a_t \mid \mathbf{s}_t) = \operatorname{softmax}(Q_{\theta^*}(a_t \mid \mathbf{s}_t))$$

- Training objective:
  - Based on path consistency



#### Efficient Training via Path Consistency

$$V^*(\mathbf{s}) = \log \sum_{a'} \exp Q^*(\mathbf{s}, a')$$
$$\pi^*(\mathbf{a} \mid \mathbf{s}) = \operatorname{softmax}(Q^*(\mathbf{a} \mid \mathbf{s}))$$

• (Multi-step) path consistency

$$V^*\left(\boldsymbol{s}_{t}\right) - \gamma^{T-t}V^*\left(\boldsymbol{s}_{T+1}\right) = \sum_{l=0}^{T-t} \gamma^{l} \left(r_{t+l} - \log \pi^*\left(a_{t+l} \mid \boldsymbol{s}_{t+l}\right)\right)$$

Stable updates: Non-zero reward signal  $r_T$  as regression target

Objective

$$\mathcal{L}_{\text{SQL, PCL-ms}}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \left[ \frac{1}{2} \left( -V_{\bar{\theta}} \left( \boldsymbol{s}_{t} \right) + \gamma^{T-t} r_{T} - \sum_{l=0}^{T-t} \gamma^{l} \log \pi_{\theta} \left( a_{t+l} \mid \boldsymbol{s}_{t+l} \right) \right)^{2} \right]$$



Fast updates: gradient involves  $Q_{\theta}$  values of **all** tokens in the vocab

#### Implementation is easy

```
model = TransformerLM(...)
for iter in range(max_iters):
    if mode == "off-policy":
        batch = dataset.sample_batch()
        sample_ids = batch.text_ids
    if mode == "on-policy":
        sample_ids = model.decode()
    Q_values = model.forward(sample_ids)
    Q values_target = target_model.forward(sample_ids)
    rewards = compute_rewards(sample_ids)
    sql_loss = multi_step_SQL_objective(
        Q_values,
        Q_values_target,
        actions=sample_ids,
        rewards=rewards)
    # gradient descent over sql_loss
    # ...
```

```
def multi_step_SQL_objective(
        Q_values, Q_values_target, actions, rewards):

V = Q_values.logsumexp(dim=-1)
A = Q_values[actions] - V

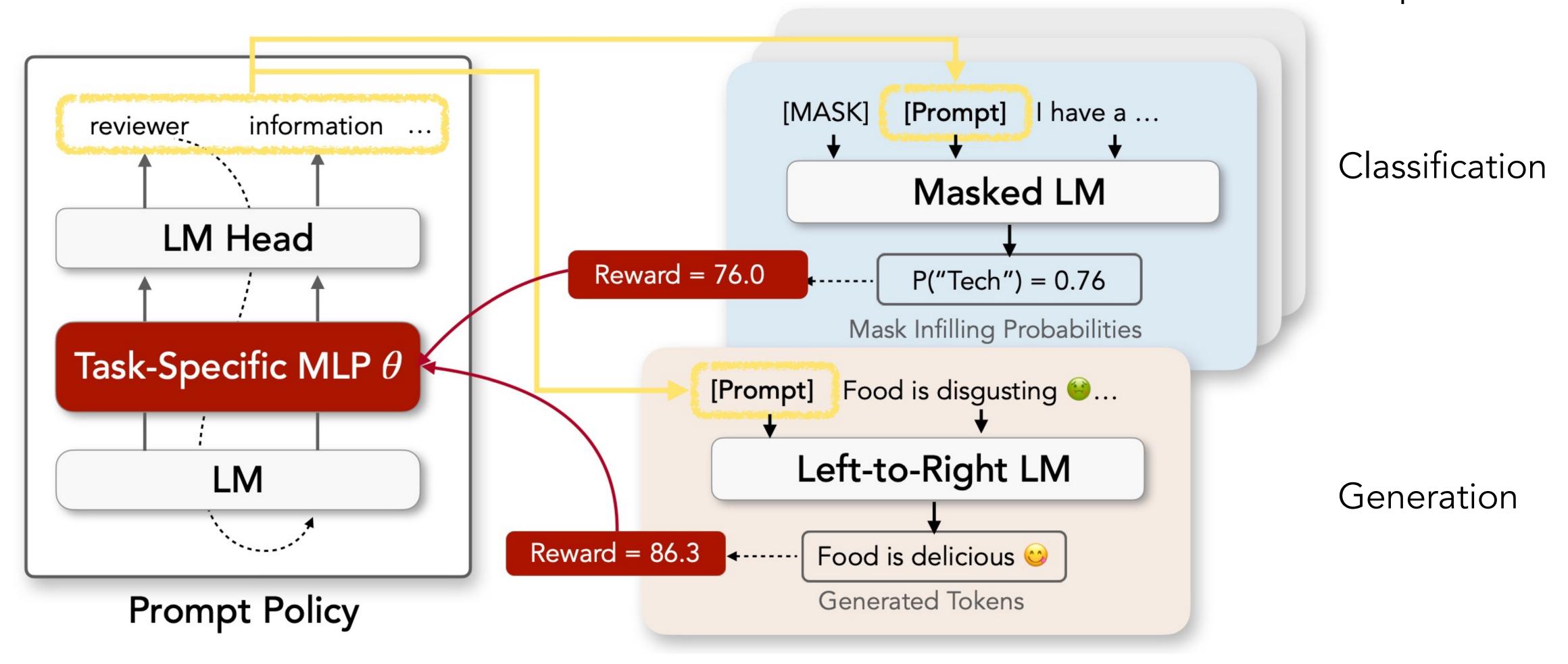
V_target = Q_values_target.logsumexp(dim=-1)

A2 = masked_reverse_cumsum(
        A, lengths=actions.sequence_length,
        dim=-1)

return F.mse_loss(
        A2, rewards.view(-1, 1) - V_target,
        reduction="none")
```

