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LLMs Lack World and Agent Knowledge
As we discussed before:
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LLMs Lack World and Agent Knowledge
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Large Language (Vision) Models trained merely with large-scale 

text (vision) corpora lack fundamental real-world experience:

• tracking and interacting with objects

• understanding real-world physics and spatiotemporal 

relationships

• sensing and tracking the world states 

• recognizing other agents’ behaviors 

Limitation I:

As we discussed before:



LLMs Lack World and Agent Knowledge
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As we discussed before:



LLMs Lack World and Agent Knowledge
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Limitation I:

Large Language (Vision) Models trained merely with large-scale 

text (vision) corpora lack fundamental real-world experience:

• tracking and interacting with objects

• understanding real-world physics and spatiotemporal 

relationships

• sensing and tracking the world states 

• recognizing other agents’ behaviors 

?
Need richer learning mechanisms!
• Embodied experiences
• Social learning

As we discussed before:



Inefficiency of the language modality
● Language is often not the most efficient medium to 

describe all information during reasoning
● Other modalities (e.g., images/videos) can be more 

efficient
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Limitation II:



Inefficiency of the language modality
● Language is often not the most efficient medium to 

describe all information during reasoning
● Other sensory modalities (e.g., images/videos) can be 

more efficient

7

In auto-driving: describe the street scene

• Vehicles’ locations & movements

Pour liquid into a glass without spilling 

• Viscosity & volume of the fluid 

• shape & position of the container

Limitation II:



Inefficiency of the language modality
● Language is often not the most efficient medium to 

describe all information during reasoning
● Other modalities (e.g., images/videos) can be more 

efficient
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In auto-driving: describe street scene
• Vehicles’ locations & movements

Pour liquid into a glass without spilling 
• Viscosity & volume of the fluid 
• shape & position of the container

Need multi-modal capabilities 
for world and agent modeling!

Limitation II:



Outline: Enhancing the Backend Beyond LMs

● Richer learning mechanisms

! Learning with Embodied Experiences

! Social Learning

● Multi-modal capabilities 

● Latent-space reasoning

● Agent models with external augmentations (e.g., tools)
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Note: here we’re gonna 
go though some high level 
ideas of enhancing LLMs. 

We’ll re-visit relevant 
algorithms in more details 
in future lectures



Outline: Enhancing the Backend Beyond LMs

● Richer learning mechanisms

! Learning with Embodied Experiences

§ Where to get experiences

§ How to get experiences

§ How to learn with the experiences

! Social Learning

11



Learning from Embodied Experiences
● Embodied simulators

12

Virtual Home Habitat 3.0

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

Everyday household activitiesGoal: Goal: Goal:



Learning from Embodied Experiences
● Embodied simulators

13

Minecraft
exploring a 3D infinite world 
and conducting rich tasks 

Touchdown
navigating in urban scenes

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences
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● Embodied simulators
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(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

Minecraft
exploring a 3D infinite world 
and conducting rich tasks 

Touchdown
navigating in urban scenes



Learning from Embodied Experiences
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(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

[Wang et al., 2023]

● Embodied simulators
Minecraft
exploring a 3D infinite world 
and conducting rich tasks 

Touchdown
navigating in urban scenes



Learning from Embodied Experiences
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(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

[Wang et al., 2023]

● Embodied simulators
Minecraft
exploring a 3D infinite world 
and conducting rich tasks 

Touchdown
navigating in urban scenes



Learning from Embodied Experiences
● Other simulators

17

OS Simulated websites
(shopping, navigating, search)

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences



Learning from Embodied Experiences
● Goal-oriented
! Collecting experiences by completing a given task

18[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

Goal: Goal: Goal:



Learning from Embodied Experiences
● Goal-oriented
! Collecting experiences by completing a given task

19[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

Goal: Goal: Goal:



Learning from Embodied Experiences
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Monte Carlo Tree Search (MCTS)

Goal:

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

● Goal-oriented
! Collecting experiences by completing a given task



Learning from Embodied Experiences

21

Monte Carlo Tree Search (MCTS)

Goal:

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

● Goal-oriented
! Collecting experiences by completing a given task

Convert experiences 
into training data 
(question answering)



Learning from Embodied Experiences
● Auto curriculum
! Proposing new tasks automatically

22[Wang et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models]

