DSC291: Machine Learning with Few Labels

Deep Generative Models
 Reinforcement learning

Zhiting Hu
Lecture 15, February 13, 2023
UCSanDiego
HALICIOǦLU DATA SCIENCE INSTITUTE

Normalizing Flow (NF)

Normalizing Flow (NF)

- Transforms a simple distribution into a complex one by applying a sequence of transformation functions

Normalizing Flow (NF)

- Transforms a simple distribution into a complex one by applying a sequence of transformation functions

Normalizing Flow (NF)

- Transforms a simple distribution into a complex one by applying a sequence of transformation functions

[Rezende \& Mohamed, 2015]

Normalizing Flow (NF)

- Transforms a simple distribution into a complex one by applying a sequence of transformation functions

$$
\begin{aligned}
& z \sim p(z) \\
& x=f(z)
\end{aligned}
$$

Normalizing Flow (NF)

- Transforms a simple distribution into a complex one by applying a sequence of transformation functions

$$
\begin{aligned}
& z \sim p(z) \\
& x=f(z)
\end{aligned}
$$

inference: $\boldsymbol{z}=f^{-1}(\boldsymbol{x})$

Transformation function f
----->• Invertible

Normalizing Flow (NF)

- Transforms a simple distribution into a complex one by applying a sequence of transformation functions

$$
\begin{aligned}
& z \sim p(z) \\
& x=f(z)
\end{aligned}
$$

inference: $\boldsymbol{z}=f^{-1}(\boldsymbol{x})$
Transformation function f
density: $\quad p(\boldsymbol{x})=p(\boldsymbol{z})\left|\operatorname{det} \frac{d \boldsymbol{z}}{d \boldsymbol{x}}\right|$

$$
=p\left(f^{-1}(x)\right)\left|\operatorname{det} \frac{d f^{-1}}{d x}\right|
$$

$\operatorname{det} \frac{d f^{-1}}{d x}-$ - Jacobian determinant

Normalizing Flow (NF)

- Transforms a simple distribution into a complex one by applying a sequence of transformation functions

$$
\begin{aligned}
& z \sim p(z) \\
& x=f(z)
\end{aligned}
$$

inference: $\mathbf{z}=f^{-1}(\boldsymbol{x})$
Transformation function f
density: $\quad p(\boldsymbol{x})=p(\boldsymbol{z})\left|\operatorname{det} \frac{d \boldsymbol{z}}{d \boldsymbol{x}}\right|$

$$
=p\left(f^{-1}(x)\right)\left|\operatorname{det} \frac{d f^{-1}}{d x}\right|
$$

$$
\operatorname{det} \frac{d f^{-1}}{d x}-- \text { Jacobian determinant }
$$

Normalizing Flow (NF)

- Transforms a simple distribution into a complex one by applying a sequence of transformation functions

$$
\begin{aligned}
& z_{0} \sim p\left(z_{0}\right) \\
& \boldsymbol{x}=\mathbf{z}_{K}=f_{K} \circ f_{K-1} \circ \cdots \circ f_{1}\left(z_{0}\right)
\end{aligned}
$$

Transformation function f_{i}
inference: $\boldsymbol{z}_{i}=f_{i}^{-1}\left(\boldsymbol{z}_{i-1}\right)$
----->• Invertible
density: $\quad p\left(\mathbf{z}_{i}\right)=p\left(\mathbf{z}_{i-1}\right)\left|\operatorname{det} \frac{d \mathbf{z}_{i-1}}{d \boldsymbol{z}_{\boldsymbol{i}}}\right|$
-----> • Jacobian determinant easy to compute e.g., choose $d f_{i}^{-1} / d \boldsymbol{z}_{i}$ to be a triangular matrix

Normalizing Flow (NF)

- Transforms a simple distribution into a complex one by applying a sequence of transformation functions

$$
\begin{aligned}
& z_{0} \sim p\left(z_{0}\right) \\
& \boldsymbol{x}=\mathbf{z}_{K}=f_{K} \circ f_{K-1} \circ \cdots \circ f_{1}\left(z_{0}\right)
\end{aligned}
$$

