DSC291: Machine Learning with Few Labels

Reinforcement learning

Zhiting Hu Lecture 18, February 22, 2023

Recap:

- Q-learning:
 - Value-based
 - learns Q-value function
 - Off-policy
 - E.g., replay memory

- Policy Gradient:
 - Policy-based
 - Learns policy itself
 - On-policy

Recap: REINFORCE algorithm

Mathematically, we can write:

$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} [r(\tau)]$$
$$= \int_{\tau} r(\tau) p(\tau;\theta) d\tau$$

Where $r(\tau)$ is the reward of a trajectory $\tau = (s_0, a_0, r_0, s_1, \ldots)$

Recap: REINFORCE algorithm

Expected reward:
$$J(\theta) = \mathbb{E}_{ au \sim p(au; heta)} \left[r(au)
ight]$$
 $= \int_{ au} r(au) p(au; heta) \mathrm{d} au$

Now let's differentiate this:
$$\nabla_{\theta}J(\theta)=\int_{ au}r(au)\nabla_{\theta}p(au; heta)\mathrm{d} au$$

Intractable! Gradient of an expectation is problematic when p depends on θ

However, we can use a nice trick: $\nabla_{\theta} p(\tau;\theta) = p(\tau;\theta) \frac{\nabla_{\theta} p(\tau;\theta)}{p(\tau;\theta)} = p(\tau;\theta) \nabla_{\theta} \log p(\tau;\theta)$ If we inject this back:

$$\nabla_{\theta} J(\theta) = \int_{\tau} (r(\tau) \nabla_{\theta} \log p(\tau; \theta)) p(\tau; \theta) d\tau$$
$$= \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau) \nabla_{\theta} \log p(\tau; \theta)]$$

Can estimate with Monte Carlo sampling

$$egin{aligned}
abla_{ heta} J(heta) &= \int_{ au} \left(r(au)
abla_{ heta} \log p(au; heta) \right) p(au; heta) \mathrm{d} au \ &= \mathbb{E}_{ au \sim p(au; heta)} \left[r(au)
abla_{ heta} \log p(au; heta)
ight] \end{aligned}$$

Recap: REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have:
$$p(\tau; \theta) = \prod p(s_{t+1}|s_t, a_t)\pi_{\theta}(a_t|s_t)$$

Thus:
$$\log p(\tau; \theta) = \sum_{t>0}^{t\geq 0} \log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t)$$

And when differentiating:
$$\nabla_{\theta} \log p(\tau; \theta) = \sum_{t \geq 0} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$
 transfer

Doesn't depend on transition probabilities!

Therefore when sampling a trajectory τ , we can estimate $J(\theta)$ with

$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Intuition

Gradient estimator: $\nabla_{\theta} J(\theta) pprox \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

Interpretation:

- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Intuition

Gradient estimator:
$$\nabla_{\theta} J(\theta) pprox \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Interpretation:

- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. But in expectation, it averages out!

Intuition

Gradient estimator: $\nabla_{\theta} J(\theta) pprox \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

Interpretation:

- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really hard. Can we help the estimator?

Variance reduction

Gradient estimator:
$$\nabla_{\theta} J(\theta) pprox \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Variance reduction

Gradient estimator: $\nabla_{\theta} J(\theta) pprox \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

$$abla_{\theta} J(\theta) pprox \sum_{t \geq 0} \left(\sum_{t' \geq t} r_{t'} \right)
abla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Variance reduction

Gradient estimator:
$$\nabla_{\theta} J(\theta) pprox \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

$$abla_{\theta} J(\theta) pprox \sum_{t \geq 0} \left(\sum_{t' \geq t} r_{t'} \right)
abla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Second idea: Use discount factor γ to ignore delayed effects

$$\nabla_{\theta} J(\theta) pprox \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Variance reduction: Baseline

Problem: The raw value of a trajectory isn't necessarily meaningful. For example, if rewards are all positive, you keep pushing up probabilities of actions.

What is important then? Whether a reward is better or worse than what you expect to get

Idea: Introduce a baseline function dependent on the state. Concretely, estimator is now:

$$\nabla_{\theta} J(\theta) pprox \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} - b(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} - b(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

A simple baseline: constant moving average of rewards experienced so far from all trajectories

$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} - b(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

A simple baseline: constant moving average of rewards experienced so far from all trajectories

Variance reduction techniques seen so far are typically used in "Vanilla REINFORCE"

A better baseline: Want to push up the probability of an action from a state, if this action was better than the **expected value of what we should get from that state**.

Q: What does this remind you of?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the **expected value of what we should get from that state**.

Q: What does this remind you of?

A: Q-function and value function!

A better baseline: Want to push up the probability of an action from a state, if this action was better than the **expected value of what we should get from that state**.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a_t in a state s_t if $Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$ is large. On the contrary, we are unhappy with an action if it's small.