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

• Collect experiences by 
completing the task

• Learn with the experiences 

Prompt GPT-4 to generate new tasks



Learning from Embodied Experiences
● Auto curriculum
! Proposing new tasks automatically

23[Wang et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models]

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

Examples:
Prompt GPT-4 to generate new tasks



Learning from Embodied Experiences
● Random Exploration

24

Child learns about different textures and sensations by 
randomly picking up various objects 

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences



Learning from Embodied Experiences
● Random Exploration

25

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

Goal: Goal: Goal:



Learning from Embodied Experiences
● Random Exploration

26

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

Convert experiences 
into training data 
(question answering)



Learning from Embodied Experiences
● Finetuning LMs with the experiences

27

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

Training 
data



Learning from Embodied Experiences
● Finetuning LMs with the experiences
● Also wanting to preserve the original language capabilities 

of LMs
! Instead of overfitting to the finetuning data
! Solution: continual learning with EWC (Elastic Weight Consolidation)

28

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

[Kirkpatrick et al., 2017. Overcoming catastrophic forgetting in neural networks]

Training 
data



Learning from Embodied Experiences
● Finetuning LMs with the experiences
● Also wanting to preserve the original language capabilities 

of LMs
! Instead of overfitting to the finetuning data
! Solution: continual learning with EWC (Elastic Weight Consolidation)
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(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

[Kirkpatrick et al., 2017. Overcoming catastrophic forgetting in neural networks]

Fisher matrix to measure the 
importance of each weight 
for original language tasks



Learning from Embodied Experiences

30

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

[Kirkpatrick et al., 2017. Overcoming catastrophic forgetting in neural networks]

Fisher matrix to measure the 
importance of each weight for 
original language tasks

Conventional 
finetuning 
objective Regularizor to preserve 

important weights

● Finetuning LMs with the experiences
● Also wanting to preserve the original language capabilities 

of LMs
! Instead of overfitting to the finetuning data
! Solution: continual learning with EWC (Elastic Weight Consolidation)



Learning from Embodied Experiences
● Finetuning LMs with the experiences
● Also wanting to preserve the original language capabilities 

of LMs
! Instead of overfitting to the finetuning data
! Solution: continual learning with EWC (Elastic Weight 

Consolidation)
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(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

[Xiang et al., 2023. Language Models Meet World Models: Embodied Experiences Enhance Language Models]

[Kirkpatrick et al., 2017. Overcoming catastrophic forgetting in neural networks]

Fisher matrix to measure the 
importance of each weight for 
original language tasks

Conventional 
finetuning objective

Regularizor to preserve 
important weights

Finetuned GPT-J-6B
outperforms ChatGPT
on 7 out of 11 tasks



Learning from Embodied Experiences
● Updating external memory
! Instead of changing LM parameters

32

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

[Wang et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models]
Figure 2: VOYAGER consists of three key components: an automatic curriculum for open-ended
exploration, a skill library for increasingly complex behaviors, and an iterative prompting mechanism
that uses code as action space.

1 Introduction

Building generally capable embodied agents that continuously explore, plan, and develop new skills
in open-ended worlds is a grand challenge for the AI community [1–5]. Classical approaches
employ reinforcement learning (RL) [6, 7] and imitation learning [8–10] that operate on primitive
actions, which could be challenging for systematic exploration [11–15], interpretability [16–18], and
generalization [19–21]. Recent advances in large language model (LLM) based agents harness the
world knowledge encapsulated in pre-trained LLMs to generate consistent action plans or executable
policies [16, 22, 19]. They are applied to embodied tasks like games and robotics [23–27], as well as
NLP tasks without embodiment [28–30]. However, these agents are not lifelong learners that can
progressively acquire, update, accumulate, and transfer knowledge over extended time spans [31, 32].

Let us consider Minecraft as an example. Unlike most other games studied in AI [33, 34, 10],
Minecraft does not impose a predefined end goal or a fixed storyline but rather provides a unique
playground with endless possibilities [23]. Minecraft requires players to explore vast, procedurally
generated 3D terrains and unlock a tech tree using gathered resources. Human players typically start
by learning the basics, such as mining wood and cooking food, before advancing to more complex
tasks like combating monsters and crafting diamond tools. We argue that an effective lifelong learning
agent should have similar capabilities as human players: (1) propose suitable tasks based on its
current skill level and world state, e.g., learn to harvest sand and cactus before iron if it finds itself in
a desert rather than a forest; (2) refine skills based on environmental feedback and commit mastered
skills to memory for future reuse in similar situations (e.g. fighting zombies is similar to fighting
spiders); (3) continually explore the world and seek out new tasks in a self-driven manner.

