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Deep generative modeling
Generative adversarial learning

Zhiting Hu
Lecture 14, February 10, 2023



Deep generative models
● Define probabilistic distributions over a set of variables
● "Deep" means multiple layers of hidden variables!
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Early forms of deep generative models
● Hierarchical Bayesian models
! Sigmoid brief nets [Neal 1992]
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Early forms of deep generative models
● Hierarchical Bayesian models
! Sigmoid brief nets [Neal 1992]

● Neural network models
!Helmholtz machines [Dayan et al.,1995]
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Early forms of deep generative models
● Hierarchical Bayesian models
! Sigmoid brief nets [Neal 1992]

● Neural network models
!Helmholtz machines [Dayan et al.,1995]

! Predictability minimization [Schmidhuber 1995]

5

Figure courtesy: Schmidhuber 1996
DATA



Early forms of deep generative models
● Training of DGMs via an EM style framework

! Sampling / data augmentation

! Variational inference

!Wake sleep
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log 𝑝 𝒙 ≥ E!% 𝒛 𝒙 log 𝑝" 𝒙, 𝒛 − KL(𝑞# 𝒛 𝒙 || 𝑝(𝒛)) ≔ ℒ(𝜽,𝝓; 𝒙)
max𝜽,𝝓ℒ(𝜽,𝝓; 𝒙)

𝒛 = 𝒛', 𝒛(
𝒛')*+~𝑝 𝒛' 𝒛(, 𝒙
𝒛()*+~𝑝 𝒛( 𝒛')*+ , 𝒙

Wake: min"𝔼!%(-|/) log 𝑝" 𝑥 𝑧
Sleep: min#𝔼1&(/|-) log 𝑞# 𝑧 𝑥



Resurgence of deep generative models
● Restricted Boltzmann machines (RBMs) [Smolensky, 1986]

! Building blocks of deep probabilistic models
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Resurgence of deep generative models
● Restricted Boltzmann machines (RBMs) [Smolensky, 1986]

! Building blocks of deep probabilistic models
● Deep belief networks (DBNs) [Hinton et al., 2006]

!Hybrid graphical model
! Inference in DBNs is problematic due to explaining away

● Deep Boltzmann Machines (DBMs) [Salakhutdinov & Hinton, 2009]

!Undirected model
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Resurgence of deep generative models
● Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]
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Resurgence of deep generative models
● Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

● Generative adversarial networks (GANs) [Goodfellow et al,. 2014]
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Resurgence of deep generative models
● Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

● Generative adversarial networks (GANs) [Goodfellow et al,. 2014]

● Generative moment matching networks (GMMNs) [Li et al., 2015; Dziugaite et al., 2015]
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Resurgence of deep generative models
● Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

● Generative adversarial networks (GANs) [Goodfellow et al,. 2014]

● Generative moment matching networks (GMMNs) [Li et al., 2015; Dziugaite et al., 2015]

● Autoregressive neural networks
● Reversible architectures
● Diffusion models
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Generative Adversarial Networks



Recap: Implicit Generative ModelsImplicit Generative Models

Implicit generative models implicitly define a probability distribution

Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

The generator network computes a di↵erentiable function G mapping
z to an x in data space

Roger Grosse CSC321 Lecture 19: Generative Adversarial Networks 4 / 25
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• a stochastic process to 
simulate data 𝒙

• Intractable to evaluate 
likelihood



Recap: Generative Adversarial Nets (GANs)
● Learning
! A minimax game between the generator and the discriminator
! Train 𝐷 to maximize the probability of assigning the correct label to both 

training examples and generated samples
! Train 𝐺 to fool the discriminator
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GAN plays the role of z1 as above. The space S0 is now implicit and we directly sample real image
x from data distribution pdata(x). The distribution in Eq.(1) is thus rewritten as:

p(x|z, y) =
⇢
pdata(x) y = 0
pg(x|z) y = 1,

(5)

where pg(x|z) = G(z) is the generative distribution. Note that pdata(x) is the empirical data
distribution which is free of parameters. The discriminator is defined in the same way as above, i.e.,
D(x) = p(y = 0|x). Then the objective of GAN is precisely defined in Eq.(2). To make this clearer,
we again transform the objective into its conventional form:

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = Ex⇠pdata(x) [log(1�D(x))] + Ex⇠G(z),z⇠p(z) [logD(x)]

= Ex⇠G(z),z⇠p(z) [logD(x)] .

(6)

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

minG LG = Ex⇠G(z),z⇠p(z) [log(1�D(x))] .

