DSC291: Machine Learning with Few Labels

Overview

Zhiting Hu Lecture 3, April 5, 2024

What is Machine Learning?

 Computational methods that enable machines to learn concepts and improve performance from experience.

Experience of all kinds

Type-2 diabetes is 90% more common than type-1

Data examples

Rules/Constraints

Knowledge graphs

Rewards

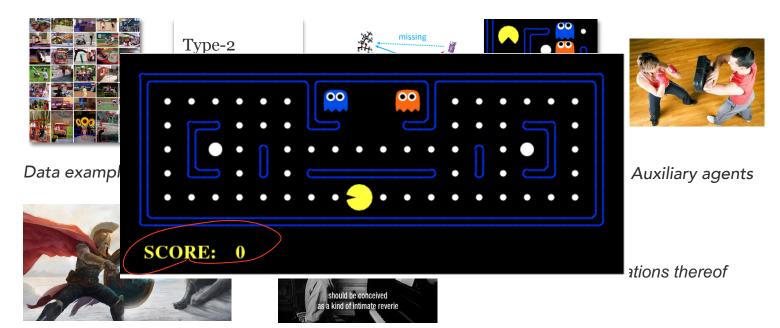
Auxiliary agents

Adversaries

Master classes

And all combinations thereof

Experience of all kinds



Adversaries

Master classes

Experience of all kinds

Type-2 diabetes is 90% more common than type-1

Data examples

Rules/Constraints

Knowledge graphs

Rewards

Auxiliary agents

Adversaries

Master classes

And all combinations thereof

HlexNet XIourits 2012

Experience: (massive) data examples

Image classification

Machine translation

Language modeling (BERT, GPT-3/4, ...)

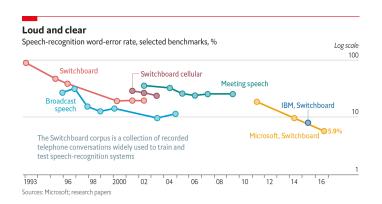
GPT3: 45TB of text data: CommonCrawl, WebText, Wikipedia, corpus of books, ...

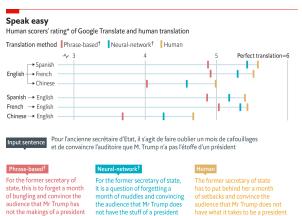
Experience: (massive) data examples

OpenAl's text-generating system GPT-3 is now spewing out 4.5 billion words a day

Robot-generated writing looks set to be the next big thing

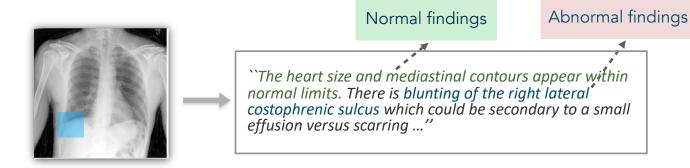
By James Vincent | Mar 29, 2021, 8:24am EDT





