
DSC291: Machine Learning with Few Labels

Reinforcement learning

Zhiting Hu
Lecture 17, February 17, 2023

1



Remember: want to find a Q-function that satisfies the Bellman Equation:

Recap: Solving for the optimal policy: Q-learning

2



Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass 
Loss function:

where

Recap: Solving for the optimal policy: Q-learning

3



Remember: want to find a Q-function that satisfies the Bellman Equation:

Forward Pass 
Loss function:

where

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Recap: Solving for the optimal policy: Q-learning

4



:
neural network 
with weights

Recap: Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d
output (if 4 actions), 
corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)A single feedforward pass 

to compute Q-values for all 
actions from the current 
state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]

5



Recap: Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game 

(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, 

instead of consecutive samples

[Mnih et al. NIPS Workshop 2013; Nature 2015]

6



Recap: Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game 

(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute 
to multiple weight updates
=> greater data efficiency

[Mnih et al. NIPS Workshop 2013; Nature 2015]

7



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Recap: Deep Q-Learning with Experience Replay

8



Other concepts
● Q-learning:
! Value-based
§ learns Q-value function

! Off-policy
§ E.g., replay memory

● Policy Gradient:
! Policy-based
§ Learns policy itself

! On-policy

9



Policy Gradients
What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 
to learn exact value of every (state, action) pair

10



Policy Gradients
What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard 
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of 
policies?

11



Formally, let’s define a class of parametrized policies:

For each policy, define its value:

Policy Gradients

12



Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy Gradients

13



Formally, let’s define a class of parametrized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?
Gradient ascent on policy parameters!

Policy Gradients

14



REINFORCE algorithm
Mathematically, we can write:

Where 𝑟(𝜏) is the reward of a trajectory

15



Expected reward:

REINFORCE algorithm

16



REINFORCE algorithm

Now let’s differentiate this:

Expected reward:

17



REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when 𝑝
depends on θ

Now let’s differentiate this:

Expected reward:

18



REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Now let’s differentiate this:

However, we can use a nice trick:

Expected reward:

19



REINFORCE algorithm

Intractable! Gradient of an 
expectation is problematic when p 
depends on θ

Can estimate with 
Monte Carlo sampling

Now let’s differentiate this:

However, we can use a nice trick: 
If we inject this back:

Expected reward:

20



REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have:

21



REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:

22



REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:

And when differentiating:
Doesn’t depend on 

transition probabilities!

23



REINFORCE algorithm
Can we compute those quantities without knowing the transition probabilities?

We have: 

Thus:

And when differentiating:

Therefore when sampling a trajectory 𝜏, we can estimate J(𝜃) with

Doesn’t depend on 
transition probabilities!

24



Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

25



Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

26



Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is 
really hard. Can we help the estimator?

27



Gradient estimator:

Variance reduction

28



Variance reduction
Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state

29



Variance reduction
Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state

Second idea: Use discount factor γ to ignore delayed effects

30



Variance reduction: Baseline
Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you 
expect to get

Idea: Introduce a baseline function dependent on the state. 
Concretely, estimator is now:

31



A simple baseline: constant moving average of rewards experienced so far 
from all trajectories

How to choose the baseline?

32



How to choose the baseline?

A simple baseline: constant moving average of rewards experienced so far 
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla 
REINFORCE”

33



How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

34



How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of? 

A: Q-function and value function!

35



How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of? 

A: Q-function and value function!

Intuitively, we are happy with an action at in a state st if
is large. On the contrary, we are unhappy with an action if it’s small.

36



How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of? 

A: Q-function and value function!

Intuitively, we are happy with an action at in a state st if
is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:

37



Actor-Critic Algorithm
Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning 
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor 
how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values 
of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an 

action was better than expected

38



Actor-Critic Algorithm
Initialize policy parameters 8, critic parameters ø
For iteration=1, 2 … do

Sample m trajectories under the current policy

For i=1, …, m do
For t=1, ... , T do

End for

39



REINFORCE in action: Recurrent Attention Model
(RAM)
Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the 
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

[Mnih et al. 2014]

Lecture 14 -
40



REINFORCE in action: Recurrent Attention Model
(RAM)
Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the 
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE 
Given state of glimpses seen so far, use RNN to model the state and output next action

[Mnih et al. 2014]

Lecture 14 -
41



REINFORCE in action: Recurrent Attention Model
(RAM)

NN

(x1, y1)

Input 
image

[Mnih et al. 2014]

Lecture 14 -
42



REINFORCE in action: Recurrent Attention Model
(RAM)

NN

(x1, y1)

NN

(x2, y2)

Input 
image

[Mnih et al. 2014]

Lecture 14 -
43



REINFORCE in action: Recurrent Attention Model
(RAM)

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

Input 
image

[Mnih et al. 2014]

Lecture 14 -
44



REINFORCE in action: Recurrent Attention Model
(RAM)

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

Input 
image

[Mnih et al. 2014]

Lecture 14 -
45



NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

NN

(x5, y5)

Softmax

Input 
image

y=2

REINFORCE in action: Recurrent Attention Model
(RAM)

[Mnih et al. 2014]

Lecture 14 -
46



REINFORCE in action: Recurrent Attention Model
(RAM)

[Mnih et al. 2014]

Has also been used in many other tasks including fine-grained image recognition, 
image captioning, and visual question-answering!

47



More policy gradients: AlphaGo

- Featurize the board (stone color, move legality, bias, …)
- Initialize policy network with supervised training from professional go games, 

then continue training using policy gradient (play against itself from random 
previous iterations, +1 / -1 reward for winning / losing)

- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree 

Search algorithm to select actions by lookahead search

Overview:
- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and 

recent ones (deep RL)

How to beat the Go world champion:

[Silver et al., 
Nature 2016]

This image is CC0 public domain

Lecture 14 -
48

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Key Takeaways
- Markov Decision Process (MDP)
- Q-learning

- Bellman equation
- Deep Q-learning, experience replay

- Policy gradients

- Guarantees:
- Policy Gradients: Converges to a local minima of J(𝜃), often good enough!
- Q-learning: Zero guarantees since you are approximating Bellman

equation with a complicated function approximator

49



Questions?

50