Transformation function f_{i}
inference: $\boldsymbol{z}_{i}=f_{i}^{-1}\left(\boldsymbol{z}_{i-1}\right)$
------• Invertible
density: $\quad p\left(\mathbf{z}_{i}\right)=p\left(\mathbf{z}_{i-1}\right)\left|\operatorname{det} \frac{d \mathbf{z}_{i-1}}{d \boldsymbol{z}_{\boldsymbol{i}}}\right|$
training: maximizes data log-likelihood

$$
\log p(\boldsymbol{x})=\log p\left(\boldsymbol{z}_{0}\right)+\sum_{i=1}^{K} \log \left|\operatorname{det} \frac{d \boldsymbol{z}_{i-1}}{d \boldsymbol{z}_{i}}\right|
$$

GLOW

- [Kingma and Dhariwal., 2018]

One step of flow in the Glow model

GLOW

- [Kingma and Dhariwal., 2018]

One step of flow in the Glow model

Key Takeaways

- GANs:
- Implicit generative model
- Minimax formulation
- non-saturating GANs
- WGAN
- Normalizing Flow
- Transforms a simple distribution into a complex one by applying a sequence of transformation functions

Reinforcement Learning

So far... Supervised Learning

Data: (x, y)

 x is data, y is labelGoal: Learn a function to map x -> y
Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

So far... Unsupervised Learning

Data: x
no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

2-d density estimation

Today: Reinforcement Learning

Problems involving an agent interacting with an environment, which provides numeric reward signals

Goal: Learn how to take actions in order to maximize reward

Overview

- What is Reinforcement Learning?
- Markov Decision Processes
- Q-Learning
- Policy Gradients

Reinforcement Learning

Agent

Environment

Reinforcement Learning

Reinforcement Learning

Reinforcement Learning

Reinforcement Learning

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart
State: angle, angular speed, position, horizontal velocity Action: horizontal force applied on the cart Reward: 1 at each time step if the pole is upright

Robot Locomotion

Objective: Make the robot move forward
State: Angle and position of the joints Action: Torques applied on joints Reward: 1 at each time step upright + forward movement

Atari Games

Objective: Complete the game with the highest score
State: Raw pixel inputs of the game state Action: Game controls e.g. Left, Right, Up, Down Reward: Score increase/decrease at each time step

Go

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

How can we mathematically formalize the RL problem?

Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the world

Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{P}, \gamma)$
\mathcal{S} : set of possible states
\mathcal{A} : set of possible actions
\mathcal{R} : distribution of reward given (state, action) pair
\mathbb{P} : transition probability i.e. distribution over next state given (state, action) pair
γ : discount factor

Markov Decision Process

- At time step $t=0$, environment samples initial state $s_{0} \sim p\left(s_{0}\right)$
- Then, for $\mathrm{t}=0$ until done:
- Agent selects action a_{t}
- Environment samples reward $r_{t} \sim R\left(. \mid s_{t}, a_{t}\right)$
- Environment samples next state $s_{t+1} \sim P\left(. \mid s_{t}, a_{t}\right)$
- Agent receives reward r_{t} and next state s_{t+1}
- A policy π is a function from S to A that specifies what action to take in each state
- Objective: find policy π^{*} that maximizes cumulative discounted reward: $\sum_{t \geq 0} \gamma^{t} r_{t}$

A simple MDP: Grid World

> Set a negative "reward" for each transition (e.g. $r=-1$)

Objective: reach one of terminal states (greyed out) in least number of actions

A simple MDP: Grid World

Random Policy

Optimal Policy

The optimal policy π^{*}

We want to find optimal policy π^{*} that maximizes the sum of rewards.
How do we handle the randomness (initial state, transition probability...)?

The optimal policy π^{*}

We want to find optimal policy π^{*} that maximizes the sum of rewards.
How do we handle the randomness (initial state, transition probability...)? Maximize the expected sum of rewards!