Privacy, security issues

Assistive diagnosis



• Expensive to collect/annotate

Robotic control

Expensive to collect/annotate

Controllable content generation

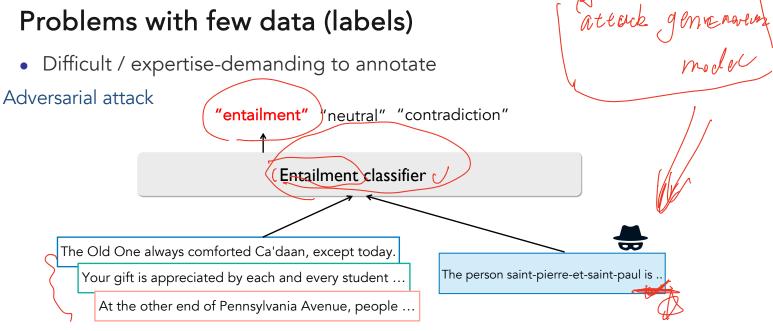
Source image

Generated images under different poses

Applications: virtual clothing try-on system

Difficult / expertise-demanding to annotate

premises

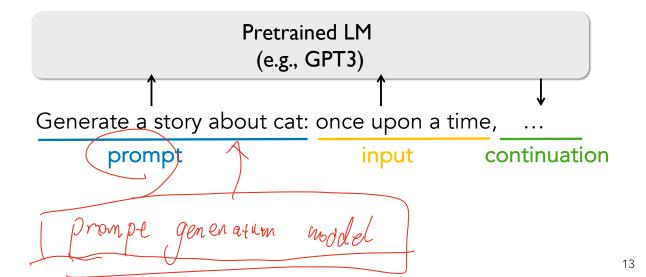


Applications: test model robustness

hypothesis (attack)

• Difficult / expertise-demanding to annotate

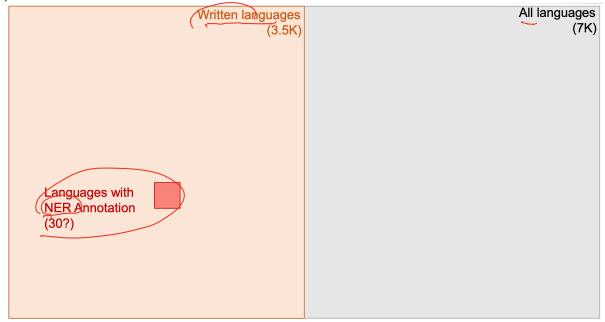
Prompt generation: automatically generating prompts to steer pretrained LMs



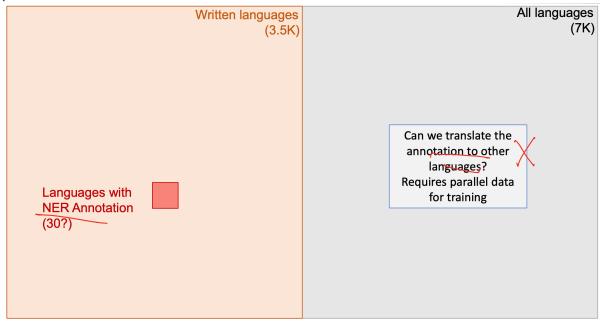
• Specific domain Low-resource languages

~7K languages in the world

• Specific domain Low-resource languages



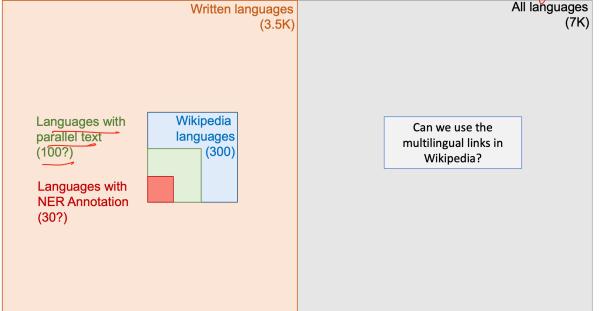
• Specific domain Low-resource languages



• Specific domain Low-resource languages

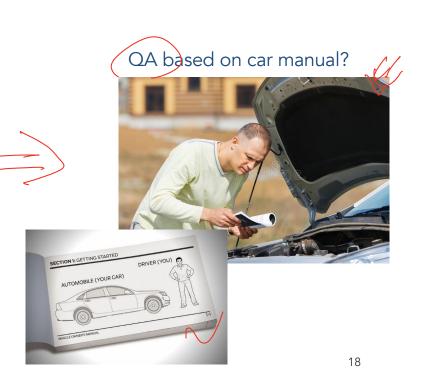
= ha agroger

documenta in



• Specific domain

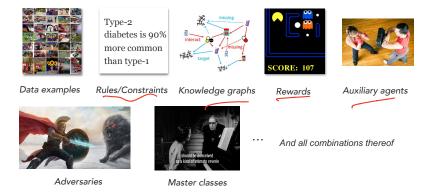
Question answering



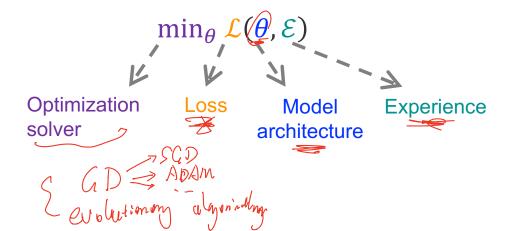
- Privacy, security issues
- Expensive to collect/annotate
- Difficult / expertise-demanding to annotate
- Specific domain

