DSC291: Machine Learning with Few Labels

Overview

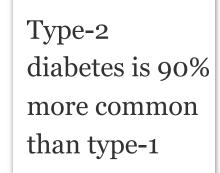
Zhiting Hu Lecture 3, April 5, 2024

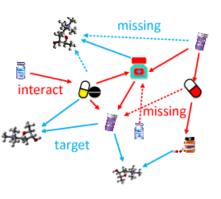
HALICIOĞLU DATA SCIENCE INSTITUTE

What is Machine Learning?

• Computational methods that enable machines to learn concepts and improve performance from **experience**.

Experience of all kinds





Data examples

Rules/Constraints

Knowledge graphs

Rewards

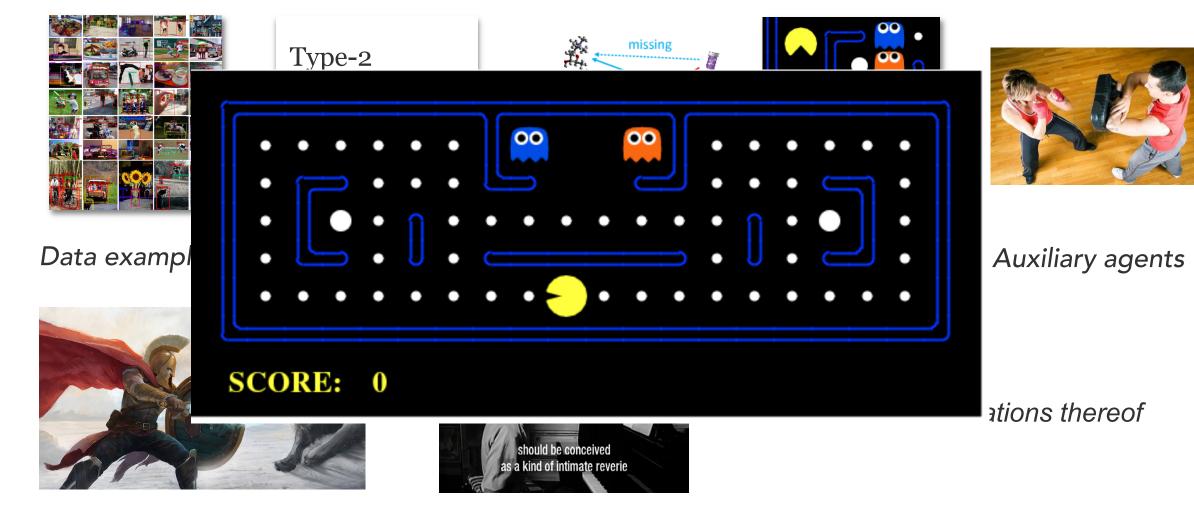
Auxiliary agents

Adversaries

Master classes

And all combinations thereof

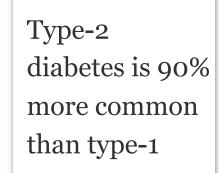
Experience of all kinds

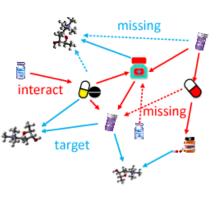


Adversaries

Master classes

Experience of all kinds





Data examples

Rules/Constraints

Knowledge graphs

Rewards

Auxiliary agents

Adversaries

Master classes

And all combinations thereof

Experience: (massive) data examples

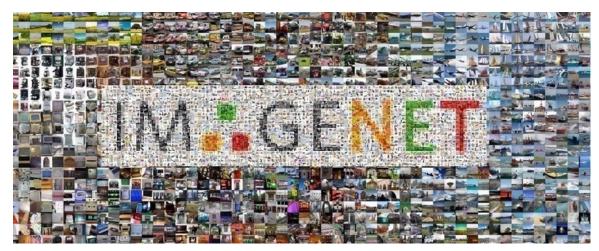


Image classification

Machine translation

Language modeling (BERT, GPT-3/4, ...)

GPT3: 45TB of text data: CommonCrawl, WebText, Wikipedia, corpus of books, ...