Formally: $\pi^{*}=\underset{\pi}{\arg \max _{\pi}} \mathbb{E}\left[\sum_{t \geq 0} \gamma^{t} r_{t} \mid \pi\right]$ with $s_{0} \sim p\left(s_{0}\right), a_{t} \sim \pi\left(\cdot \mid s_{t}\right), s_{t+1} \sim p\left(\cdot \mid s_{t}, a_{t}\right)$

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) $s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots$

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) $s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots$
How good is a state?
The value function at state s, is the expected cumulative reward from following the policy from state s:

$$
V^{\pi}(s)=\mathbb{E}\left[\sum_{t \geq 0} \gamma^{t} r_{t} \mid s_{0}=s, \pi\right]
$$

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) $s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots$
How good is a state?
The value function at state s, is the expected cumulative reward from following the policy from state s:

$$
V^{\pi}(s)=\mathbb{E}\left[\sum_{t \geq 0} \gamma^{t} r_{t} \mid s_{0}=s, \pi\right]
$$

How good is a state-action pair?
The \mathbf{Q}-value function at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$
Q^{\pi}(s, a)=\mathbb{E}\left[\sum_{t \geq 0} \gamma^{t} r_{t} \mid s_{0}=s, a_{0}=a, \pi\right]
$$

Bellman equation

The optimal Q-value function Q^{*} is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$
Q^{*}(s, a)=\max _{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^{t} r_{t} \mid s_{0}=s, a_{0}=a, \pi\right]
$$

Bellman equation

The optimal Q-value function Q^{*} is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$
Q^{*}(s, a)=\max _{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^{t} r_{t} \mid s_{0}=s, a_{0}=a, \pi\right]
$$

Q* satisfies the following Bellman equation:

$$
Q^{*}(s, a)=\mathbb{E}_{s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
$$

Intuition: if the optimal state-action values for the next time-step $Q^{*}\left(s^{\prime}, a^{\prime}\right)$ are known, then the optimal strategy is to take the action that maximizes the expected value of $r+\gamma Q^{*}\left(s^{\prime}, a^{\prime}\right)$

Bellman equation

The optimal Q-value function Q^{*} is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$
Q^{*}(s, a)=\max _{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^{t} r_{t} \mid s_{0}=s, a_{0}=a, \pi\right]
$$

Q* satisfies the following Bellman equation:

$$
Q^{*}(s, a)=\mathbb{E}_{s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
$$

Intuition: if the optimal state-action values for the next time-step $Q^{*}\left(s^{\prime}, a^{\prime}\right)$ are known, then the optimal strategy is to take the action that maximizes the expected value of $r+\gamma Q^{*}\left(s^{\prime}, a^{\prime}\right)$

The optimal policy π^{*} corresponds to taking the best action in any state as specified by Q^{*}

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

$$
Q_{i+1}(s, a)=\mathbb{E}\left[r+\gamma \max _{a^{\prime}} Q_{i}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
$$

Q_{i} will converge to Q^{*} as i-> infinity

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

$$
Q_{i+1}(s, a)=\mathbb{E}\left[r+\gamma \max _{a^{\prime}} Q_{i}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
$$

Q_{i} will converge to Q^{*} as i-> infinity

What's the problem with this?

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

$$
Q_{i+1}(s, a)=\mathbb{E}\left[r+\gamma \max _{a^{\prime}} Q_{i}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
$$

Q_{i} will converge to Q^{*} as i-> infinity

What's the problem with this?
Not scalable. Must compute $Q(\mathrm{~s}, \mathrm{a})$ for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

$$
Q_{i+1}(s, a)=\mathbb{E}\left[r+\gamma \max _{a^{\prime}} Q_{i}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
$$

Q_{i} will converge to Q^{*} as i-> infinity

What's the problem with this?
Not scalable. Must compute $\mathrm{Q}(\mathrm{s}, \mathrm{a})$ for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate $Q(\mathrm{~s}, \mathrm{a})$. E.g. a neural network!

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

$$
Q(s, a ; \theta) \approx Q^{*}(s, a)
$$

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

$$
Q(s, a ; \theta) \approx Q^{*}(s, a)
$$

If the function approximator is a deep neural network => deep q-learning!

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

$$
Q(s, a ; \theta) \approx Q_{\text {function parameters (weights) }}^{*}(s, a)
$$

If the function approximator is a deep neural network => deep q-learning!