## Applications & Experiments

• Optimize discrete prompts to steer pretrained LMs to produce desired outputs



• Optimize discrete prompts to steer pretrained LMs to produce desired outputs

| Methods               | Frozen<br>LMs | Automated | Gradient-<br>free | Guided<br>Optimize | Few-<br>shot | Zero-<br>shot | Transferrable<br>b/w LMs | Interpret. |
|-----------------------|---------------|-----------|-------------------|--------------------|--------------|---------------|--------------------------|------------|
| Finetuning            | Х             | <b>✓</b>  | X                 | <b>✓</b>           | Х            | X             | X                        | X          |
| In-context Demo.      |               |           |                   | X                  |              | X             |                          |            |
| Instructions          |               | X         |                   | X                  | <b>✓</b>     | <b>✓</b>      |                          |            |
| Manual Prompt         |               | X         |                   | X                  | <b>✓</b>     |               |                          |            |
| Soft Prompt Tuning    |               |           | X                 |                    |              | X             | X                        | X          |
| Discrete Prompt Enum. |               |           |                   | X                  |              |               |                          |            |
| AutoPrompt            |               |           | X                 |                    |              | X             |                          |            |
| RLPrompt (Ours)       | <b>✓</b>      | <b>✓</b>  | <b>✓</b>          | <b>✓</b>           | <b>✓</b>     | <b>✓</b>      | ✓                        | <b>✓</b>   |

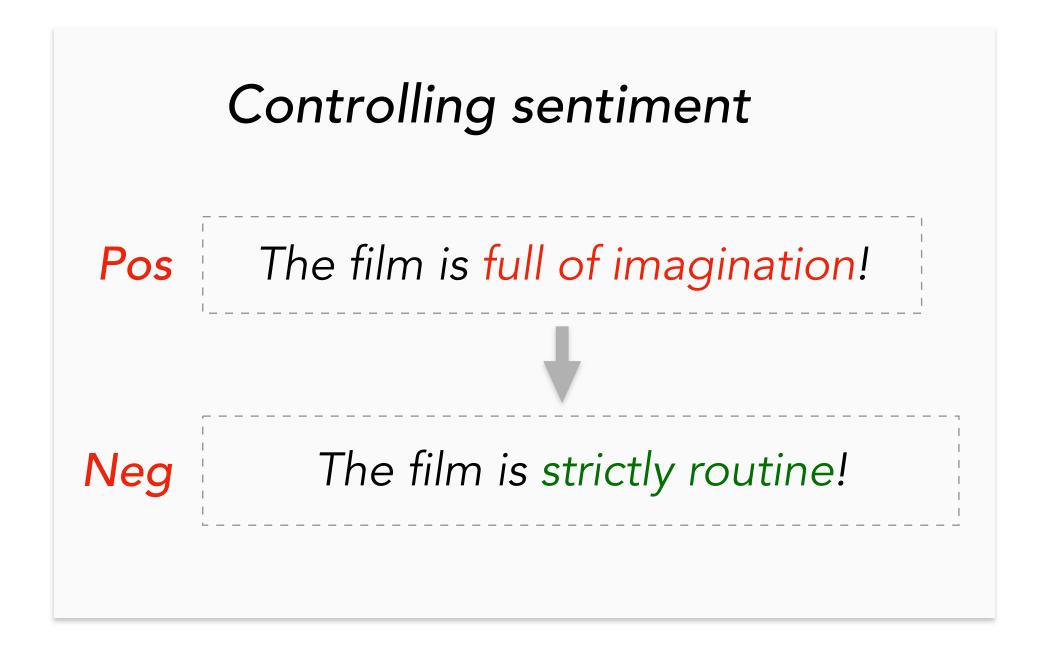
Comparison of different (prompting) paradigms for using pretrained LMs on downstream tasks, in terms of a number of desirable properties.

Few-shot classification

|                                               | SST-2             | Yelp P.           | MR                | CR                | AG's News         |
|-----------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Finetuning                                    | 80.6 (3.9)        | 88.7 (4.7)        | 67.4 (9.7)        | 73.3 (7.5)        | <b>84.9</b> (3.6) |
| Manual Prompt                                 | 82.8              | 83.0              | 80.9              | 79.6              | 76.9              |
| In-context Demo.                              | 85.9 (0.7)        | 89.6 (0.4)        | 80.6 (1.4)        | 85.5 (1.5)        | 74.9 (0.8)        |
| Instructions                                  | 89.0              | 84.4              | 85.2              | 80.8              | 54.8              |
| Prompt Tuning (Soft Prompt Tuning)            | 73.8 (10.9)       | 88.6 (2.1)        | 74.1 (14.6)       | 75.9 (11.8)       | 82.6 (0.9)        |
| Black-Box Tuning (Mixed Prompt + Soft Tuning) | 89.1 (0.9)        | 93.2 (0.5)        | 86.6 (1.3)        | <b>87.4</b> (1.0) | 83.5 (0.9)        |
| GrIPS (Discrete Prompt Enum.)                 | 87.1 (1.5)        | 88.2 (0.1)        | 86.1 (0.3)        | 80.0 (2.5)        | 65.4 (9.8)        |
| AutoPrompt                                    | 75.0 (7.6)        | 79.8 (8.3)        | 62.0 (0.8)        | 57.5 (5.8)        | 65.7 (1.9)        |
| RLPrompt (Ours)                               | <b>90.1</b> (1.8) | <b>93.9</b> (1.8) | <b>86.7</b> (2.4) | 87.2 (1.7)        | 77.2 (2.0)        |