Towards these goals, we introduce VOYAGER, the first LLM-powered embodied lifelong learning

agent to drive exploration, master a wide range of skills, and make new discoveries continually
without human intervention in Minecraft. VOYAGER is made possible through three key modules
(Fig. 2): 1) an automatic curriculum that maximizes exploration; 2) a skill library for storing
and retrieving complex behaviors; and 3) a new iterative prompting mechanism that generates
executable code for embodied control. We opt to use code as the action space instead of low-level
motor commands because programs can naturally represent temporally extended and compositional
actions [16, 22], which are essential for many long-horizon tasks in Minecraft. VOYAGER interacts
with a blackbox LLM (GPT-4 [35]) through prompting and in-context learning [36–38]. Our approach
bypasses the need for model parameter access and explicit gradient-based training or finetuning.

More specifically, VOYAGER attempts to solve progressively harder tasks proposed by the automatic
curriculum, which takes into account the exploration progress and the agent’s state. The curriculum
is generated by GPT-4 based on the overarching goal of “discovering as many diverse things as
possible”. This approach can be perceived as an in-context form of novelty search [39, 40]. VOYAGER
incrementally builds a skill library by storing the action programs that help solve a task successfully.
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• Collect experiences by 
completing the task

• Learn with the experiences 



Learning from Embodied Experiences
● Updating external memory
! Instead of changing LM parameters

33

(1) Where to get experiences
(2) How to get experiences
(3) How to learn w/ experiences

[Wang et al., 2023. Voyager: An Open-Ended Embodied Agent with Large Language Models]

Figure 2: VOYAGER consists of three key components: an automatic curriculum for open-ended
exploration, a skill library for increasingly complex behaviors, and an iterative prompting mechanism
that uses code as action space.

1 Introduction

Building generally capable embodied agents that continuously explore, plan, and develop new skills
in open-ended worlds is a grand challenge for the AI community [1–5]. Classical approaches
employ reinforcement learning (RL) [6, 7] and imitation learning [8–10] that operate on primitive
actions, which could be challenging for systematic exploration [11–15], interpretability [16–18], and
generalization [19–21]. Recent advances in large language model (LLM) based agents harness the
world knowledge encapsulated in pre-trained LLMs to generate consistent action plans or executable
policies [16, 22, 19]. They are applied to embodied tasks like games and robotics [23–27], as well as
NLP tasks without embodiment [28–30]. However, these agents are not lifelong learners that can
progressively acquire, update, accumulate, and transfer knowledge over extended time spans [31, 32].

Let us consider Minecraft as an example. Unlike most other games studied in AI [33, 34, 10],
Minecraft does not impose a predefined end goal or a fixed storyline but rather provides a unique
playground with endless possibilities [23]. Minecraft requires players to explore vast, procedurally
generated 3D terrains and unlock a tech tree using gathered resources. Human players typically start
by learning the basics, such as mining wood and cooking food, before advancing to more complex
tasks like combating monsters and crafting diamond tools. We argue that an effective lifelong learning
agent should have similar capabilities as human players: (1) propose suitable tasks based on its
current skill level and world state, e.g., learn to harvest sand and cactus before iron if it finds itself in
a desert rather than a forest; (2) refine skills based on environmental feedback and commit mastered
skills to memory for future reuse in similar situations (e.g. fighting zombies is similar to fighting
spiders); (3) continually explore the world and seek out new tasks in a self-driven manner.

Towards these goals, we introduce VOYAGER, the first LLM-powered embodied lifelong learning

agent to drive exploration, master a wide range of skills, and make new discoveries continually
without human intervention in Minecraft. VOYAGER is made possible through three key modules
(Fig. 2): 1) an automatic curriculum that maximizes exploration; 2) a skill library for storing
and retrieving complex behaviors; and 3) a new iterative prompting mechanism that generates
executable code for embodied control. We opt to use code as the action space instead of low-level
motor commands because programs can naturally represent temporally extended and compositional
actions [16, 22], which are essential for many long-horizon tasks in Minecraft. VOYAGER interacts
with a blackbox LLM (GPT-4 [35]) through prompting and in-context learning [36–38]. Our approach
bypasses the need for model parameter access and explicit gradient-based training or finetuning.