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$
Q^{*}(s, a)=\mathbb{E}_{s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
$$

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$
Q^{*}(s, a)=\mathbb{E}_{s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
$$

Forward Pass
Loss function: $\quad L_{i}\left(\theta_{i}\right)=\mathbb{E}_{s, a \sim \rho(\cdot)}\left[\left(y_{i}-Q\left(s, a ; \theta_{i}\right)\right)^{2}\right]$
where $y_{i}=\mathbb{E}_{s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; \theta_{i-1}\right) \mid s, a\right]$

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$
Q^{*}(s, a)=\mathbb{E}_{s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
$$

Forward Pass
Loss function: $\quad L_{i}\left(\theta_{i}\right)=\mathbb{E}_{s, a \sim \rho(\cdot)}\left[\left(y_{i}-Q\left(s, a ; \theta_{i}\right)\right)^{2}\right]$
where $\quad y_{i}=\mathbb{E}_{s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; \theta_{i-1}\right) \mid s, a\right]$

Backward Pass

Gradient update (with respect to Q-function parameters θ):

$$
\left.\nabla_{\theta_{i}} L_{i}\left(\theta_{i}\right)=\mathbb{E}_{s, a \sim \rho(\cdot) ; s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; \theta_{i-1}\right)-Q\left(s, a ; \theta_{i}\right)\right) \nabla_{\theta_{i}} Q\left(s, a ; \theta_{i}\right)\right]
$$

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$
Q^{*}(s, a)=\mathbb{E}_{s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
$$

Forward Pass
Loss function: $L_{i}\left(\theta_{i}\right)=\mathbb{E}_{s, a \sim \rho(\cdot)}\left[\left(y_{i}-Q\left(s, a ; \theta_{i}\right)\right)^{2}\right]$
where $y_{i}=\mathbb{E}_{s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; \theta_{i-1}\right) \mid s, a\right] \quad$ close to the target value (y) it should have, if Q-function corresponds to optimal Q*

Backward Pass

Gradient update (with respect to Q-function parameters θ):

$$
\left.\nabla_{\theta_{i}} L_{i}\left(\theta_{i}\right)=\mathbb{E}_{s, a \sim \rho(\cdot) ; s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; \theta_{i-1}\right)-Q\left(s, a ; \theta_{i}\right)\right) \nabla_{\theta_{i}} Q\left(s, a ; \theta_{i}\right)\right]
$$

Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state Action: Game controls e.g. Left, Right, Up, Down Reward: Score increase/decrease at each time step

Q-network Architecture

$Q(s, a ; \theta)$: neural network with weights θ

FC-4 (Q-values)
FC-256
324×4 conv, stride 2
168×8 conv, stride 4

Current state $s_{t}: ~ 84 \times 84 \times 4$ stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

Q-network Architecture

$Q(s, a ; \theta)$: neural network with weights θ

FC-4 (Q-values)
FC-256
324×4 conv, stride 2
168×8 conv, stride 4

Current state $\mathrm{s}_{\mathrm{t}}: 84 \times 84 \times 4$ stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

Q-network Architecture

$Q(s, a ; \theta)$: neural network with weights θ

FC-4 (Q-values)
FC-256
324×4 conv, stride 2

Familiar conv layers, FC layer
168×8 conv, stride 4

Current state $\mathrm{s}_{\mathrm{t}}: 84 \times 84 \times 4$ stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Q-network Architecture

$Q(s, a ; \theta)$: neural network with weights θ

Last FC layer has 4-d output (if 4 actions), corresponding to $\mathrm{Q}\left(\mathrm{s}_{\mathrm{t}}\right.$, $\left.a_{1}\right), Q\left(s_{t}, a_{2}\right), Q\left(s_{t}, a_{3}\right)$, $\mathrm{Q}\left(\mathrm{s}_{\mathrm{t}}, \mathrm{a}_{4}\right)$
168×8 conv, stride 4

Current state $s_{t}: 84 \times 84 \times 4$ stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Q-network Architecture

$Q(s, a ; \theta)$: neural network with weights θ

```
FC-4 (Q-values)
```

FC-256
324×4 conv, stride 2
168×8 conv, stride 4

Number of actions between 4-18 depending on Atari game

Current state $s_{t}: 84 \times 84 \times 4$ stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Q-network Architecture

$Q(s, a ; \theta)$:
neural network
with weights θ

A single feedforward pass to compute Q-values for all actions from the current state => efficient!

```
FC-4 (Q-values)
```

FC-256
324×4 conv, stride 2
168×8 conv, stride 4

Number of actions between 4-18 depending on Atari game

Current state $s_{t}: 84 \times 84 \times 4$ stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

Recap: Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$
Q^{*}(s, a)=\mathbb{E}_{s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right]
$$

