DSC291: Machine Learning with Few Labels

Unsupervised Learning

Zhiting Hu Lecture 18, May 15, 2024

Recap: EM and Variational Inference

• The EM algorithm:

$$\circ \ \text{E-step:} \ q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right)$$

 $p(\mathbf{z} \mid \mathbf{x})$

Intractable when model $p(\mathbf{z}, \mathbf{x}|\theta)$ is complex

 $q(\mathbf{z}; \mathbf{v})$

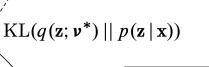
 $oldsymbol{v}^{ ext{init}}$

$$= p(\mathbf{z}|\mathbf{x}, \theta^t) = \frac{p(\mathbf{z}, \mathbf{x}|\theta^t)}{\sum_{z} p(\mathbf{z}, \mathbf{x}|\theta^t)}$$

o find a **tractable** $q(\mathbf{z}|\mathbf{x}, \mathbf{v}^*)$ that is closest to $p(\mathbf{z}|\mathbf{x}, \theta^t)$

$$q(\mathbf{z}|\mathbf{x}, \mathbf{v}^*) = \min_{\mathbf{v}} KL(q(\mathbf{z}|\mathbf{x}, \mathbf{v}) || p(\mathbf{z}|\mathbf{x}, \theta^t))$$

$$= \min_{\mathbf{v}} F(q(\mathbf{z}|\mathbf{x},\mathbf{v}),\theta^t) + const.$$



Question: What forms of q(z|x,v) shall we choose?

- Factorized distribution -> mean field VI
- Mixture of Gaussian distribution -> black-box VI
- Neural-based distribution -> Variational Autoencoders

Mean Field Variational Inference with Coordinate Ascent

Recap: Bayesian mixture of Gaussians

Assume mean-field $q(\mu_{1:K}, z_{1:n}) = \prod_k q(\mu_k) \prod_i q(z_i)$

- Initialize the global variational distributions $q(\mu_k)$ and parameters $\{ au^2, \sigma^2, \pi\}$
- Repeat:
 - For each data example $i \in \{1,2,...,D\}$
 - Update the local variational distribution $q(z_i)$
 - End for
 - Update the global variational distributions $q(\mu_k)$
 - Update the parameters $\{\tau^2, \sigma^2, \pi\}$
- Until ELBO converges

• What if we have millions of data examples? This could be very slow.

(Variational) E-step

→ (Variational) M-step

Stochastic VI

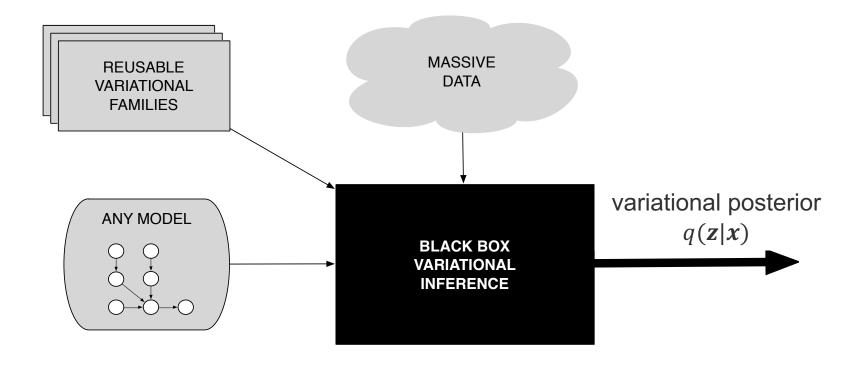
Recap: Bayesian mixture of Gaussians

Assume mean-field $q(\mu_{1:K}, z_{1:n}) = \prod_k q(\mu_k) \prod_i q(z_i)$

- Initialize the global variational distributions $q(\mu_k)$ and parameters $\{\tau^2, \sigma^2, \pi\}$
- Repeat:
 - Sample a data example $i \in \{1,2,...,D\}$
 - Update the local variational distribution $q(z_i)$
 - Update the global variational distributions $q(\mu_k)$ with natural gradient ascent
 - Update the parameters $\{\tau^2, \sigma^2, \pi\}$
- Until ELBO converges

Black-box Variational Inference

- We have derived variational inference specific for Bayesian Gaussian (mixture) models
- There are innumerable models
- Can we have a solution that does not entail model-specific work?



