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What is Machine Learning?
● Computational methods that enable machines to learn concepts and 

improve performance from experience.
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Experience of all kinds 

Data examples Rewards Auxiliary agentsRules/Constraints

Type-2 
diabetes is 90% 
more common 
than type-1 

Adversaries

And all combinations thereof…

Master classes
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Experience: (massive) data examples
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Image classification Machine translation

Language modeling
(BERT, GPT-3/4, …)

GPT3: 45TB of text data: CommonCrawl, WebText, 
Wikipedia, corpus of books, …



Experience: (massive) data examples
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Problems with few data (labels)
● Privacy, security issues
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``The heart size and mediastinal contours appear within 
normal limits. There is blunting of the right lateral 
costophrenic sulcus which could be secondary to a small 
effusion versus scarring …’’

Abnormal findingsNormal findings

Assistive diagnosis



Problems with few data (labels)
● Expensive to collect/annotate
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Robotic control



Problems with few data (labels)
● Expensive to collect/annotate
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Controllable content generation

Source image Generated images under different poses

Applications: virtual clothing try-on system 



Problems with few data (labels)
● Difficult / expertise-demanding to annotate
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Adversarial attack

Applications: test model robustness

premises hypothesis (attack)

The Old One always comforted Ca'daan, except today.

Entailment classifier

Your gift is appreciated by each and every student …

At the other end of Pennsylvania Avenue, people …

“entailment” “neutral” “contradiction”

The person saint-pierre-et-saint-paul is ..



Problems with few data (labels)
● Difficult / expertise-demanding to annotate
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Prompt generation: automatically generating prompts to steer pretrained LMs

Pretrained LM 
(e.g., GPT3)

Generate a story about cat: once upon a time, …
prompt input continuation



Problems with few data (labels)
● Specific domain
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Low-resource languages

~7K languages in the world



Problems with few data (labels)
● Specific domain
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Low-resource languages

[Figure courtesy: Dan Roth, CIS620]
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Problems with few data (labels)
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Low-resource languages

[Figure courtesy: Dan Roth, CIS620]



Problems with few data (labels)
● Specific domain
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Question answering QA based on car manual?



Problems with few data (labels)
● Privacy, security issues
● Expensive to collect/annotate
● Difficult / expertise-demanding to annotate
● Specific domain
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Machine learning solutions given few data (labels)
● How can we make more efficient use of data?
! Clean but small-size
! Noisy
! Out-of-domain

● Can we incorporate other types of experience in learning?
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Data examples Rewards Auxiliary agentsRules/Constraints

Type-2 
diabetes is 90% 
more common 
than type-1 

Adversaries

And all combinations thereof…
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Knowledge graphs



Components of a ML solution (roughly)
● Loss
● Experience
● Optimization solver
● Model architecture
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Optimization 
solver

Loss Model 
architecture

min!	ℒ &, ℰ
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This course discusses very little about model architecture 

Optimization 
solver
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architecture
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● Optimization solver
● Model architecture
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Model of certain architecture whose parameters are 
the subject to be learned, !! ", $ 	or !!($|")
! Neural networks
! Graphical models
! Compositional architectures

This course discusses very little about model architecture 
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Model of certain architecture whose parameters are 
the subject to be learned, !! ", $ 	or !!($|")
! Neural networks
! Graphical models
! Compositional architectures

Convolutional networks Transformers

This course discusses very little about model architecture 
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● Optimization solver
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Components of a ML solution (roughly)
● Loss
● Experience
● Optimization solver
● Model architecture
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Assuming you know basic procedures:
! (Stochastic) gradient descent
! Backpropagation
! Lagrange multiplier
! …

Optimization 
solver

Loss Model 
architecture

min!	ℒ &, ℰ

Experience

This course discusses very little about model architecture 



Components of a ML solution (roughly)
● Loss
● Experience
● Optimization solver
● Model architecture
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Core of most learning algorithms 

Optimization 
solver

Loss Model 
architecture

min!	ℒ &, ℰ

Experience

This course discusses very little about model architecture 



Machine learning solutions given few data (labels)
● (1) How can we make more efficient use of data?
! Clean but small-size, Noisy, Out-of-domain

● (2) Can we incorporate other types of experience in learning?
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Machine learning solutions given few data (labels)
● (1) How can we make more efficient use of data?
! Clean but small-size, Noisy, Out-of-domain, …

● Algorithms

! Supervised learning: MLE, maximum entropy principle

! Unsupervised learning: EM, variational inference, VAEs

! Self-supervised learning: successful instances, e.g., BERT, GPT-3, contrastive 

learning, applications to downstream tasks 

! Distant/weakly supervised learning: successful instances

! Data manipulation: augmentation, re-weighting, curriculum learning, …

! Meta-learning
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Mostly first half of the course



Machine learning solutions given few data (labels)
● (2) Can we incorporate other types of experience in learning?

! Learning from auxiliary models, e.g., adversarial models: 
§ Generative adversarial learning (GANs and variants), co-training, …

! Learning from structured knowledge
§ Posterior regularization, constraint-driven learning, …

! Learning from rewards
§ Reinforcement learning: model-free vs model-based, policy-based vs 

value-based, on-policy vs off-policy, extrinsic reward vs intrinsic reward, 
…

! Learning in dynamic environment (not covered)
§ Online learning, lifelong/continual learning, …
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Data examples Rewards Auxiliary agentsRules/Constraints

Type-2 
diabetes is 90% 
more common 
than type-1 

Adversaries

And all combinations thereof…

Master classes

Knowledge graphs

Second half of the course



Algorithm marketplace

actor-critic
imitation learning softmax policy gradient

policy optimization

posterior regularization
constraint-driven learning

regularized Bayes 

GANs

active learning

intrinsic reward

inverse RL

knowledge distillation

energy-based GANs 

maximum likelihood estimation

prediction minimization generalized expectation

learning from measurements 

adversarial domain adaptation

reinforcement learning as inference

data augmentation

data re-weighting

label smoothing

weak/distant supervision

reward-augmented maximum likelihood

Designs driven by: experience, task, loss function, training procedure …
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Where we are now? Where we want to be?
● Alchemy vs chemistry

≈

≠

≠≠
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actor-critic
imitation learning softmax policy gradient

policy optimization

posterior regularization
constraint-driven learning
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GANs

active learning
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reinforcement learning as inference
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Quest for more standardized, unified ML principles
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[P. Langley, 1989]



Physics in the 1800’s

● Electricity & magnetism: 
! Coulomb’s law, Ampère, Faraday, ...

● Theory of light beams:
! Particle theory: Isaac Newton, Laplace, Plank
! Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell

● Law of gravity
! Aristotle, Galileo, Newton, …
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“Standard equations” in Physics

Diverse 
electro-
magnetic 
theories ∂vF

uV
=

4π

c
ju

ε
uvkλ

∂vFkλ = 0

Maxwell’s Eqns: 
original form

Maxwell’s Eqns 
simplified w/ 
rotational 
symmetry

Maxwell’s Eqns 
further simplified 
w/ symmetry of 
special relativity

Standard Model 
w/ Yang-Mills 
theory and US(3) 
symmetry

1861 1910s 1970s

Unification of 
fundamental 
forces? 
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A “standardized formalism” of ML

● Panoramically learn from all types of experience
● Subsumes many existing algorithms as special cases
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Data examples Rewards Auxiliary agentsConstraints

Type-2 diabetes 

is 90% more 

common than 

type-1 

…

Adversaries Imitation 

Will discuss in later in the class



Questions?