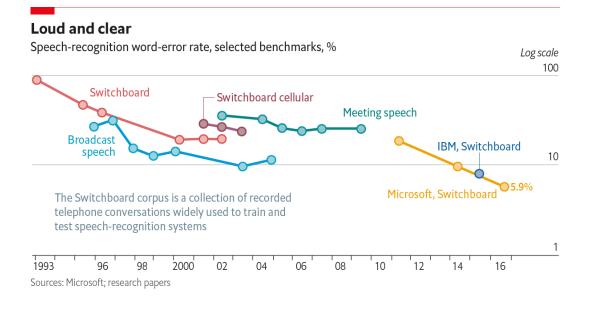
Experience: (massive) data examples

TECH ARTIFICIAL INTELLIGENCE

OpenAl's text-generating system GPT-3 is now spewing out 4.5 billion words a day

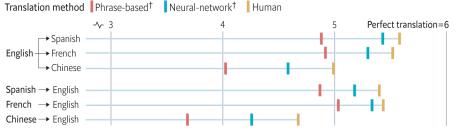
Robot-generated writing looks set to be the next big thing

By James Vincent | Mar 29, 2021, 8:24am EDT



Speak easy

Human scorers' rating* of Google Translate and human translation



Input sentence et de convaincre l'auditoire que M. Trump n'a pas l'étoffe d'un président

Neural-network[†]

For the former secretary of state, this is to forget a month of bungling and convince the audience that Mr Trump has not the makings of a president

Phrase-based[†]

Source: Google

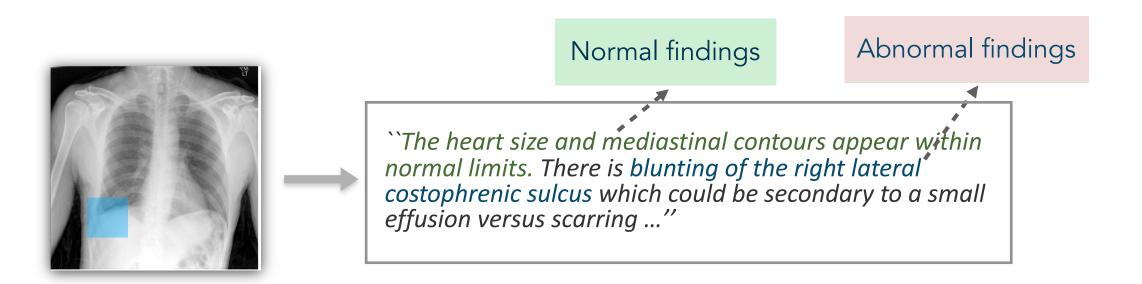
For the former secretary of state, it is a question of forgetting a month of muddles and convincing the audience that Mr Trump does not have the stuff of a president

The former secretary of state has to put behind her a month of setbacks and convince the audience that Mr Trump does not have what it takes to be a president

[The Economist]