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = Ex⇠G(z),z⇠p(z) [logD(x)] .

Note that for learning the generator we are using the adapted objective, i.e., maximizing
Ex⇠G(z),z⇠p(z) [logD(x)], as is usually used in practice (Goodfellow et al., 2014), rather than
minimizing Ex⇠G(z),z⇠p(z) [log(1�D(x))].

KL Divergence Interpretation

Now we take a closer look into Eq.(2). Assume uniform prior distribution p(y) where p(y = 0) =
p(y = 1) = 0.5. For optimizing p(x|z, y), we have
Theorem 1. Let p✓(x|z, y) be the conditional distribution in Eq.(1) parameterized with ✓. Denote
p✓0(x|z) = Ep(y)[p✓0(x|z, y)] with fixed parameter ✓0. Denote q0(x|z, y) / q(1� y|x)p✓0(x|z).
Therefore,

Ep(z,y)

⇥
�r✓Ep✓(x|z,y) [log q(1� y|x)] |✓=✓0

⇤
=

r✓Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� JSD (p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0 ]
(7)

Proof.
Ep(z,y)

⇥
�Ep✓(x|z,y) [log q(1� y|x)]

⇤
=

Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� KL(p✓(x|z, y)kp✓0(x|z))] ,
(8)

where
Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] =

Ep(z)


p(y = 0)KL

✓
p✓(x|z, y = 0)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆
+

p(y = 1)KL
✓
p✓(x|z, y = 1)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆�
.

(9)

Taking derivatives w.r.t ✓ at ✓0 we get
r✓Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] |✓=✓0

= Ep(z)


1

2

Z

x
r✓p✓(x|z, y = 0)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2
+

1

2

Z

x
r✓p✓(x|z, y = 1)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

�
|✓=✓0

= Ep(z) [r✓JSD(p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0 ] .

(10)

Taking derivatives of the both sides of Eq.(8) at w.r.t ✓ at ✓0 and plugging the last equation of Eq.(10),
we obtain our desired result.
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Recap: Optimality of GANs
● Objectives:

● Global optimality: 𝑝6 = 𝑝7898

16Courtesy: Grosse CSC321 Lecture 19

GAN plays the role of z1 as above. The space S0 is now implicit and we directly sample real image
x from data distribution pdata(x). The distribution in Eq.(1) is thus rewritten as:

p(x|z, y) =
⇢
pdata(x) y = 0
pg(x|z) y = 1,

(5)

where pg(x|z) = G(z) is the generative distribution. Note that pdata(x) is the empirical data
distribution which is free of parameters. The discriminator is defined in the same way as above, i.e.,
D(x) = p(y = 0|x). Then the objective of GAN is precisely defined in Eq.(2). To make this clearer,
we again transform the objective into its conventional form:

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,
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maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = Ex⇠G(z),z⇠p(z) [logD(x)] .

Note that for learning the generator we are using the adapted objective, i.e., maximizing
Ex⇠G(z),z⇠p(z) [logD(x)], as is usually used in practice (Goodfellow et al., 2014), rather than
minimizing Ex⇠G(z),z⇠p(z) [log(1�D(x))].

KL Divergence Interpretation

Now we take a closer look into Eq.(2). Assume uniform prior distribution p(y) where p(y = 0) =
p(y = 1) = 0.5. For optimizing p(x|z, y), we have
Theorem 1. Let p✓(x|z, y) be the conditional distribution in Eq.(1) parameterized with ✓. Denote
p✓0(x|z) = Ep(y)[p✓0(x|z, y)] with fixed parameter ✓0. Denote q0(x|z, y) / q(1� y|x)p✓0(x|z).
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A Better Cost Function

Original minimax cost:

JG = Ez[log(1� D(G (z)))]

Modified generator cost:

JG = Ez[� logD(G (z))]

This fixes the saturation problem.

Roger Grosse CSC321 Lecture 19: Generative Adversarial Networks 15 / 25

Recap: A better loss function: non-saturating GAN
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Wasserstein GAN (WGAN)
● If our data are on a low-dimensional manifold of a high dimensional 

space, the model’s manifold and the true data manifold can have a 
negligible intersection in practice 

18[Arjovsky et al., 2017] Slide adapted from bhiksha
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Wasserstein GAN (WGAN)
● If our data are on a low-dimensional manifold of a high dimensional 

space, the model’s manifold and the true data manifold can have a 
negligible intersection in practice 