Table 3: Results of few-shot text classification, comparing with methods of different paradigms in Table 1

Text style transfer

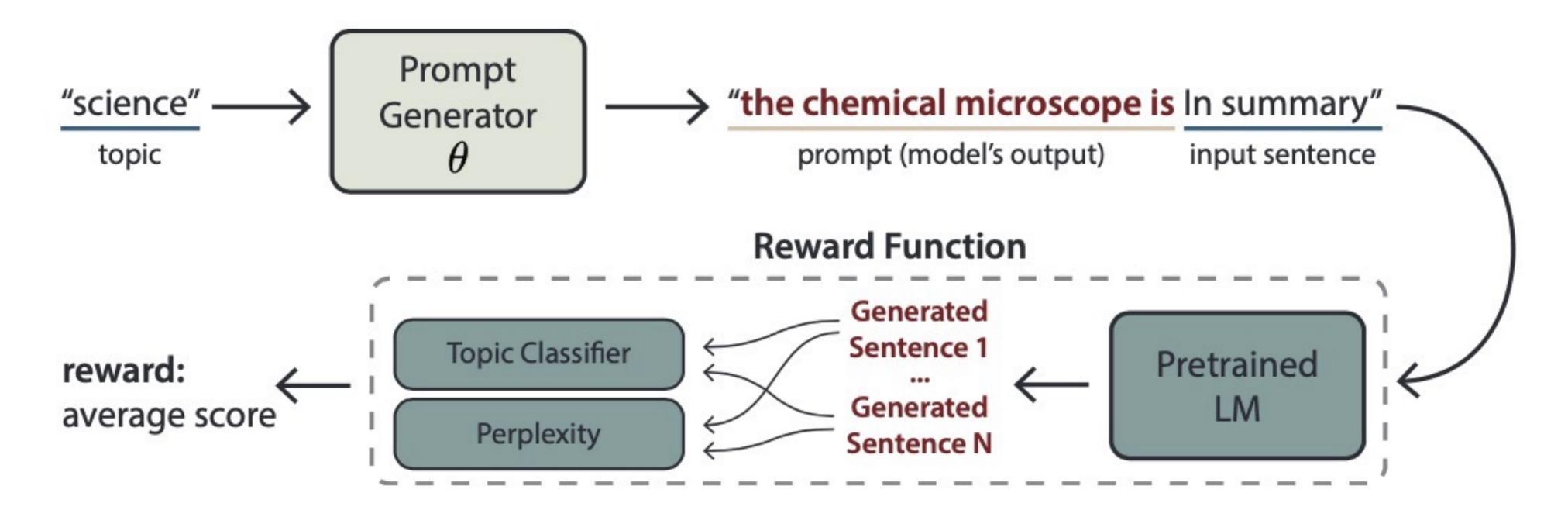


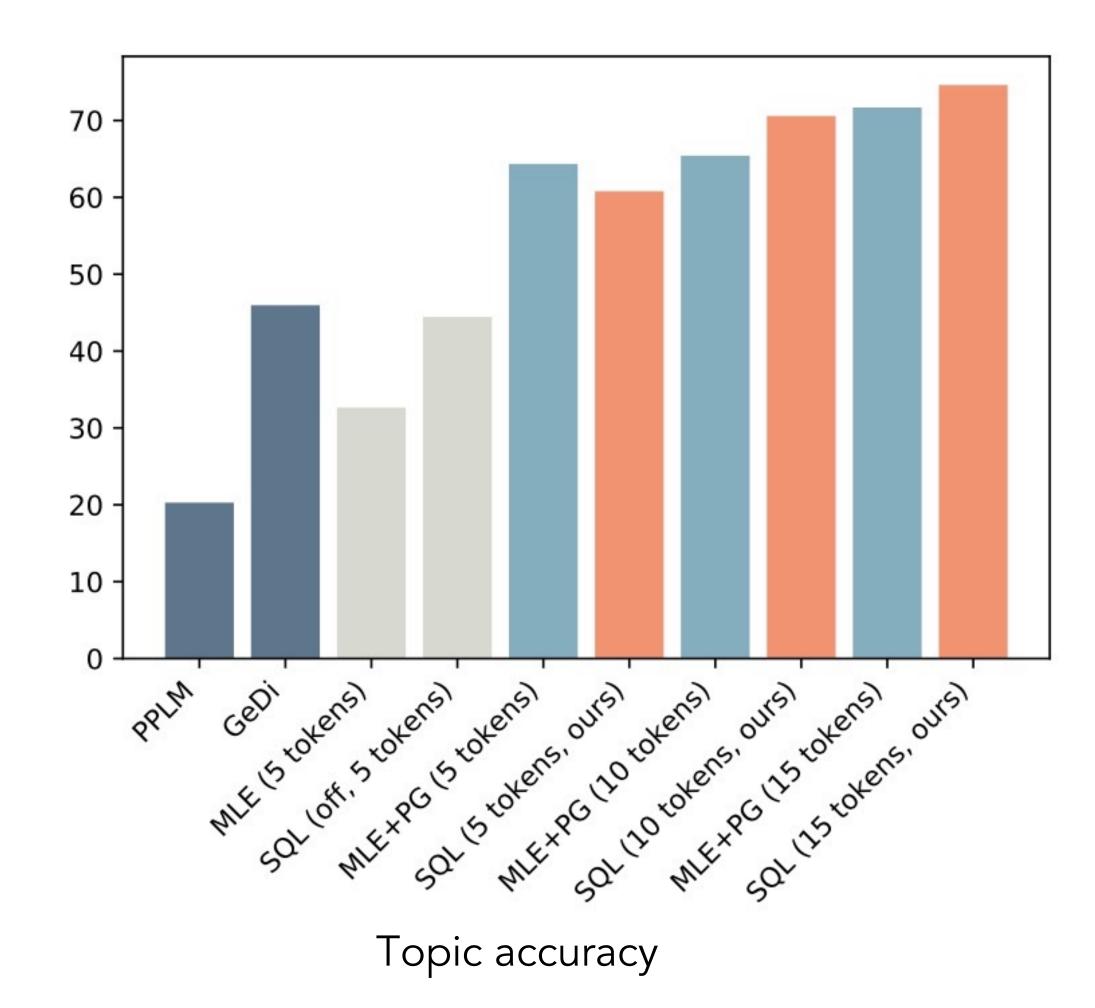
Text style transfer

| Model              | Content           | Style      | Fluency    | J(C, S, F) | GM(C, S, F) | BLEU       | BERTScore  | PPL↓       |
|--------------------|-------------------|------------|------------|------------|-------------|------------|------------|------------|
| Oracles            |                   |            |            |            |             |            |            |            |
| Copy               | 100 (0.0)         | 1.4 (0.0)  | 92.2 (0.0) | 11.9 (0.0) | 23.5 (0.0)  | 30.1 (0.0) | 62.2 (0.0) | 20.6 (0.0) |
| Reference          | 62.2 (0.0)        | 78.9 (0.0) | 88.7 (0.0) | 55.9 (0.0) | 75.8 (0.0)  | 100 (0.0)  | 100 (0.0)  | 30.8 (0.0) |
| Training Baselines |                   |            |            |            |             |            |            |            |
| Style Transformer  | 75.2 (0.1)        | 96.4 (0.1) | 58.6 (0.2) | 46.1 (0.2) | 75.2 (0.1)  | 27.6 (0.1) | 56.1 (0.0) | 78.2 (0.3) |
| DiRR               | <b>78.8</b> (0.0) | 97.7 (0.1) | 75.6 (0.2) | 59.6 (0.2) | 83.5 (0.1)  | 30.0 (0.0) | 61.7 (0.0) | 40.6 (0.1) |
| Prompting Baseline | es (GPT-2 xi      | large)     |            |            |             |            |            |            |