*0=completely nonsense translation, 6=perfect translation [†]Machine translation

- Privacy, security issues
 - Assistive diagnosis



• Expensive to collect/annotate

Robotic control

• Expensive to collect/annotate

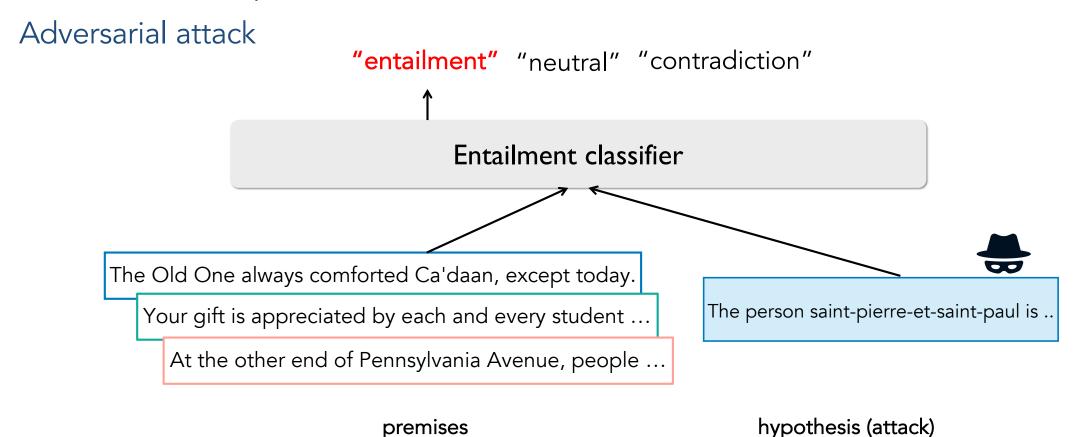
Controllable content generation

Source image

Generated images under different poses

Applications: virtual clothing try-on system

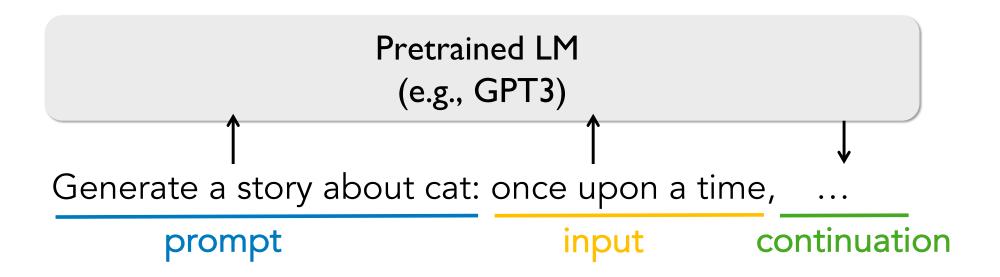
• Difficult / expertise-demanding to annotate



Applications: test model robustness

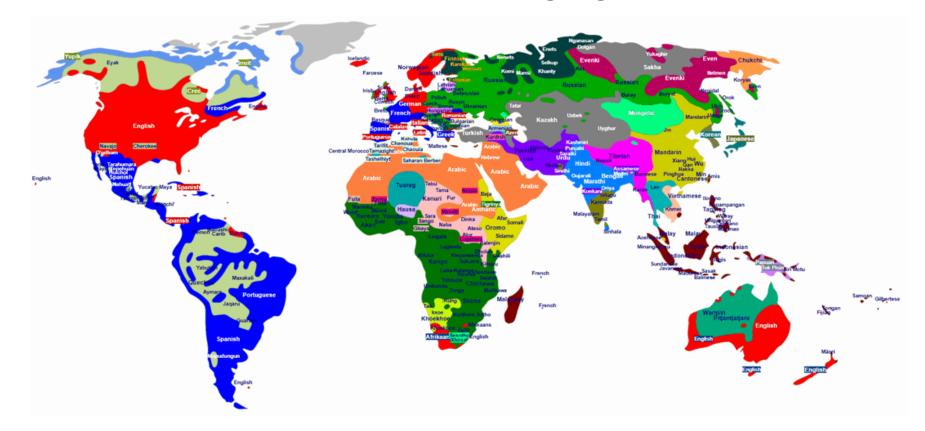
• Difficult / expertise-demanding to annotate

Prompt generation: automatically generating prompts to steer pretrained LMs



• Specific domain Low-resource languages

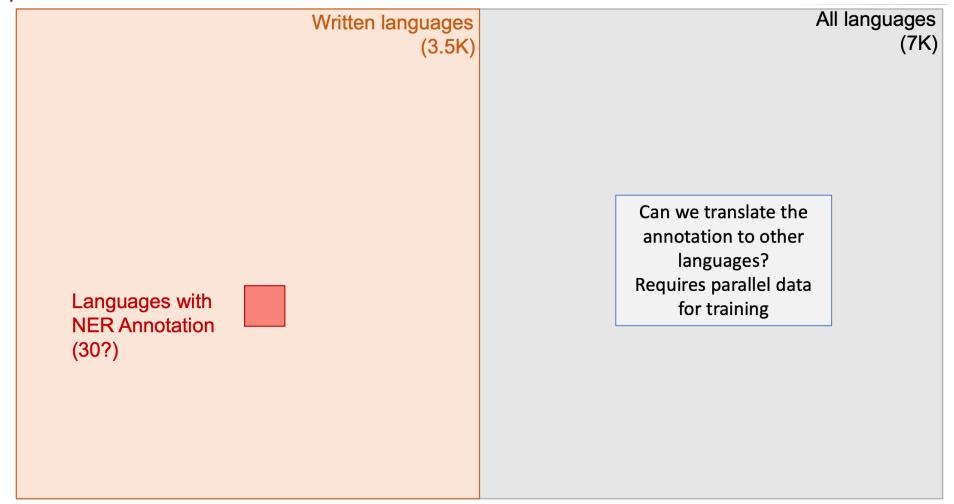
~7K languages in the world



• Specific domain Low-resource languages

Written languages	All languages
(3.5K)	(7K)
Languages with	
NER Annotation	
(30?)	