● The loss function and gradients may not be continuous and well behaved 
● The Wasserstein Distance is well defined
! Earth Mover’s Distance
! Minimum transportation cost for making one pile 

of dirt in the shape of one probability distribution 
to the shape of the other distribution

20[Arjovsky et al., 2017] Slide adapted from bhiksha



Wasserstein GAN (WGAN)
● Objective

21

𝑊 𝑝7898, 𝑝6 =
1
𝐾

sup
||:||!;(

E<∼>"#$# 𝐷 𝑥 − E<∼>%[𝐷(𝑥)]

• ||𝐷||! ≤ 𝐾 : K- Lipschitz continuous
• Use gradient-clipping to ensure 𝐷 has the Lipschitz continuity



WGAN vs Vanilla GAN
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Standard Equation and GANs
● Recall SE:

● In MLE, 𝑓 is a fixed function

● Intuitively, see 𝑓 as a similarity metric that measures similarity of sample 
𝒙 against real data 𝒟

● Instead of the above manually fixed metric, can we learn a metric 𝑓5?
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𝑓 ≔ 𝑓!"#"(𝒙 ; 𝒟) = log 𝔼𝒙∗∼𝒟 𝟙𝒙∗ 𝒙

min
?, 4

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼? 𝒙
1
𝑓 𝒙𝑞 𝒙 , 𝑝4 𝒙

Hu and Xing, 2021



Standard Equation and GANs

● Augment the standard objective to account for 𝜙:

● Set 𝛼 = 0, 𝛽 = 1. Under mild conditions, the objective recovers:
! Vanilla GAN [Goodfellow et al., 2014], when 𝔻 is JS-divergence and 𝑓5 is a binary 

classifier
! 𝑓-GAN [Nowozin et al., 2016], when 𝔻 is 𝑓-divergence
! W-GAN [Arjovsky et al., 2017], when 𝔻 is Wasserstein distance and 𝑓5 is a 1-

Lipschitz function
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min
4

max
5

min
?

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼? 𝒙
1

+ 𝔼>"(𝒙)
1

𝑓5 𝒙𝑞 𝒙 , 𝑝4 𝒙 𝑓5 𝒙

Hu and Xing, 2021



Progressive GAN
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Low resolution images

[Karras et al., 2018]



Progressive GAN
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Low resolution images

add in 
additional 

layers

[Karras et al., 2018]



Progressive GAN
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Low resolution images

add in 
additional 

layers

High resolution images

[Karras et al., 2018]



BigGAN

28[Brock et al., 2018]



BigGAN
● GANs benefit dramatically from scaling

29[Brock et al., 2018]



BigGAN
● GANs benefit dramatically from scaling
● 2x – 4x more parameters
● 8x larger batch size
● Simple architecture changes that improve scalability 
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BigGAN
● GANs benefit dramatically from scaling
● 2x – 4x more parameters
● 8x larger batch size
● Simple architecture changes that improve scalability 
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Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a 

sequence of transformation functions
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Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a 

sequence of transformation functions
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Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a 

sequence of transformation functions

36[Rezende & Mohamed, 2015]



Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a 

sequence of transformation functions
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Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a 

sequence of transformation functions
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Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a 

sequence of transformation functions
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Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a 

sequence of transformation functions
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Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a 

sequence of transformation functions
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Normalizing Flow (NF)
● Transforms a simple distribution into a complex one by applying a 

sequence of transformation functions
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𝒛C ∼ 𝑝 𝒛C
𝒙 = 𝒛( = 𝑓( ∘ 𝑓(A& ∘ ⋯ ∘ 𝑓&(𝒛C)

𝒛+ = 𝑓+A& 𝒛+A&
𝑝 𝒛+ = 𝑝 𝒛+A& det

𝑑𝒛+A&
𝑑𝒛𝒊

Transformation function 𝑓+
• Invertible

• Jacobian determinant easy to compute
e.g., choose 𝑑𝑓$"#/𝑑𝒛$ to be a triangular matrix

inference:

density:

log 𝑝 𝒙 = log 𝑝 𝒛% +0
$&#

'
log det

𝑑𝒛$"#
𝑑𝒛𝒊

training: maximizes data log-likelihood



GLOW
● [Kingma and Dhariwal., 2018]
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One step of flow in the Glow model



GLOW
● [Kingma and Dhariwal., 2018]
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One step of flow in the Glow model



Key Takeaways
● GANs:
! Implicit generative model
! Minimax formulation
! non-saturating GANs
! WGAN

● Normalizing Flow
! Transforms a simple distribution into a complex one by applying a sequence 

of transformation functions
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Questions?