Forward Pass
Loss function: $\quad L_{i}\left(\theta_{i}\right)=\mathbb{E}_{s, a \sim \rho(\cdot)}\left[\left(y_{i}-Q\left(s, a ; \theta_{i}\right)\right)^{2}\right]$
where $y_{i}=\mathbb{E}_{s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; \theta_{i-1}\right) \mid s, a\right] \quad$ close to the target value (y) it should have, if Q-function corresponds to optimal Q*
Backward Pass (and optimal policy π^{*})
Gradient update (with respect to Q-function parameters θ):

$$
\left.\nabla_{\theta_{i}} L_{i}\left(\theta_{i}\right)=\mathbb{E}_{s, a \sim \rho(\cdot) ; s^{\prime} \sim \mathcal{E}}\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime} ; \theta_{i-1}\right)-Q\left(s, a ; \theta_{i}\right)\right) \nabla_{\theta_{i}} Q\left(s, a ; \theta_{i}\right)\right]
$$

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Address these problems using experience replay

- Continually update a replay memory table of transitions $\left(\mathrm{s}_{\mathrm{t}}, \mathrm{a}_{\mathrm{t}}, \mathrm{r}_{\mathrm{t}}, \mathrm{s}_{\mathrm{t}+1}\right)$ as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Address these problems using experience replay

- Continually update a replay memory table of transitions $\left(\mathrm{s}_{\mathrm{t}}, \mathrm{a}_{\mathrm{t}}, \mathrm{r}_{\mathrm{t}}, \mathrm{s}_{\mathrm{t}+1}\right)$ as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Each transition can also contribute to multiple weight updates
=> greater data efficiency

Putting it together: Deep Q-Learning with Experience Replay

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode = \(1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}\end{cases}\)
            Set \(y_{j}=\left\{\begin{aligned} r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) \quad \text { for non-terminal } \phi_{j+1}\end{aligned}\right.\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Putting it together: Deep Q-Learning with Experience Replay

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N \quad \longleftarrow\) Initialize replay memory, Q-network
    Initialize action-value function \(Q\) with random weights
    for episode = \(1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}\end{cases}\)
            Set \(y_{j}=\left\{\begin{array}{l}r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) \quad \text { for non-terminal } \phi_{j+1}\end{array}\right.\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Putting it together: Deep Q-Learning with Experience Replay

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode = \(1, M\) do
```



```
                Play M episodes (full games)
            Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Putting it together: Deep Q-Learning with Experience Replay

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode = \(1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Putting it together: Deep Q-Learning with Experience Replay

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode = \(1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}\end{cases}\)
            Set \(y_{j}=\left\{\begin{array}{l}r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) \quad \text { for non-terminal } \phi_{j+1}\end{array}\right.\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Putting it together: Deep Q-Learning with Experience Replay

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode \(=1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t} \quad \longleftarrow\) With small probability,
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
                        select a random
                                action (explore),
                                    otherwise select
                                    greedy action from
                                    current policy
Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3 end for
end for
```


Putting it together: Deep Q-Learning with Experience Replay

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode \(=1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
                    Take the action \(\left(a_{t}\right)\), and observe the reward \(r_{t}\) and next state \(\mathrm{S}_{\mathrm{t}+1}\)
Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3 end for
end for
```


Putting it together: Deep Q-Learning with Experience Replay

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode \(=1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```