| Null Prompt        | 37.4 (0.1)        | 94.8 (0.1) | 97.6 (0.1) | 33.6 (0.1) | 70.2 (0.1)  | 6.6 (0.1)  | 35.8 (0.1) | 59.5 (2.0) |
| Random Prompt      | 39.6 (0.1)        | 93.8 (0.2) | 97.8 (0.1) | 34.7 (0.2) | 71.3 (0.1)  | 7.3 (0.1)  | 37.4 (0.1) | 60.5 (1.6) |
| Manual Prompt      | 64.2 (1.0)        | 91.5 (0.6) | 93.2 (0.2) | 53.4 (1.2) | 81.8 (0.5)  | 19.2 (0.6) | 53.1 (0.8) | 35.5 (1.4) |
| RLPROMPT (Ours     | 5)                |            |            |            |             |            |            |            |
| distilGPT-2        | 57.3 (0.3)        | 96.5 (0.1) | 85.3 (0.3) | 46.0 (0.2) | 77.9 (0.1)  | 15.7 (0.1) | 49.1 (0.1) | 43.6 (0.6) |
| GPT-2 small        | 60.0 (0.1)        | 96.4 (0.1) | 89.0 (0.5) | 50.7 (0.3) | 80.1 (0.1)  | 16.5 (0.1) | 51.3 (0.1) | 37.8 (0.9) |
| GPT-2 medium       | 65.7 (0.2)        | 95.2 (0.2) | 89.3 (0.2) | 56.1 (0.6) | 82.3 (0.1)  | 20.0 (0.2) | 55.1 (0.2) | 34.4 (0.3) |
| GPT-2 large        | 65.1 (0.3)        | 94.6 (0.4) | 91.6 (0.2) | 56.5 (0.5) | 82.6 (0.1)  | 19.8 (0.1) | 54.7 (0.1) | 34.9 (0.3) |
| GPT-2 xlarge       | 72.1 (0.2)        | 94.2 (0.4) | 89.5 (0.1) | 61.4 (0.7) | 84.7 (0.2)  | 24.2 (0.2) | 59.0 (0.1) | 34.3 (0.3) |

Table 4: Automatic evaluation of our method vs. baselines on the Yelp (Shen et al., 2017) sentiment transfer dataset.