- How can we make more efficient use of data?
 - Clean but small-size
 - Noisy
 - Out-of-domain

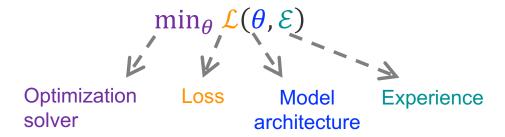
• Can we incorporate other types of experience in learning? \checkmark



- Loss
- Experience
- Optimization solver
- Model architecture



- Loss
 This course discusses very little about model architecture
- Experience
- Optimization solver
- Model architecture



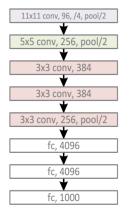
- Loss
- Experience
- Optimization solver
- Model architecture

This course discusses very little about model architecture

Model of certain architecture whose parameters are the subject to be learned, $p_{\theta}(x, y)$ or $p_{\theta}(y|x)$

- Neural networks
- Graphical models
- Compositional architectures

- Loss
- Experience
- Optimization solver
- Model architecture

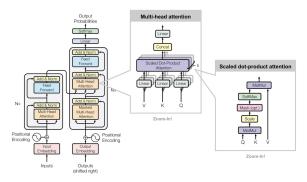


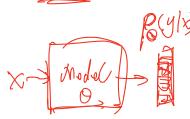
Convolutional networks

This course discusses very little about model architecture

Model of certain architecture whose parameters are the subject to be learned, $p_{\theta}(x, y)$ or $p_{\theta}(y|x)$

- Neural networks
- Graphical models
- Compositional architectures





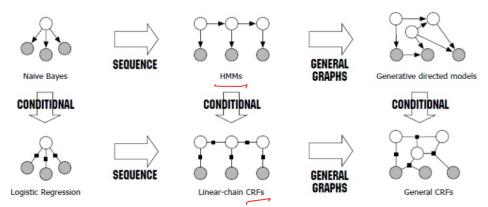
Transformers

- Loss
- Experience
- Optimization solver
- Model architecture

This course discusses very little about model architecture

Model of certain architecture whose parameters are the subject to be learned, $p_{\theta}(x, y)$ or $p_{\theta}(y|x)$

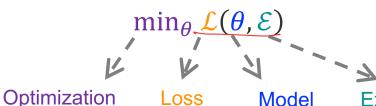
- Neural networks
- Graphical models
- Compositional architectures



- Loss
 This course discusses very little about model architecture
- Experience

solver

- Optimization solver
- Model architecture



architecture

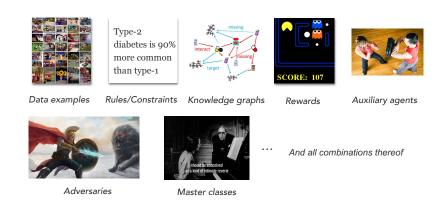
Assuming you know basic procedures:

- (Stochastic) gradient descent
- Backpropagation
- Lagrange multiplier
- constrained oft

Experience

Loss This course discusses very little about model architecture Experience Core of most learning algorithms Optimization solver Model architecture **Optimization** Experience Model solver architecture

- (1) How can we make more efficient use of data?
 - Clean but small-size, Noisy, Out-of-domain
- (2) Can we incorporate other types of experience in learning?