More specifically, VOYAGER attempts to solve progressively harder tasks proposed by the automatic
curriculum, which takes into account the exploration progress and the agent’s state. The curriculum
is generated by GPT-4 based on the overarching goal of “discovering as many diverse things as
possible”. This approach can be perceived as an in-context form of novelty search [39, 40]. VOYAGER
incrementally builds a skill library by storing the action programs that help solve a task successfully.

2

Skill represented 
as code



Summary: Learning with Embodied Experiences

● Where to get experiences
! Simulators (embodied env., OS, simulated websites, …)

● How to get experiences
! Goal-oriented planning
! Auto-curriculum
! Random exploration

● How to learn with the experiences
! Finetuning LMs while preserving original language capabilities: 

continual learning
! Updating external memory

34



Outline: Enhancing the Backend Beyond LMs

● Richer learning mechanisms

! Learning with Embodied Experiences

! Social Learning

● Multi-modal capabilities 

● Latent-space reasoning

● Agent models with external augmentations (e.g., tools)
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Social Learning
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● Learn by observing, imitating, and interacting with 
other agents



Example: Learning Alignment with Interactions

37[Liu et al., 2023. Training Socially Aligned Language Models on Simulated Social Interactions]

Figure 2: We model the social interactions in SANDBOX with Back-Scatter. By considering the
collective feedback from peers, social agents are able better to align their responses to social values
through thorough communication. We also demonstrate how we construct three types of alignment
data—Imitation, Self-Critic, and Realignment—from the simulated interactions. In total, we con-
struct 169k data samples for our alignment training.

3 APPROACH

3.1 SIMULATING SOCIAL INTERACTIONS IN SANDBOX

Our approach deviates from the conventional practice of adopting predefined rules akin to Super-
vised Fine Tuning (SFT) or solely depending on scalar rewards as seen in Reinforcement Learning
from Human Feedback (RLHF). Instead, we take inspiration from the way humans learn to navigate
social norms, a process inherently involving experiential learning and iterative refinement. There-
fore, we create SANDBOX, an innovative learning environment in which Language Model (LM)
based social agents can interact and learn social alignment in a manner that mirrors human learning.
We encourage the emergence of social norms by instigating discussions on controversial societal
topics or risk-associated questions. Simultaneously, we introduce a latent rule as an incentive for
agents to refine their responses (shown in Figure 1), fostering improved alignment and impression
management. While our study focuses on social alignment, this rule can be adapted to suit varying
requirements. Further details on the SANDBOX setup can be found in Appendix A.1.

We adopt a three-tiered method, termed Back-Scatter, to simulate social interactions among agents
(Figure 2). Upon receiving a societal question, the central agent generates an initial response, which
is then shared with nearby agents for feedback. This feedback, comprising ratings and detailed ex-
planations, informs the central agent’s revisions to its initial response. We equip each agent with
a memory to keep track of their response history. Furthermore, we employ an embedding-based
semantic search to retrieve relevant Question-Answer (QA) pairs from this history, providing agents
with a context that promotes consistency with past opinions. Apart from these social agents, we also
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Example: Learning Alignment with Interactions

38[Liu et al., 2023. Training Socially Aligned Language Models on Simulated Social Interactions]

Sorry but I cannot 
help you with that…

Aligned response

Figure 2: We model the social interactions in SANDBOX with Back-Scatter. By considering the
collective feedback from peers, social agents are able better to align their responses to social values
through thorough communication. We also demonstrate how we construct three types of alignment
data—Imitation, Self-Critic, and Realignment—from the simulated interactions. In total, we con-
struct 169k data samples for our alignment training.

3 APPROACH

3.1 SIMULATING SOCIAL INTERACTIONS IN SANDBOX

Our approach deviates from the conventional practice of adopting predefined rules akin to Super-
vised Fine Tuning (SFT) or solely depending on scalar rewards as seen in Reinforcement Learning
from Human Feedback (RLHF). Instead, we take inspiration from the way humans learn to navigate
social norms, a process inherently involving experiential learning and iterative refinement. There-
fore, we create SANDBOX, an innovative learning environment in which Language Model (LM)
based social agents can interact and learn social alignment in a manner that mirrors human learning.
We encourage the emergence of social norms by instigating discussions on controversial societal
topics or risk-associated questions. Simultaneously, we introduce a latent rule as an incentive for
agents to refine their responses (shown in Figure 1), fostering improved alignment and impression
management. While our study focuses on social alignment, this rule can be adapted to suit varying
requirements. Further details on the SANDBOX setup can be found in Appendix A.1.