Store transition in replay memory

Putting it together: Deep Q-Learning with Experience Replay

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode \(=1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D} \longleftarrow\) Experience Replay:
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for Sample a random minibatch of transitions from replay memory and perform a gradient descent step
```


Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!
Example: a robot grasping an object has a very high-dimensional state => hard to learn exact value of every (state, action) pair

Policy Gradients

What is a problem with Q-learning?

The Q-function can be very complicated!
Example: a robot grasping an object has a very high-dimensional state => hard to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of policies?

Policy Gradients

Formally, let's define a class of parametrized policies: $\Pi=\left\{\pi_{\theta}, \theta \in \mathbb{R}^{m}\right\}$
For each policy, define its value:

$$
J(\theta)=\mathbb{E}\left[\sum_{t \geq 0} \gamma^{t} r_{t} \mid \pi_{\theta}\right]
$$

Policy Gradients

Formally, let's define a class of parametrized policies: $\Pi=\left\{\pi_{\theta}, \theta \in \mathbb{R}^{m}\right\}$
For each policy, define its value:

$$
J(\theta)=\mathbb{E}\left[\sum_{t \geq 0} \gamma^{t} r_{t} \mid \pi_{\theta}\right]
$$

We want to find the optimal policy $\theta^{*}=\arg \max _{\theta} J(\theta)$
How can we do this?

Policy Gradients

Formally, let's define a class of parametrized policies: $\Pi=\left\{\pi_{\theta}, \theta \in \mathbb{R}^{m}\right\}$
For each policy, define its value:

$$
J(\theta)=\mathbb{E}\left[\sum_{t \geq 0} \gamma^{t} r_{t} \mid \pi_{\theta}\right]
$$

We want to find the optimal policy $\theta^{*}=\arg \max _{\theta} J(\theta)$
How can we do this?
Gradient ascent on policy parameters!

REINFORCE algorithm

Mathematically, we can write:

$$
\begin{aligned}
J(\theta) & =\mathbb{E}_{\tau \sim p(\tau ; \theta)}[r(\tau)] \\
& =\int_{\tau} r(\tau) p(\tau ; \theta) \mathrm{d} \tau
\end{aligned}
$$

Where $r(r)$ is the reward of a trajectory $\tau=\left(s_{0}, a_{0}, r_{0}, s_{1}, \ldots\right)$

REINFORCE algorithm

Expected reward: $\quad J(\theta)=\mathbb{E}_{\tau \sim p(\tau ; \theta)}[r(\tau)]$

$$
=\int_{\tau} r(\tau) p(\tau ; \theta) \mathrm{d} \tau
$$

REINFORCE algorithm

Expected reward: $\quad J(\theta)=\mathbb{E}_{\tau \sim p(\tau ; \theta)}[r(\tau)]$

$$
=\int_{\tau} r(\tau) p(\tau ; \theta) \mathrm{d} \tau
$$

Now let's differentiate this: $\nabla_{\theta} J(\theta)=\int_{\tau} r(\tau) \nabla_{\theta} p(\tau ; \theta) \mathrm{d} \tau$

REINFORCE algorithm

Expected reward: $\quad J(\theta)=\mathbb{E}_{\tau \sim p(\tau ; \theta)}[r(\tau)]$

$$
=\int_{\tau} r(\tau) p(\tau ; \theta) \mathrm{d} \tau
$$

Now let's differentiate this: $\nabla_{\theta} J(\theta)=\int_{\tau} r(\tau) \nabla_{\theta} p(\tau ; \theta) \mathrm{d} \tau \begin{aligned} & \text { Intractable! Gradient of an } \\ & \begin{array}{l}\text { expectation is problematic when } \mathrm{p} \\ \text { depends on } \theta\end{array}\end{aligned}$

REINFORCE algorithm

Expected reward: $\quad J(\theta)=\mathbb{E}_{\tau \sim p(\tau ; \theta)}[r(\tau)]$

$$
=\int_{\tau} r(\tau) p(\tau ; \theta) \mathrm{d} \tau
$$

Now let's differentiate this: $\nabla_{\theta} J(\theta)=\int_{\tau} r(\tau) \nabla_{\theta} p(\tau ; \theta) \mathrm{d} \tau \begin{aligned} & \text { Intractable! Gradient of an } \\ & \text { expectation is problematic when } \mathrm{p} \\ & \text { depends on } \theta\end{aligned}$
However, we can use a nice trick: $\nabla_{\theta} p(\tau ; \theta)=p(\tau ; \theta) \frac{\nabla_{\theta} p(\tau ; \theta)}{p(\tau ; \theta)}=p(\tau ; \theta) \nabla_{\theta} \log p(\tau ; \theta)$

REINFORCE algorithm

Expected reward: $\quad J(\theta)=\mathbb{E}_{\tau \sim p(\tau ; \theta)}[r(\tau)]$

$$
=\int_{\tau} r(\tau) p(\tau ; \theta) \mathrm{d} \tau
$$

Now let's differentiate this: $\nabla_{\theta} J(\theta)=\int_{\tau} r(\tau) \nabla_{\theta} p(\tau ; \theta) \mathrm{d} \tau \begin{aligned} & \text { Intractable! Gradient of an } \\ & \begin{array}{l}\text { expectation is problematic when } \mathrm{p} \\ \text { depends on } \theta\end{array}\end{aligned}$
However, we can use a nice trick: $\nabla_{\theta} p(\tau ; \theta)=p(\tau ; \theta) \frac{\nabla_{\theta} p(\tau ; \theta)}{p(\tau ; \theta)}=p(\tau ; \theta) \nabla_{\theta} \log p(\tau ; \theta)$