A better baseline: Want to push up the probability of an action from a state, if this action was better than the **expected value of what we should get from that state**.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a_t in a state s_t if $Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$ is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: $\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} (Q^{\pi_{\theta}}(s_t, a_t) - V^{\pi_{\theta}}(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

Actor-Critic Algorithm

Problem: we don't know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training both an **actor** (the policy) and a **critic** (the Q-function).

- The actor decides which action to take, and the critic tells the actor how good its action was and how it should adjust
- Also alleviates the task of the critic as it only has to learn the values of (state, action) pairs generated by the policy
- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an action was better than expected $A^\pi(s,a) = Q^\pi(s,a) V^\pi(s)$

Actor-Critic Algorithm

Initialize policy parameters 8, critic parameters Ø For iteration=1, 2 ... do

Sample m trajectories under the current policy

For i=1, ..., m do
$$A_t = \sum_{t' \geq t} \gamma^{t'-t} r_t^i - V_\phi(s_t^i)$$

$$\Delta \theta \leftarrow \Delta \theta + A_t \nabla_\theta \log(a_t^i | s_t^i)$$

$$\Delta \phi \leftarrow \sum_t \sum_t \nabla_\phi ||A_t^i||^2$$

$$\theta \leftarrow \alpha \Delta \theta$$

End for

Objective: Image Classification

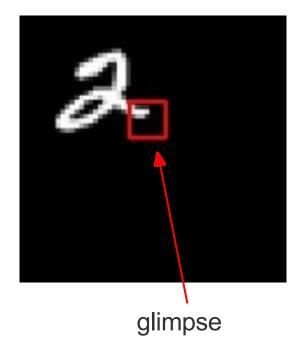
Take a sequence of "glimpses" selectively focusing on regions of the image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far

Action: (x,y) coordinates (center of glimpse) of where to look next in image

Reward: 1 at the final timestep if image correctly classified, 0 otherwise



Objective: Image Classification

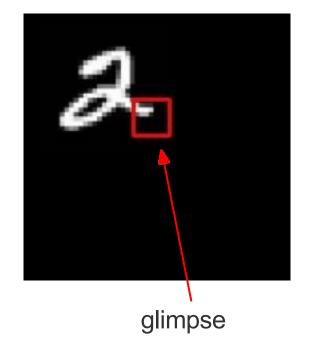
Take a sequence of "glimpses" selectively focusing on regions of the image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

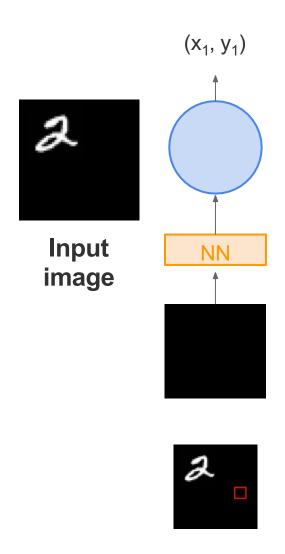
State: Glimpses seen so far

Action: (x,y) coordinates (center of glimpse) of where to look next in image

Reward: 1 at the final timestep if image correctly classified, 0 otherwise



Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE Given state of glimpses seen so far, use RNN to model the state and output next action



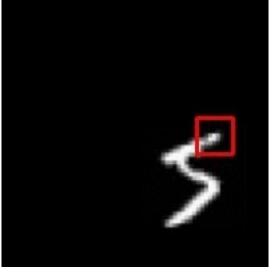
(RAM) (x_1, y_1) (x_2, y_2) Input NN NN image

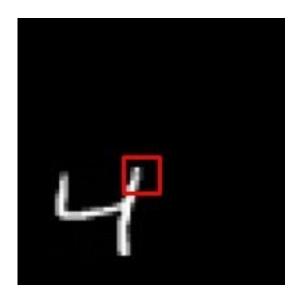
(RAM) (x_1, y_1) (x_2, y_2) (x_3, y_3) Input NN NN NN image

(RAM) (x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4) Input NN NN NN NN image 2 2

(RAM) (x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4) (x_5, y_5) Softmax y=2 Input NN NN NN NN NN image 2 2 [Mnih et al. 2014]







Has also been used in many other tasks including fine-grained image recognition, image captioning, and visual question-answering!

More policy gradients: AlphaGo

Overview:

- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and recent ones (deep RL)

A B C D E F G H J K L M N O P Q R S T 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N O P Q R S T

How to beat the Go world champion:

- Featurize the board (stone color, move legality, bias, ...)
- Initialize policy network with supervised training from professional go games, then continue training using policy gradient (play against itself from random previous iterations, +1 / -1 reward for winning / losing)
- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree Search algorithm to select actions by lookahead search

[Silver et al., Nature 2016]

This image is CC0 public domain

Key Takeaways

- Markov Decision Process (MDP)
- Q-learning
 - Bellman equation
 - Deep Q-learning, experience replay
- Policy gradients
- Guarantees:
 - Policy Gradients: Converges to a local minima of $J(\theta)$, often good enough!
 - Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function approximator

RL for text generation

Questions?