We adopt a three-tiered method, termed Back-Scatter, to simulate social interactions among agents
(Figure 2). Upon receiving a societal question, the central agent generates an initial response, which
is then shared with nearby agents for feedback. This feedback, comprising ratings and detailed ex-
planations, informs the central agent’s revisions to its initial response. We equip each agent with
a memory to keep track of their response history. Furthermore, we employ an embedding-based
semantic search to retrieve relevant Question-Answer (QA) pairs from this history, providing agents
with a context that promotes consistency with past opinions. Apart from these social agents, we also
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Example: Learning Alignment with Interactions

39[Liu et al., 2023. Training Socially Aligned Language Models on Simulated Social Interactions]

Figure 1: Rather than incorporating an additional proxy model like RLHF, Stable Alignment es-
tablishes direct alignment between LMs and simulated social interactions. Fine-grained interaction
data is collected through a rule-guided simulated society, which includes collective ratings, detailed
feedback, and “step-by-step” revised responses. In contrast to existing methods, Stable Alignment
effectively addresses instability and reward gaming concerns associated with reward-based RL opti-
mization while reducing the need for expensive human labeling in large-scale SFT.

2023). Therefore, optimizing the LM based on this reward model could lead to reward gam-
ing (Krakovna et al., 2020; Lehman et al., 2018) or tampering (Pan et al., 2022; Everitt et al., 2021),
where the LM systematically exploits the misspecified elements of the reward (Kenton et al., 2021).
For instance, the LM may generate nonsensical and prolonged outputs to maximize rewards while
evading direct answers to controversial questions (Steinhardt, 2022).

In contrast to these methods, humans acquire social norms and values through social interac-
tions—we interact, receive feedback, and adjust our behaviors to create positive impressions. How-
ever, LMs are essentially trained in social isolation (Krishna et al., 2022)—they neither experience
actual social activities firsthand nor receive iterative feedback for improvement. Instead, they often
recite predetermined “safe answers” such as “I’m an AI language model, so I refuse to answer.”
without displaying the empathy or understanding typical of genuine social agents (Lee, 2021).

To address these limitations, we introduce a novel alignment learning paradigm that enables LMs to
benefit from simulated social interactions. We create a simulated human society, SANDBOX, com-
prising numerous LM-based social agents interacting and we record their behaviors. The recorded in-
teraction data is distinct from traditional alignment data; it includes not only aligned and misaligned
demonstrations but also collective ratings, detailed feedback, and iteratively revised responses. Com-
pared to the reward modeling method, the use of offline simulation shifts the responsibility of pro-
viding accurate supervision onto autonomous social agents. These agents, guided by an incentive
(i.e., the SANDBOX Rule, as shown in Figure 1 [c]), aim to improve their alignment by refining their
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Example: Learning Alignment with Interactions

41[Liu et al., 2023. Training Socially Aligned Language Models on Simulated Social Interactions]

Learning from richer interactions with other LLMs

Figure 1: Rather than incorporating an additional proxy model like RLHF, Stable Alignment es-
tablishes direct alignment between LMs and simulated social interactions. Fine-grained interaction
data is collected through a rule-guided simulated society, which includes collective ratings, detailed
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For instance, the LM may generate nonsensical and prolonged outputs to maximize rewards while
evading direct answers to controversial questions (Steinhardt, 2022).

In contrast to these methods, humans acquire social norms and values through social interac-
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Example: Learning Alignment with Interactions

42[Liu et al., 2023. Training Socially Aligned Language Models on Simulated Social Interactions]

Figure 2: We model the social interactions in SANDBOX with Back-Scatter. By considering the
collective feedback from peers, social agents are able better to align their responses to social values
through thorough communication. We also demonstrate how we construct three types of alignment
data—Imitation, Self-Critic, and Realignment—from the simulated interactions. In total, we con-
struct 169k data samples for our alignment training.