If we inject this back:

$$
\begin{aligned}
\nabla_{\theta} J(\theta) & =\int_{\tau}\left(r(\tau) \nabla_{\theta} \log p(\tau ; \theta)\right) p(\tau ; \theta) \mathrm{d} \tau \\
& =\mathbb{E}_{\tau \sim p(\tau ; \theta)}\left[r(\tau) \nabla_{\theta} \log p(\tau ; \theta)\right]
\end{aligned}
$$

Can estimate with Monte Carlo sampling

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?
We have: $p(\tau ; \theta)=\prod_{t \geq 0} p\left(s_{t+1} \mid s_{t}, a_{t}\right) \pi_{\theta}\left(a_{t} \mid s_{t}\right)$

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?
We have:

$$
p(\tau ; \theta)=\prod_{1} p\left(s_{t+1} \mid s_{t}, a_{t}\right) \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

Thus: $\log p(\tau ; \theta)=\sum_{t \geq 0}^{t \geq 0} \log p\left(s_{t+1} \mid s_{t}, a_{t}\right)+\log \pi_{\theta}\left(a_{t} \mid s_{t}\right)$

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?
We have: $p(\tau ; \theta)=\prod_{t} p\left(s_{t+1} \mid s_{t}, a_{t}\right) \pi_{\theta}\left(a_{t} \mid s_{t}\right)$
Thus: $\log p(\tau ; \theta)=\sum_{t \geq 0}^{t \geq 0} \log p\left(s_{t+1} \mid s_{t}, a_{t}\right)+\log \pi_{\theta}\left(a_{t} \mid s_{t}\right)$
And when differentiating: $\nabla_{\theta} \log p(\tau ; \theta)=\sum_{t \geq 0} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)$

Doesn't depend on transition probabilities!

REINFORCE algorithm

$$
\begin{aligned}
\nabla_{\theta} J(\theta) & =\int_{\tau}\left(r(\tau) \nabla_{\theta} \log p(\tau ; \theta)\right) p(\tau ; \theta) \mathrm{d} \tau \\
& =\mathbb{E}_{\tau \sim p(\tau ; \theta)}\left[r(\tau) \nabla_{\theta} \log p(\tau ; \theta)\right]
\end{aligned}
$$

Can we compute those quantities without knowing the transition probabilities?
We have:

$$
p(\tau ; \theta)=\prod p\left(s_{t+1} \mid s_{t}, a_{t}\right) \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

Thus: $\log p(\tau ; \theta)=\sum_{t \geq 0}^{t \geq 0} \log p\left(s_{t+1} \mid s_{t}, a_{t}\right)+\log \pi_{\theta}\left(a_{t} \mid s_{t}\right)$
And when differentiating: $\nabla_{\theta} \log p(\tau ; \theta)=\sum_{t \geq 0} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right) \quad \begin{gathered}\text { Doesn't depend on } \\ \text { transition probabilities! }\end{gathered}$
Therefore when sampling a trajectory r, we can estimate $J(8)$ with

$$
\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

Intuition

Gradient estimator:

$$
\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

Interpretation:

- If $r(r)$ is high, push up the probabilities of the actions seen
- If $r(r)$ is low, push down the probabilities of the actions seen

Intuition

Gradient estimator:

$$
\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

Interpretation:

- If $r(r)$ is high, push up the probabilities of the actions seen
- If $r(r)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. But in expectation, it averages out!

Intuition

Gradient estimator:

$$
\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

Interpretation:

- If $r(r)$ is high, push up the probabilities of the actions seen
- If $r(r)$ is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is really hard. Can we help the estimator?

Variance reduction

Gradient estimator: $\quad \nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)$

Variance reduction

Gradient estimator: $\quad \nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)$
First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

$$
\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0}\left(\sum_{t^{\prime} \geq t} r_{t^{\prime}}\right) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

Variance reduction

Gradient estimator: $\quad \nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)$
First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

$$
\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0}\left(\sum_{t^{\prime} \geq t} r_{t^{\prime}}\right) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

Second idea: Use discount factor γ to ignore delayed effects

$$
\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0}\left(\sum_{t^{\prime} \geq t} \gamma^{t^{\prime}-t} r_{t^{\prime}}\right) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

Variance reduction: Baseline

