DSC291: Machine Learning with Few Labels

Data Manipulation

Zhiting Hu Lecture 11, February 3, 2023

Logistics

- In-class presentation:
 - Sign-up sheet <u>https://docs.google.com/spreadsheets/d/1tck3ypVPmXGR7W3Vdx-rkjbql75pCwX2oZUoFbQDXIE/edit?usp=sharing</u>
 - Start: Feb 10
 - 25 enrolled, 26 presentation slots
 - At most two presentations each class
 - 10 mins for each presentation: 8min talk + 2min QA

Data manipulation

- Data augmentation
 - Applies label-preserving transformations on original data points to expand the data size
- Data reweighting
 - Assigns an importance weight to each instance to adapt its effect on learning
- Data synthesis
 - Generates entire artificial examples
- Curriculum learning
 - Makes use of data instances in an order based on "difficulty"
- ...

Data augmentation

• Applies label-preserving transformations on original data points to expand the data size

Data augmentation

• Applies label-preserving transformations on original data points to expand the data size

- Change the pixels without changing the label
- Train on transformed data
- VERY widely used

1. Horizontal flips

2. Random crops/scales

Training: sample random crops / scales

2. Random crops/scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

2. Random crops/scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

2. Random crops/scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Testing: average a fixed set of crops ResNet:

- 1. Resize image at 5 scales: {224, 256, 384, 480, 640}
- 2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

3. Color jitter

Randomly jitter contrast

4. Mixup

- Training: Train on random blends of images
- Testing: Use original images

Randomly blend the pixels of pairs of training images, e.g. 40% cat, 60% dog

Target label: cat: 0.4

dog: 0.6

[Zhang et al., "mixup: Beyond Empirical Risk Minimization", ICLR 2018]

CNN

5. Get creative!

Random mix/combinations of:

- translation
- rotation
- stretching
- shearing
- lens distortions, ...

Data augmentation for text

Methods	Level	Diversity	Tasks	Related Work
Synonym replacement	Token	Low	Text classification Sequence labeling	Kolomiyets et al. (2011), Zhang et al. (2015a), Yang (2015), Miao et al. (2020), Wei and Zou (2019)
Word replacement via LM	Token	Medium	Text classification Sequence labeling Machine translation	Kolomiyets et al. (2011), Gao et al. (2019) Kobayashi (2018), Wu et al. (2019a) Fadaee et al. (2017)
Random insertion, deletion, swapping	Token	Low	Text classification Sequence labeling Machine translation Dialogue generation	Iyyer et al. (2015), Xie et al. (2017) Artetxe et al. (2018), Lample et al. (2018) Xie et al. (2020), Wei and Zou (2019)
Compositional Augmentation	Token	High	Semantic Parsing Sequence labeling Language modeling Text generation	Jia and Liang (2016), Andreas (2020) Nye et al. (2020), Feng et al. (2020) Furrer et al. (2020), Guo et al. (2020)
Paraphrasing	Sentence	High	Text classification Machine translation Question answering Dialogue generation Text summarization	Yu et al. (2018), Xie et al. (2020) Chen et al. (2019), He et al. (2020) Chen et al. (2020c), Cai et al. (2020)
Conditional generation	Sentence	High	Text classification Question answering	Anaby-Tavor et al. (2020), Kumar et al. (2020) Zhang and Bansal (2019), Yang et al. (2020)

Data augmentation for text

White-box attack	Token or Sentence	Medium	Text classification Sequence labeling Machine translation	Miyato et al. (2017), Ebrahimi et al. (2018b) Ebrahimi et al. (2018a), Cheng et al. (2019), Chen et al. (2020d)
Black-box attack	Token or Sentence	Medium	Text classification Sequence labeling Machine translation Textual entailment Dialogue generation Text Summarization	Jia and Liang (2017) Belinkov and Bisk (2017), Zhao et al. (2017) Ribeiro et al. (2018), McCoy et al. (2019) Min et al. (2020), Tan et al. (2020)
Hidden-space perturbation	Token or Sentence	High	Text classification Sequence labeling Speech recognition	Hsu et al. (2017), Hsu et al. (2018) Wu et al. (2019b), Chen et al. (2021) Malandrakis et al. (2019), Shen et al. (2020)
Interpolation	Token	High	Text classification Sequence labeling Machine translation	Miao et al. (2020), Chen et al. (2020c) Cheng et al. (2020b), Chen et al. (2020a) Guo et al. (2020)

Data reweighting

- Assigns an importance weight to each instance to adapt its effect on learning
 - Weighting by inverse class frequency
 - Weighting by the magnitude of loss

$$\min_{\theta} - \mathbb{E}_{x_i \sim \mathcal{D}} \left[\phi_i \log p_{\theta}(x_i) \right]$$

Automatically learn the data weights

• Can we learn ϕ_i automatically?

$$\min_{\theta} - \mathbb{E}_{x_i \sim \mathcal{D}} \left[\phi_i \log p_{\theta}(x_i) \right]$$

- Training set \mathcal{D} , a held-out "validation" set \mathcal{D}_{v}
- Intuition: after training the model θ on the weighted data, the model gets better performance on the validation set

$$\theta' = \underset{\theta}{\operatorname{argmin}} - \mathbb{E}_{x_i \sim \mathcal{D}} \left[\phi_i \log p_{\theta}(x_i) \right]$$

o θ' is a function of ϕ , i.e., $\theta' = \theta'(\phi)$

$$\phi' = \operatorname{argm} in_{\phi} - \mathbb{E}_{x_i \sim \mathcal{D}_{v}} \left[\log p_{\theta'(\phi)}(x_i) \right]$$

Automatically learn the data weights

Apply the same algorithm to learn data augmentation

• Augmentation function $x' = g_{\phi}(x)$. Can we learn ϕ automatically?

$$\min_{\theta} - \mathbb{E}_{x_i \sim \mathcal{D}} \left[\log p_{\theta}(g_{\phi}(x_i)) \right]$$

- Training set \mathcal{D} , a held-out "validation" set \mathcal{D}_{v}
- Intuition: after training the model θ on the augmented data, the model gets better performance on the validation set

$$\theta' = \underset{\theta}{\operatorname{argmin}} - \mathbb{E}_{x_i \sim \mathcal{D}} \left[\log p_{\theta}(g_{\phi}(x_i)) \right]$$

o θ' is a function of ϕ , i.e., $\theta' = \theta'(\phi)$

$$\phi' = \operatorname{argm} in_{\phi} - \mathbb{E}_{x_i \sim \mathcal{D}_{v}} \left[\log p_{\theta'(\phi)}(x_i) \right]$$

NOT MY FIRST JIGSAW PUZZLE

My first Jigsaw puzzle

LEARNING COGNITIVE TASKS (CURRICULUM):

- Standard supervised learning:
 - Data is sampled randomly
- Curriculum learning:
 - Instead of randomly selecting training points, select easier examples first,
 slowly exposing the more difficult examples from easiest to the most difficult
 - Key: definition of "difficulty"

• (Bengio et al, 2009): setup of paradigm, object recognition of geometric shapes using a perceptron; difficulty is determined by user from geometric shape

- (Zaremba 2014): LSTMs used to evaluate short computer programs; difficulty is automatically evaluated from data nesting level of program.
- (Amodei et al, 2016): End-to-end speech recognition in english and mandarin; difficulty is automatically evaluated from utterance length.
- (Jesson et al, 2017): deep learning segmentation and detection; *human teacher (user/programmer) determins difficulty*.

Credit: We

Key Takeaways

- Data manipulation
 - Augmentation
 - Reweighting
 - Curriculum learning
 - Synthesis (later)

Questions?