Topic-control generation





- Steered decoding: PPLM, GeDi
- SQL achieves better overall accuracy+fluency
- Prompt control by SQL, MLE+PG > PPLM, GeDi
  - and much faster at inference!

| PPLM    | GeDi         | MLE (5)    | SQL (off, 5) |
|---------|--------------|------------|--------------|
| 12.69   | 123.88       | 25.70      | 25.77        |
| MLE+    | PG (5/10/15) | SQL (5/10  | /15, ours)   |
| 25.52/2 | 28.16/28.71  | 25.94/26.9 | 5/29.10      |

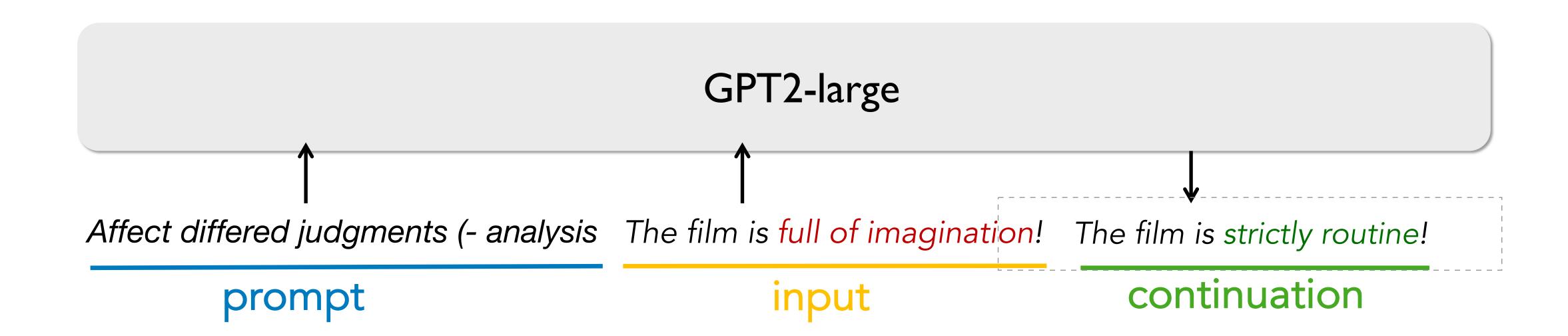
Language perplexity

| Model   | PPLM | GeDi | SQL  |
|---------|------|------|------|
| Seconds | 5.58 | 1.05 | 0.07 |

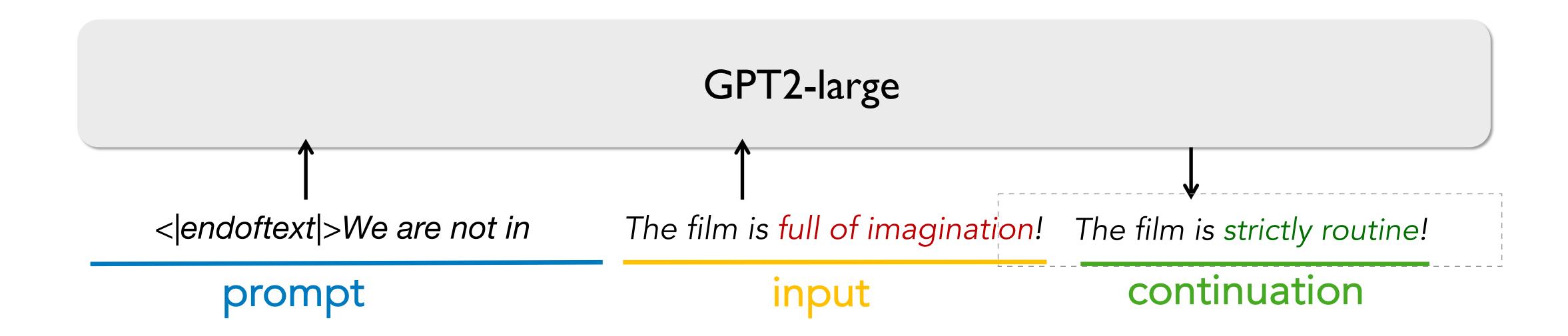
Time cost for generating one sentence

Interesting (Surprising) observations:

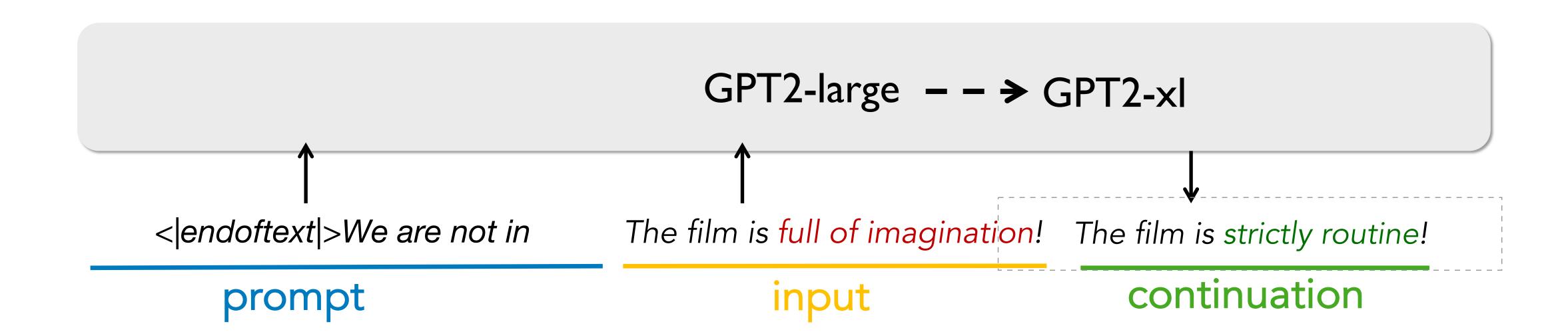
• Optimized prompts tend to be ungrammatical gibberish