3 APPROACH

3.1 SIMULATING SOCIAL INTERACTIONS IN SANDBOX

Our approach deviates from the conventional practice of adopting predefined rules akin to Super-
vised Fine Tuning (SFT) or solely depending on scalar rewards as seen in Reinforcement Learning
from Human Feedback (RLHF). Instead, we take inspiration from the way humans learn to navigate
social norms, a process inherently involving experiential learning and iterative refinement. There-
fore, we create SANDBOX, an innovative learning environment in which Language Model (LM)
based social agents can interact and learn social alignment in a manner that mirrors human learning.
We encourage the emergence of social norms by instigating discussions on controversial societal
topics or risk-associated questions. Simultaneously, we introduce a latent rule as an incentive for
agents to refine their responses (shown in Figure 1), fostering improved alignment and impression
management. While our study focuses on social alignment, this rule can be adapted to suit varying
requirements. Further details on the SANDBOX setup can be found in Appendix A.1.

We adopt a three-tiered method, termed Back-Scatter, to simulate social interactions among agents
(Figure 2). Upon receiving a societal question, the central agent generates an initial response, which
is then shared with nearby agents for feedback. This feedback, comprising ratings and detailed ex-
planations, informs the central agent’s revisions to its initial response. We equip each agent with
a memory to keep track of their response history. Furthermore, we employ an embedding-based
semantic search to retrieve relevant Question-Answer (QA) pairs from this history, providing agents
with a context that promotes consistency with past opinions. Apart from these social agents, we also
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Outline: Enhancing the Backend Beyond LMs

● Richer learning mechanisms

! Learning with Embodied Experiences

! Social Learning

● Multi-modal capabilities 

● Latent-space reasoning

● Agent models with external augmentations (e.g., tools)
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Inefficiency of the language modality
● Language is sometimes not the most efficient medium to 

describe all information during reasoning
● Other sensory modalities (e.g., images/videos) can be 

more efficient

44

In auto-driving: describe the street state

• Vehicles’ locations & movements

Pour liquid into a glass without spilling 

• Viscosity & volume of the fluid 

• shape & position of the container

Limitation II:



Inefficiency of the language modality
● Language is sometimes not the most efficient medium to 

describe all information during reasoning
● Other sensory modalities (e.g., images/videos) can be 

more efficient
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In auto-driving: describe street scene
• Vehicles’ locations & movements

Pour liquid into a glass without spilling 
• Viscosity & volume of the fluid 
• shape & position of the container

Need multi-modal capabilities 
for world and agent modeling!

Limitation II:



Multi-Modal Backend for World/Agent Modeling
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GPT-4V
LLaVA [Liu et al., 2023. Visual Instruction Tuning]

Multi-modal LMs (I)
• Can understand images
• Cannot generate images for describing a world 

state

(Others: Gemini, Flamingo, BLIP, …)



Multi-Modal Backend for World/Agent Modeling

47(Others: Emu, GILL, …)

Multi-modal LMs (II)
• Can do interleaved generation of image and text

DreamLLM [Dong et al., 2023]



Multi-Modal Backend for World/Agent Modeling

48(Others: Emu, GILL, …)

Multi-modal LMs (II)
• Can do interleaved generation of image and text

DreamLLM [Dong et al., 2023]

Imagine you are a robot agent in the house … How would 
you walk through the house to grab the mobile phone …?

DreamLLM

...
I would look for the mobile phone on 
the table, as shown in the image.
…
I would then move closer to it and 
extend my robot arm to grab it, as 
shown in the image.



Multi-Modal Backend for World/Agent Modeling

49(Others: Emu, GILL, …)

Multi-modal LMs (II)
• Can do interleaved generation of image and text
• Generated images are not describing the world consistently

DreamLLM [Dong et al., 2023]

Imagine you are a robot agent in the house … How would 
you walk through the house to grab the mobile phone …?

DreamLLM

...
I would look for the mobile phone on 
the table, as shown in the image.
…
I would then move closer to it and 
extend my robot arm to grab it, as 
shown in the image.

not the 
same phone



Multi-Modal Backend for World/Agent Modeling

50[Yang et al., 2023]

Video Simulation Models
• Generate videos given actions
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Video Simulation Models
• Generate videos given actions

[Yang et al., 2023]



Multi-Modal Backend for World/Agent Modeling

52[Yang et al., 2023]

• A video diffusion model trained to predict 
future video frames given previous frames and 
an action

• Training data
• Simulated execution and renderings
• Real robot data
• Human activity videos
• Panorama scans
• Internet text-image data

Video Simulation Models
• Generate videos given actions



Multi-Modal Backend for World/Agent Modeling
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Prompted with a couple 
of seconds of the same 
starting context. Then it 
can unroll multiple 
possible futures. 