• Specific domain Low-resource languages

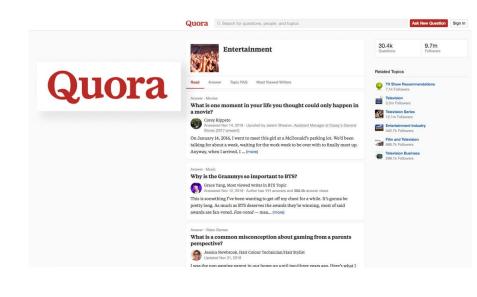


• Specific domain Low-resource languages

	Written languages (3.5K)		All languages (7K)
Languages with parallel text (100?) Languages with NER Annotation (30?)	Wikipedia languages (300)	Can we use the multilingual links in Wikipedia?	

• Specific domain

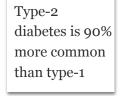
Question answering



QA based on car manual?

- Privacy, security issues
- Expensive to collect/annotate
- Difficult / expertise-demanding to annotate
- Specific domain

- How can we make more efficient use of data?
 - Clean but small-size
 - Noisy
 - Out-of-domain
- Can we incorporate other types of experience in learning?



Data examples

Rules/Constraints Knowledge graphs

Rewards

The second

Auxiliary agents

And all combinations thereof

Adversaries

Master classes

- Loss
- Experience
- Optimization solver
- Model architecture

 $\min_{\theta} \mathcal{L}$ (θ, \mathcal{E}) **Optimization** Loss Model Experience solver architecture

- Loss This course discusses very little about model architecture
- Experience
- Optimization solver
- Model architecture

$$\begin{array}{c|c} \min_{\theta} \mathcal{L}(\theta, \mathcal{E}) \\ & \swarrow & \checkmark & \checkmark \\ \end{array}$$
Optimization Loss Model Experience architecture

• Loss

- Experience
- Optimization solver
- Model architecture

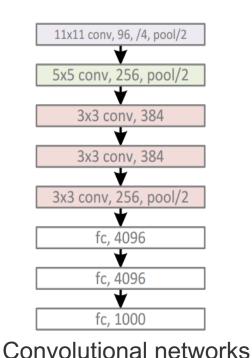
This course discusses very little about model architecture

Model of certain architecture whose parameters are the subject to be learned, $p_{\theta}(\mathbf{x}, \mathbf{y})$ or $p_{\theta}(\mathbf{y}|\mathbf{x})$

- Neural networks
- Graphical models
- Compositional architectures

• Loss

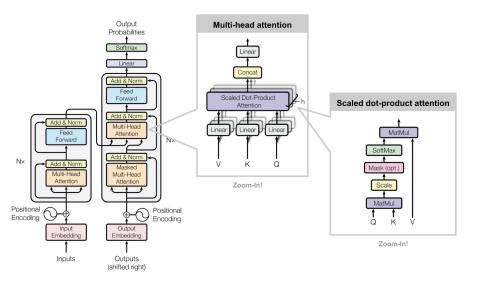
- Experience
- Optimization solver
- Model architecture



This course discusses very little about model architecture

Model of certain architecture whose parameters are the subject to be learned, $p_{\theta}(\mathbf{x}, \mathbf{y})$ or $p_{\theta}(\mathbf{y}|\mathbf{x})$

- Neural networks
- Graphical models
- Compositional architectures



Transformers

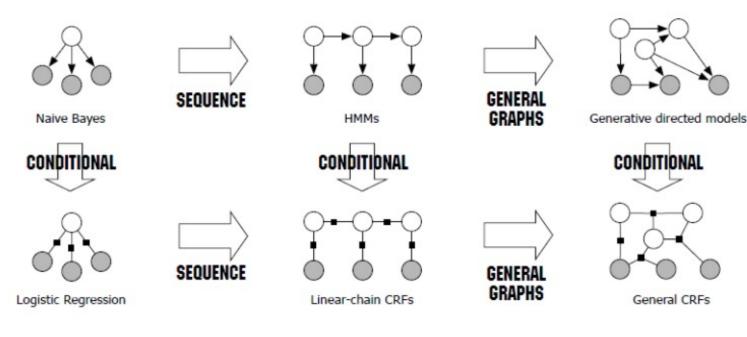
• Loss

- Experience
- Optimization solver
- Model architecture

This course discusses very little about model architecture

Model of certain architecture whose parameters are the subject to be learned, $p_{\theta}(x, y)$ or $p_{\theta}(y|x)$