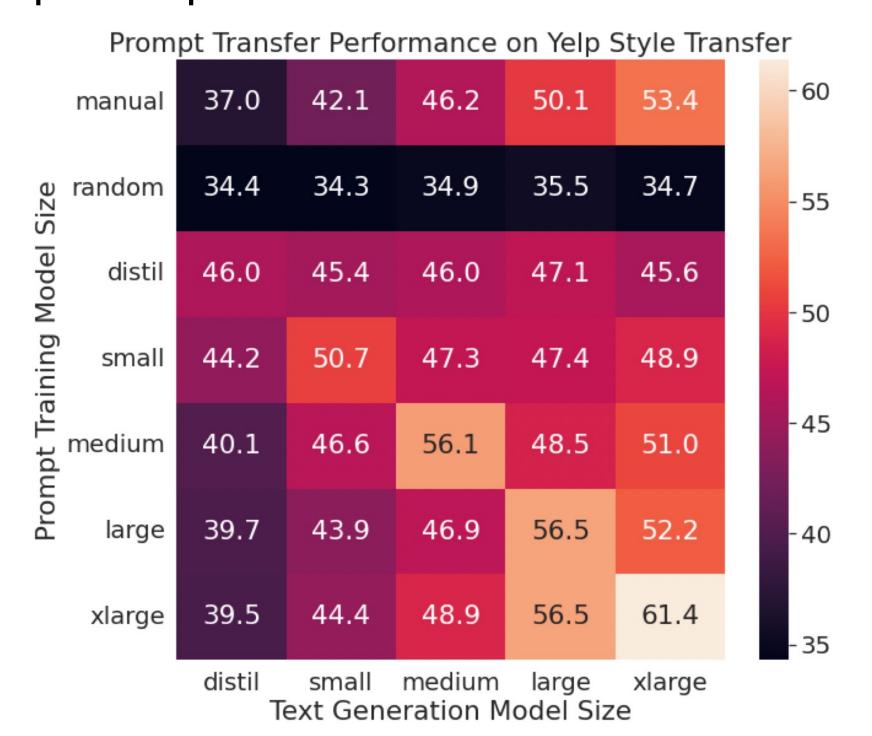
- Optimized prompts tend to be ungrammatical gibberish
  - Adding fluency constraint harms the performance



- Optimized prompts tend to be ungrammatical gibberish
  - Adding fluency constraint harms the performance
- Those gibberish prompts are transferrable between LMs!



- Optimized prompts tend to be ungrammatical gibberish
  - Adding fluency constraint harms the performance
- Those gibberish prompts are transferrable between LMs!

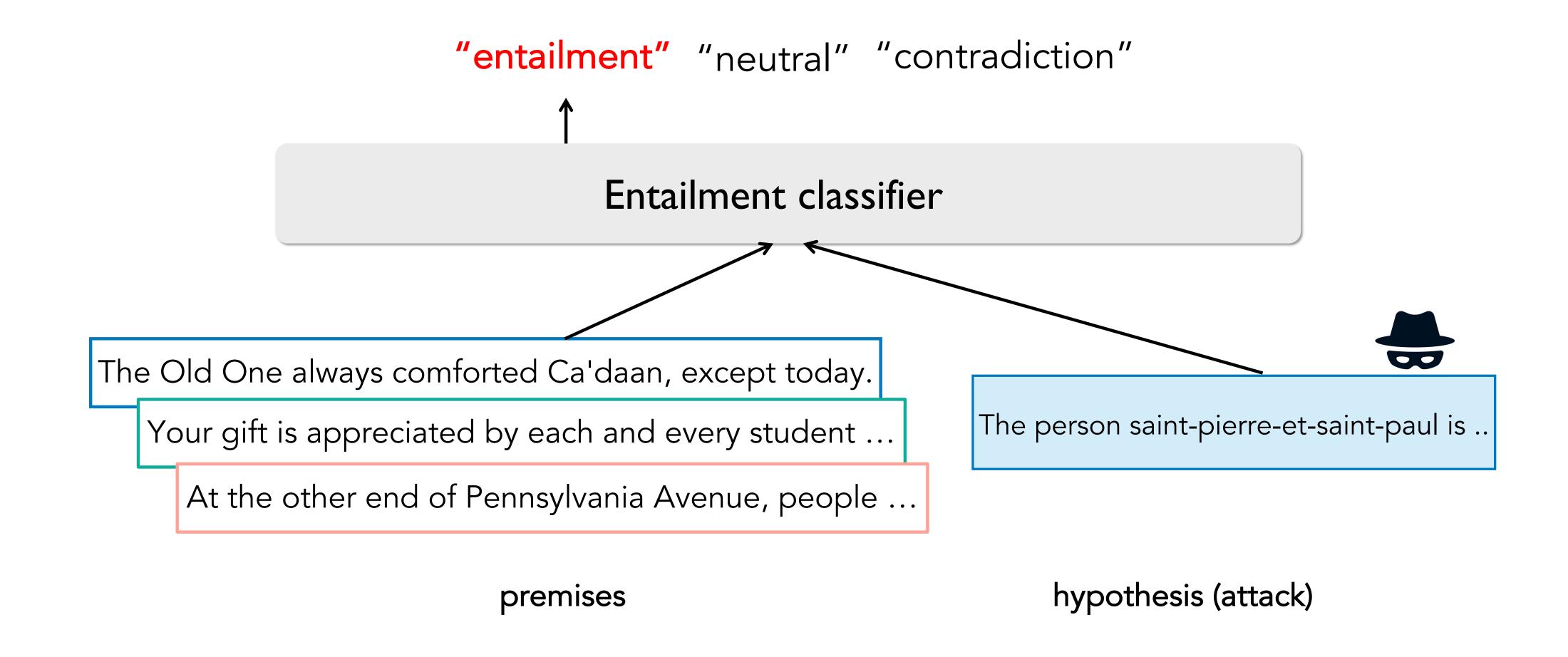


Interesting (Surprising) observations:

- Optimized prompts tend to be ungrammatical gibberish
  - Adding fluency constraint harms the performance
- Those gibberish prompts are transferrable between LMs!