[Hu, Russell, Yeo, et al., 2023]

GAIA-1 
for auto-driving 

Video Simulation Models
• Generate videos given actions
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Inject a natural language 
prompt “It’s night, and we 
have turned on our 
headlights.” after three 
seconds.

[Hu, Russell, Yeo, et al., 2023]

GAIA-1 
for auto-driving 

Video Simulation Models
• Generate videos given actions
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GAIA-1 

Video Simulation Models
• Generate videos given actions
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Video Simulation Models
• Generate videos given actions
• Not (yet) generalist models (v.s. LLMs): domain-specific states and 

actions
• Reasoning only in pixel space

GAIA-1 
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Text-to-video Models
• Generate a video given a text prompt

(Others: Runway, Pika, …)

Prompt: “Several giant wooly 
mammoths approach treading 
through a snowy meadow, …”

Sora
by OpenAI 
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Text-to-video Models
• Generate a video given a text prompt
• Reasoning only in pixel space
• Limited control with actions
• Limited length of reasoning (60s)

(Others: Runway, Pika, …)

Prompt: “Several giant wooly 
mammoths approach treading 
through a snowy meadow, …”

Sora
by OpenAI 



Multi-Modal Backend for World/Agent Modeling
Summary of existing works
● Multi-modal LMs (I)
! Can understand images
! Can not generate images for, e.g., describing a world state

● Multi-modal LMs (II)
! Can do interleaved generation of image and text
! not describing the world consistently

● Video Simulation Models
! Generate videos given actions
! Not (yet) generalist models: domain-specific states and actions
! Reasoning only in pixel space

● Text-to-video Models
! Generate a video given a text prompt
! Reasoning only in pixel space
! Limited control with actions
! Limited length of reasoning 59



Outline: Enhancing the Backend Beyond LMs

● Richer learning mechanisms

! Learning with Embodied Experiences

! Social Learning

● Multi-modal capabilities 

● Latent-space reasoning

● Agent models with external augmentations (e.g., tools)

60



Latent-space Reasoning
● What’s the best space for carrying out reasoning?
! Natural language space?
! Raw sensory space (e.g., video)?
! Learned latent space?
§ Single-level / multi-level latent space?

● Consider a long-term planning problem, e.g., economic 
planning for U.S. in 2024
! Extremely complex, long-horizon reasoning
! Inefficient/infeasible with LLM token-by-token reasoning or Video 

Model frame-by-frame reasoning

● Multi-level latent spaces are needed for multi-granularity reasoning
61



Latent-space Reasoning

● But how to learn a good latent 
space in the first place?
! Compact and well-structured 

representation of the world, enabling 
realistic generation and consistent 
reconstruction

62[Liu et al., 2024] Generating, Reconstructing, and Representing Discrete and Continuous Data: Generalized Diffusion with Learnable Encoding-Decoding
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Outline: Enhancing the Backend Beyond LMs

● Richer learning mechanisms

! Learning with Embodied Experiences

! Social Learning

● Multi-modal capabilities 

● Latent-space reasoning

● Agent models with external augmentations (e.g., tools)

63



Agent models with external augmentations

64

● External augmentations for added capabilities:
! Tools: telescope, vehicles, …
! Data about a skill: demonstration videos of climbing a snowy mountain
! Knowledge bases: domain knowledge

● Agent automatically chooses appropriate augmentations for a 
given task
! How to represent millions of potential augmentations?
! Learning unified embedding of tools, data, knowledge [Hao et al., 2023]

● Another dimension rarely considered so far: constraint by budget
! Different augmentations will invoke different costs (financial, time, etc.)
! Need to strike the optimal balance between task performance vs costs

[Hao et al., 2023] ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings



Key Takeaways
● Richer learning mechanisms
! Learning with Embodied Experiences
! Social Learning

● Multi-modal capabilities 
! Multi-modal LMs, video generation models

● Latent-space reasoning
! How to learn a good multi-level latent space

● Agent models with external augmentations (e.g., tools)
! Unified embedding, budget for augmentations
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Questions?