- Easily use variational inference with any model
- No mathematical work beyond specifying the model
- Perform inference with massive data

3

- Probabilistic model: x -- observed variables, z -- latent variables
- Variational distribution $q_{\lambda}(\mathbf{z}|\mathbf{x})$ with parameters λ , e.g.,
 - Gaussian mixture distribution:
 - "A Gaussian mixture model is a universal approximator of densities, in the sense that any smooth density can be approximated with any specific nonzero amount of error by a Gaussian mixture model with enough components." (Deep Learning book, pp.65)
 - Question: what other "universal approximator" can we use?

10

- Probabilistic model: x -- observed variables, z -- latent variables
- Variational distribution $q_{\lambda}(\mathbf{z}|\mathbf{x})$ with parameters λ , e.g.,
 - Gaussian mixture distribution:
 - "A Gaussian mixture model is a universal approximator of densities, in the sense that any smooth density can be approximated with any specific nonzero amount of error by a Gaussian mixture model with enough components." (Deep Learning book, pp.65)
 - Question: what other "universal approximator" can we use?
 Deep neural networks
- ELBO to be maximized:

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(\mathbf{z}|\lambda)}[\log p(\mathbf{x}, \mathbf{z})] - \mathbb{E}_{q(\mathbf{z}|\lambda)}[\log q(\mathbf{z}|\lambda)]$$

• Want to compute the gradient w.r.t variational parameters λ

The General Problem: Computing Gradients of Expectations

• When the objective function \mathcal{L} is defined as an expectation of a (differentiable) test function $f_{\lambda}(\mathbf{z})$ w.r.t. a probability distribution $q_{\lambda}(\mathbf{z})$

$$\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$$

- Computing exact gradients w.r.t. the parameters λ is often infeasible
- Need stochastic gradient estimates
 - The score function estimator (a.k.a log-derivative trick, REINFORCE)
 - The reparameterization trick (a.k.a the pathwise gradient estimator)

Computing Gradients of Expectations w/ score function

- Loss: $\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$
- Log-derivative trick: $\nabla_{\lambda} q_{\lambda} = q_{\lambda} \nabla_{\lambda} \log q_{\lambda}$
- Question: show that the gradient of \mathcal{L} w.r.t. λ is:

$$\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})} [f_{\lambda}(\mathbf{z}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{z}) + \nabla_{\lambda} f_{\lambda}(\mathbf{z})]$$

Computing Gradients of Expectations w/ score function

- Loss: $\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$
- Log-derivative trick: $\nabla_{\lambda} q_{\lambda} = q_{\lambda} \nabla_{\lambda} \log q_{\lambda}$
- Gradient of \mathcal{L} w.r.t. λ :

$$\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})} [f_{\lambda}(\mathbf{z}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{z}) + \nabla_{\lambda} f_{\lambda}(\mathbf{z})]$$

- o score function: the gradient of the log of a probability distribution
- Monte Carlo estimation of the expectation:
 - \circ Compute noisy unbiased gradients with Monte Carlo samples from q_λ

$$\nabla_{\lambda} \mathcal{L} \approx \frac{1}{S} \sum_{s=1}^{S} f_{\lambda}(\mathbf{z}_{s}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{z}_{s}) + \nabla_{\lambda} f_{\lambda}(\mathbf{z}_{s})$$
 where $\mathbf{z}_{s} \sim q_{\lambda}(\mathbf{z})$