Problem: The raw value of a trajectory isn't necessarily meaningful. For example, if rewards are all positive, you keep pushing up probabilities of actions.

What is important then? Whether a reward is better or worse than what you expect to get

Idea: Introduce a baseline function dependent on the state. Concretely, estimator is now:

$$
\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0}\left(\sum_{t^{\prime} \geq t} \gamma^{t^{\prime}-t} r_{t^{\prime}}-b\left(s_{t}\right)\right) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

How to choose the baseline?

$$
\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0}\left(\sum_{t^{\prime} \geq t} \gamma^{t^{\prime}-t} r_{t^{\prime}}-b\left(s_{t}\right)\right) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

A simple baseline: constant moving average of rewards experienced so far from all trajectories

How to choose the baseline?

$$
\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0}\left(\sum_{t^{\prime} \geq t} \gamma^{t^{\prime}-t} r_{t^{\prime}}-b\left(s_{t}\right)\right) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)
$$

A simple baseline: constant moving average of rewards experienced so far from all trajectories

Variance reduction techniques seen so far are typically used in "Vanilla REINFORCE"

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the expected value of what we should get from that state.

Q: What does this remind you of?

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the expected value of what we should get from that state.

Q: What does this remind you of?
A: Q-function and value function!

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the expected value of what we should get from that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a_{t} in a state s_{t} if $\quad Q^{\pi}\left(s_{t}, a_{t}\right)-V^{\pi}\left(s_{t}\right)$ is large. On the contrary, we are unhappy with an action if it's small.

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the expected value of what we should get from that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a_{t} in a state s_{t} if $Q^{\pi}\left(s_{t}, a_{t}\right)-V^{\pi}\left(s_{t}\right)$ is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: $\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0}\left(Q^{\pi_{\theta}}\left(s_{t}, a_{t}\right)-V^{\pi_{\theta}}\left(s_{t}\right)\right) \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)$

Actor-Critic Algorithm

Problem: we don't know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor how good its action was and how it should adjust
- Also alleviates the task of the critic as it only has to learn the values of (state, action) pairs generated by the policy
- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an action was better than expected

$$
A^{\pi}(s, a)=Q^{\pi}(s, a)-V^{\pi}(s)
$$

Actor-Critic Algorithm

Initialize policy parameters 8, critic parameters ø For iteration=1, $2 \ldots$ do

Sample m trajectories under the current policy
$\Delta \theta \leftarrow 0$
For $\mathrm{i}=1, \ldots, \mathrm{~m}$ do
For $\mathrm{t}=1, \ldots, \mathrm{~T}$ do
$A_{t}=\sum_{t^{\prime} \geq t} \gamma^{t^{\prime}-t} r_{t}^{i}-V_{\phi}\left(s_{t}^{i}\right)$
$\Delta \theta \leftarrow \Delta \theta+A_{t} \nabla_{\theta} \log \left(a_{t}^{i} \mid s_{t}^{i}\right)$
$\Delta \phi \leftarrow \sum_{i} \sum_{t} \nabla_{\phi}\left\|A_{t}^{i}\right\|^{2}$
$\theta \leftarrow \alpha \Delta \theta$
$\phi \leftarrow \beta \Delta \phi$
End for

More policy gradients: AlphaGo

Overview:

- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and recent ones (deep RL)

How to beat the Go world champion:

- Featurize the board (stone color, move legality, bias, ...)

- Initialize policy network with supervised training from professional go games, then continue training using policy gradient (play against itself from random previous iterations, $+1 /-1$ reward for winning / losing)
- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree Search algorithm to select actions by lookahead search
[Silver et al.,
Nature 2016]

Key Takeaways

- Markov Decision Process (MDP)
- Q-learning
- Bellman equation
- Deep Q-learning, experience replay
- Policy gradients
- Guarantees:
- Policy Gradients: Converges to a local minima of $J(\theta)$, often good enough!
- Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function approximator

Questions?