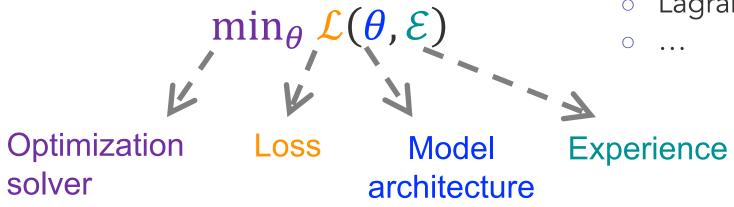
- Neural networks
- Graphical models
- Compositional architectures



- Loss
 This course discusses very little about model architecture
- Experience
- Optimization solver
- Model architecture

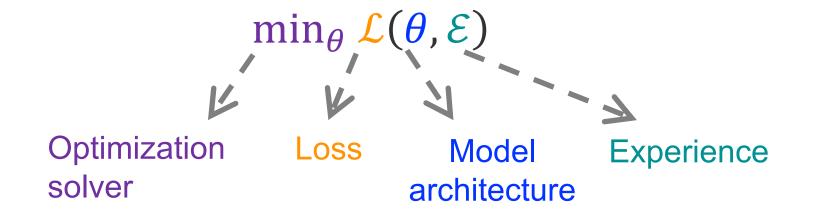
Assuming you know basic procedures:

- (Stochastic) gradient descent
- Backpropagation
- Lagrange multiplier

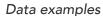


- Loss
 This course discusses very little about model architecture
- Experience
- Optimization solver
- Model architecture

Core of most learning algorithms



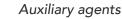
- (1) How can we make more efficient use of data?
 - Clean but small-size, Noisy, Out-of-domain
- (2) Can we incorporate other types of experience in learning?



Rules/Constraints Knowledge graphs

nowledge graphs Rewards

. . .



Master classes

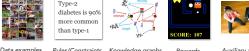
And all combinations thereof

- (1) How can we make more efficient use of data?
 - Clean but small-size, Noisy, Out-of-domain, ...
- Algorithms
 - Supervised learning: MLE, maximum entropy principle
 - Unsupervised learning: EM, variational inference, VAEs
 - Self-supervised learning: successful instances, e.g., BERT, GPT-3, contrastive learning, applications to downstream tasks
 - Distant/weakly supervised learning: successful instances
 - Data manipulation: augmentation, re-weighting, curriculum learning, ...
 - Meta-learning

Mostly first half of the course

- (2) Can we incorporate other types of experience in learning?
 - Learning from auxiliary models, e.g., adversarial models:
 - Generative adversarial learning (GANs and variants), co-training, ...
 - Learning from structured knowledge
 - Posterior regularization, constraint-driven learning, ...
 - Learning from rewards
 - Reinforcement learning: model-free vs model-based, policy-based vs value-based, on-policy vs off-policy, extrinsic reward vs intrinsic reward, ...
 - Learning in dynamic environment (not covered)
 - Online learning, lifelong/continual learning, ...

Second half of the course



... And all combinations thereof

Algorithm marketplace

Designs driven by: experience, task, loss function, training procedure ...

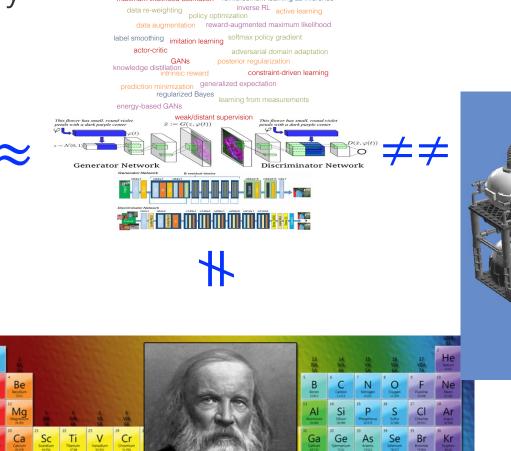
maximum likelihood estimation reinforcement learning as inference inverse RL active learning data re-weighting policy optimization reward-augmented maximum likelihood data augmentation softmax policy gradient label smoothing imitation learning actor-critic adversarial domain adaptation GANs posterior regularization knowledge distillation intrinsic reward constraint-driven learning generalized expectation prediction minimization regularized Bayes learning from measurements energy-based GANs weak/distant supervision

Where we are now? Where we want to be?