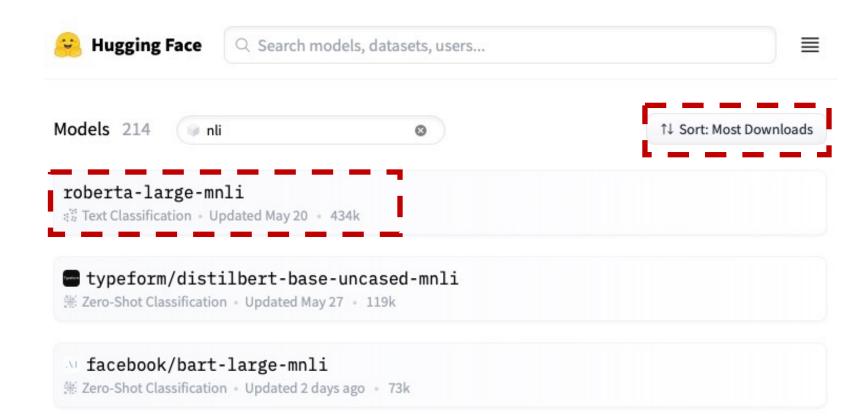
LM prompting may not follow human language patterns

#### Application (II): Universal Adversarial Attacks



#### Application (II): Universal Adversarial Attacks

- Attacking entailment classifier
  - Generate readable hypotheses that are classified as "entailment" for all premises
  - Unconditional hypothesis generation model
- Training data:
  - No direct supervision data available
  - "Weak" data: all hypotheses in MultiNLI corpus
- Rewards:
  - Entailment classifier to attack
  - Pretrained LM for perplexity
  - BLEU w.r.t input premises
  - Repetition penalty

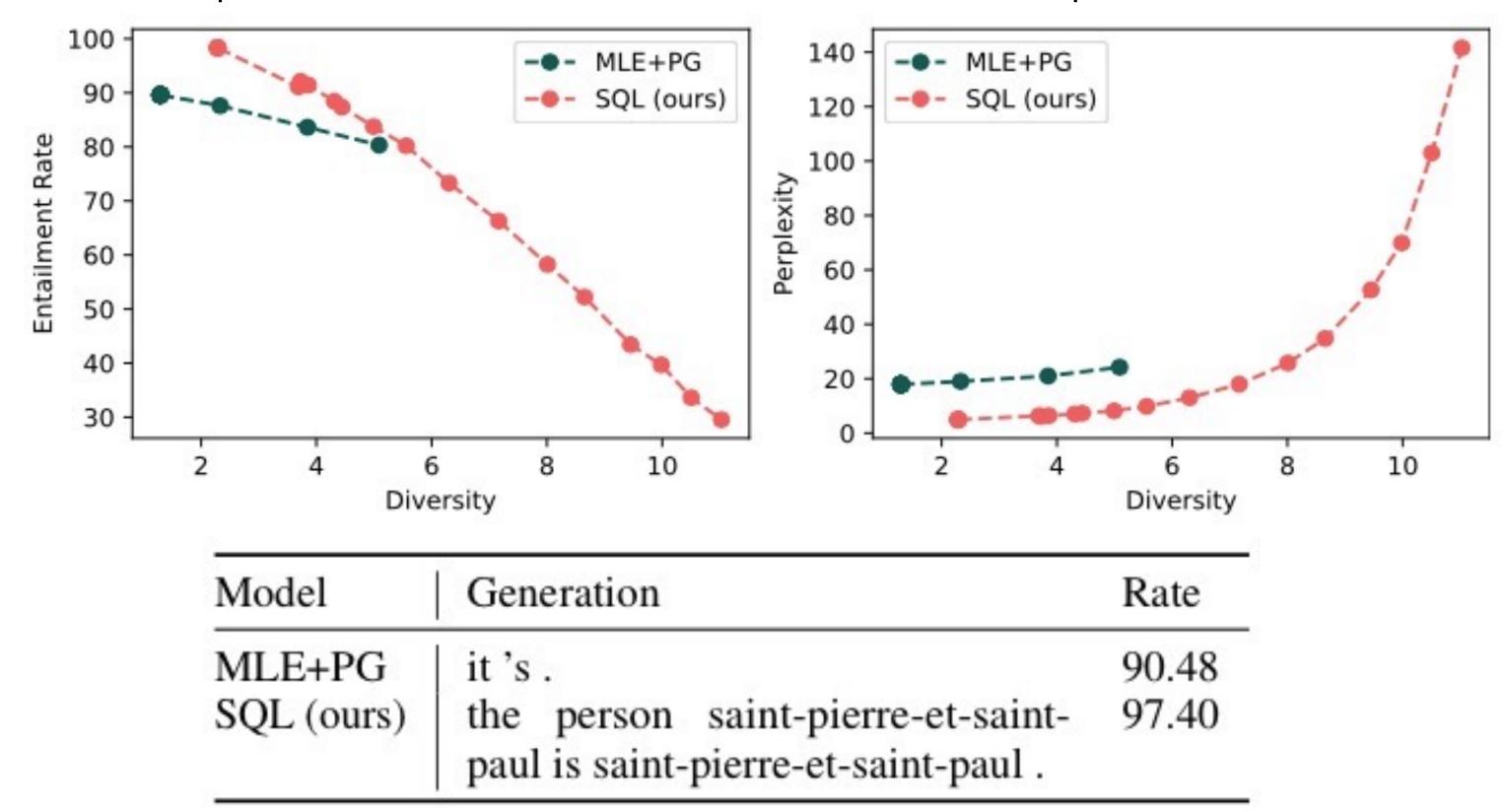


Previous adversarial algorithms are not applicable here:

- only attack for specific premise
- not readable

#### Application (II): Universal Adversarial Attacks

- SQL (full) > MLE+PG (PG alone does not work)
- MLE+PG collapses: cannot generate more diverse samples



#### Application (III): Learning from Noisy (Negative) Text

#### Entailment generation

- Given a premise, generates a hypothesis that entails the premise
- "Sophie is walking a dog outside her house" -> "Sophie is outdoor"
- Negative sample: "Sophie is inside her house"

#### Training data:

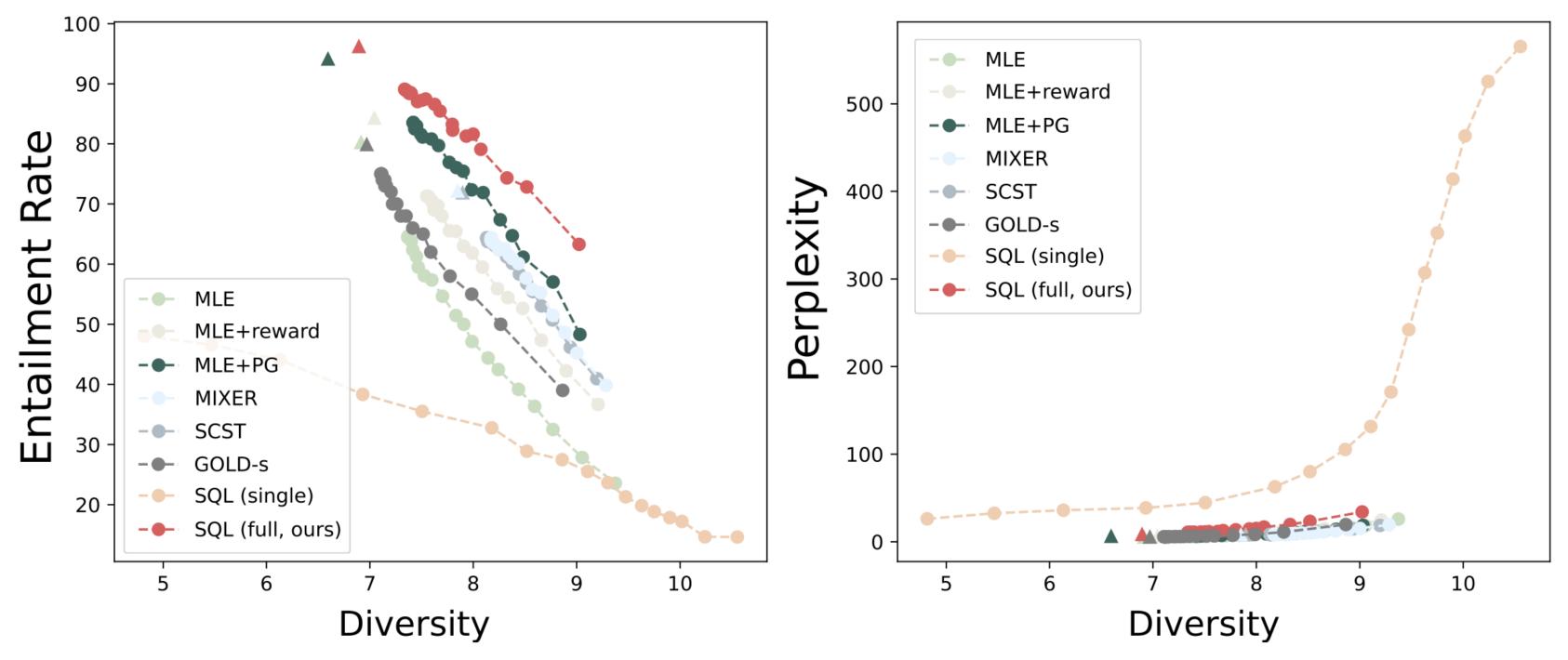
- Subsampled 50K (premise, hypothesis) noisy pairs from SNLI
- Average entailment probability: 50%
- 20K examples have entailment probability < 20% (≈ negative samples)

#### Rewards:

- Entailment classifier
- Pretrained LM for perplexity
- BLEU w.r.t input premises (which effectively prevents trivial generations)

### Application (III): Learning from Noisy (Negative) Text

- MLE (and variants) and pure off-policy RL (GOLD-s) do not work  $\leftarrow$  rely heavy on data quality
- SQL (full) > MLE+PG (PG alone does not work)



Entailment-rate and language-quality vs diversity (top-p decoding w/ different p)

#### Key Takeaways

- Learning text generation from reward
- Previous RL for text generation (e.g., policy gradient, Q-learning):
- Low data efficiency; unstable training; slow updates; sensitive to training data quality
- SQL
  - Objectives based on path consistency
- Stable training from scratch given sparse reward
- Fast updates given large action space
- Opens up enormous opportunities
  - For integrating more advanced RL (replay buffer, model-based RL, hindsight, ...)
  - To enable massive new applications in text generation