- (1) How can we make more efficient use of data?
 - Clean but small-size, Noisy, Out-of-domain, ...
- Algorithms
 - Supervised learning: MLE, maximum entropy principle
 - Unsupervised learning: EM, variational inference, VAEs
 - Self-supervised learning: successful instances, e.g., BERT, GPT-3, contrastive
 - learning, applications to downstream tasks
 - Distant/weakly supervised learning: successful instances
 - o Data manipulation: augmentation, re-weighting, curriculum learning, ...
 - Meta-learning

- (2) Can we incorporate other types of experience in learning?
 - Learning from auxiliary models, e.g., adversarial models:

- diabetes is 90%,
 more common than type-s
 examples Rules/Constraints Knowledge graphs Rewards Auxiliary age
- Generative adversarial learning (GANs and variants), co-training, ...
- Adversaries Master classes

- Learning from structured knowledge
 - Posterior regularization, constraint-driven learning, ...
- Learning from rewards
 - Reinforcement learning: model-free vs model-based, policy-based vs value-based, on-policy vs off-policy, extrinsic reward vs intrinsic reward, ...

- Learning in dynamic environment (not covered)
 - Online learning, lifelong/continual learning, ...

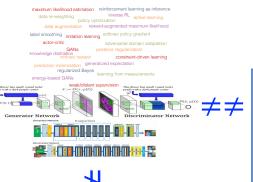
Algorithm marketplace

Designs driven by: experience, task, loss function, training procedure ...

maximum likelihood estimation reinforcement learning as inference inverse RL active learning data re-weighting policy optimization data augmentation reward-augmented maximum likelihood softmax policy gradient label smoothing imitation learning actor-critic adversarial domain adaptation GANs posterior regularization knowledge distillation intrinsic reward constraint-driven learning generalized expectation prediction minimization regularized Bayes learning from measurements energy-based GANs weak/distant supervision

Where we are now? Where we want to be?

Alchemy vs chemistry



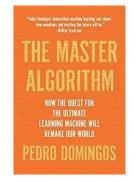
Quest for more standardized, unified ML principles

Machine Learning 3: 253-259, 1989 © 1989 Kluwer Academic Publishers - Manufactured in The Netherlands

EDITORIAL

Toward a Unified Science of Machine Learning

[P. Langley, 1989]



A Unifying Review of Linear Gaussian Models

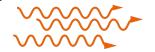
Sam Roweis*
Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, U.S.A.

Zoubin Ghahramani*
Department of Computer Science, University of Toronto, Toronto, Canada

Physics in the 1800's

- Electricity & magnetism:
 - o Coulomb's law, Ampère, Faraday, ...

- Theory of light beams:
 - Particle theory: Isaac Newton, Laplace, Plank
 - Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell



- Law of gravity
 - o Aristotle, Galileo, Newton, ...

"Standard equations" in Physics

Maxwell's Eqns: original form

Diverse

electro-

magnetic

theories

 $e + \frac{df}{dx} + \frac{dg}{dy} + \frac{dh}{dz} = 0$ (1) Gauss' Law Equivalent to Gauss' Law for magnetism Faraday's Law (with the Lorentz Force and Poisson's Law) (4) Ampère-Maxwell Law $P = -\xi p$ $Q = -\xi q$ $R = -\delta r$ Ohm's Law The electric elasticity P = kf Q = kg R = khequation (E = D/ϵ) $\frac{de}{dt} + \frac{dp}{dx} + \frac{dq}{dy} + \frac{dr}{dz} = 0$ Continuity of charge

Maxwell's Eqns simplified w/ rotational symmetry

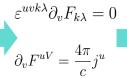
Maxwell's Eqns further simplified w/ symmetry of special relativity Standard Model w/ Yang-Mills theory and US(3) symmetry

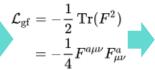
Unification of fundamental forces?

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$





1861 1910s

35

A "standardized formalism" of ML

Type-2 diabetes is 90% more common than type-1

Data examples

Constraints

Rewards

Auxiliary agents

Adversaries

Imitation

$$\min_{q,\,\theta} - \mathbb{H} + \mathbb{D} - \mathbb{E}$$
Uncertainty Divergence Experience

- Panoramically learn from all types of experience
- Subsumes many existing algorithms as special cases

Questions?