Nb Mo

Та

• Alchemy vs chemistry



maximum likelihood estimation reinforcement learning as inference

inverse RL active learning

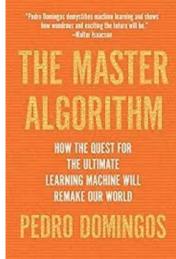
Quest for more standardized, unified ML principles

Machine Learning 3: 253–259, 1989 © 1989 Kluwer Academic Publishers – Manufactured in The Netherlands

EDITORIAL

Toward a Unified Science of Machine Learning

[P. Langley, 1989]



REVIEW _____ Communicated by Steven Nowlan

A Unifying Review of Linear Gaussian Models

Sam Roweis*

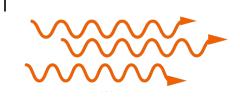
Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, U.S.A.

Zoubin Ghahramani* Department of Computer Science, University of Toronto, Toronto, Canada

Physics in the 1800's

- Electricity & magnetism:
 - Coulomb's law, Ampère, Faraday, ...
- Theory of light beams:
 - Particle theory: Isaac Newton, Laplace, Plank Ο
 - Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell Ο
- Law of gravity
 - Aristotle, Galileo, Newton, ... 0



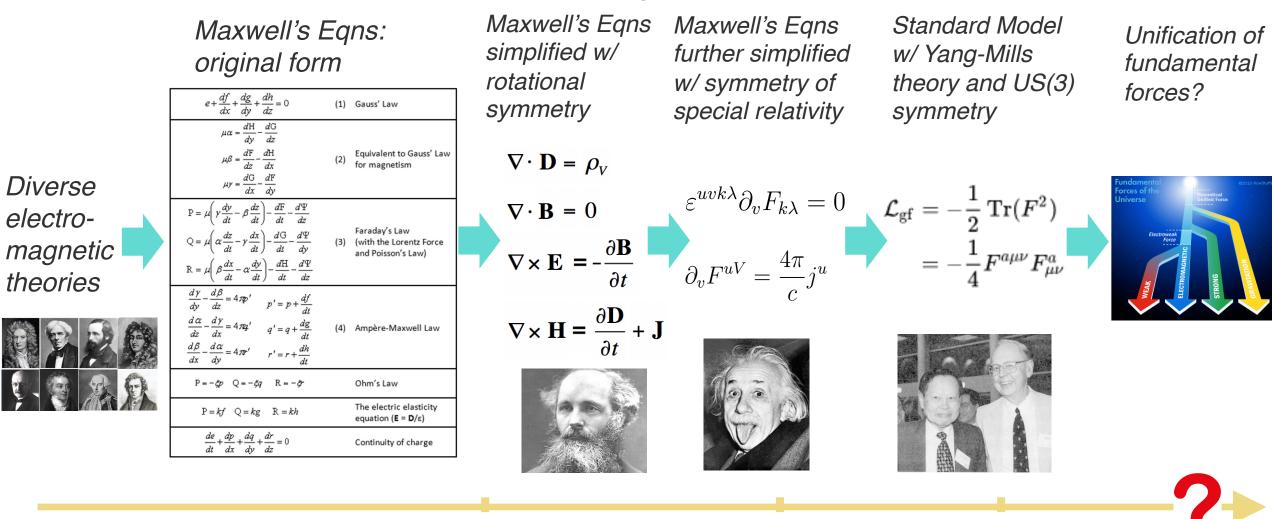


"Standard equations" in Physics

1861

Diverse

electro-



1910s

35

1970s

A "standardized formalism" of ML

Type-2 diabetes is 90% more common than type-1

Constraints

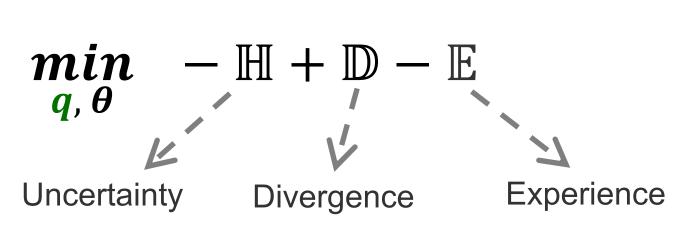
Rewards Auxiliary agents

Adversaries

should be conceived as a kind of intimate reverie

Imitation

Data examples



- Panoramically learn from all types of experience
- Subsumes many existing algorithms as special cases

Will discuss in later in the class

Questions?