Computing Gradients of Expectations w/ score function

- Loss: $\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$
- Log-derivative trick: $\nabla_{\lambda} q_{\lambda} = q_{\lambda} \nabla_{\lambda} \log q_{\lambda}$
- Gradient of \mathcal{L} w.r.t. λ :

$$\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})} [f_{\lambda}(\mathbf{z}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{z}) + \nabla_{\lambda} f_{\lambda}(\mathbf{z})]$$

- o score function: the gradient of the log of a probability distribution
- Monte Carlo estimation of the expectation:
 - \circ Compute noisy unbiased gradients with Monte Carlo samples from q_λ

$$\nabla_{\lambda} \mathcal{L} \approx \frac{1}{S} \sum_{s=1}^{S} f_{\lambda}(\mathbf{z}_{s}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{z}_{s}) + \nabla_{\lambda} f_{\lambda}(\mathbf{z}_{s})$$
 where $\mathbf{z}_{s} \sim q_{\lambda}(\mathbf{z})$

- Pros: generally applicable to any distribution $q(z|\lambda)$
- Cons: empirically has high variance → slow convergence

Computing Gradients of Expectations w/ reparametrization trick

- Loss: $\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$
- Assume that we can express the distribution $q_{\lambda}(z)$ with a transformation

$$\begin{array}{l}
\epsilon \sim s(\epsilon) \\
z = t(\epsilon, \lambda)
\end{array} \iff z \sim q(z|\lambda)$$

E.g.,

$$\begin{array}{l} \epsilon \sim Normal(0,1) \\ z = \epsilon \sigma + \mu \end{array} \iff z \sim Normal(\mu, \sigma^2)$$

Reparameterization gradient:

$$\mathcal{L} = \mathbb{E}_{\boldsymbol{\epsilon} \sim S(\boldsymbol{\epsilon})}[f_{\lambda}(\boldsymbol{z}(\boldsymbol{\epsilon}, \lambda))]$$

 \circ Question: what's the gradient of \mathcal{L} w.r.t. λ ?

Computing Gradients of Expectations w/ reparametrization trick

- Loss: $\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$
- Assume that we can express the distribution $q_{\lambda}(z)$ with a transformation

$$\begin{array}{l}
\epsilon \sim s(\epsilon) \\
z = t(\epsilon, \lambda)
\end{array} \iff z \sim q(z|\lambda)$$

E.g.,

$$\begin{array}{l} \epsilon \sim Normal(0,1) \\ z = \epsilon \sigma + \mu \end{array} \iff z \sim Normal(\mu, \sigma^2)$$

Reparameterization gradient:

$$\mathcal{L} = \mathbb{E}_{\boldsymbol{\epsilon} \sim S(\boldsymbol{\epsilon})}[f_{\lambda}(\boldsymbol{z}(\boldsymbol{\epsilon}, \lambda))]$$

 \circ Question: what's the gradient of \mathcal{L} w.r.t. λ ?

$$\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{\epsilon \sim s(\epsilon)} [\nabla_{\mathbf{z}} f_{\lambda}(\mathbf{z}) \nabla_{\lambda} t(\epsilon, \lambda)]$$

Computing Gradients of Expectations w/ reparametrization trick

- Loss: $\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$
- Assume that we can express the distribution $q_{\lambda}(z)$ with a transformation

$$\begin{array}{l}
\epsilon \sim s(\epsilon) \\
z = t(\epsilon, \lambda)
\end{array} \iff z \sim q(z|\lambda)$$

E.g.,

$$\begin{array}{l} \epsilon \sim Normal(0,1) \\ z = \epsilon \sigma + \mu \end{array} \iff z \sim Normal(\mu, \sigma^2)$$

Reparameterization gradient

$$\mathcal{L} = \mathbb{E}_{\epsilon \sim S(\epsilon)}[f_{\lambda}(\mathbf{z}(\epsilon, \lambda))]$$

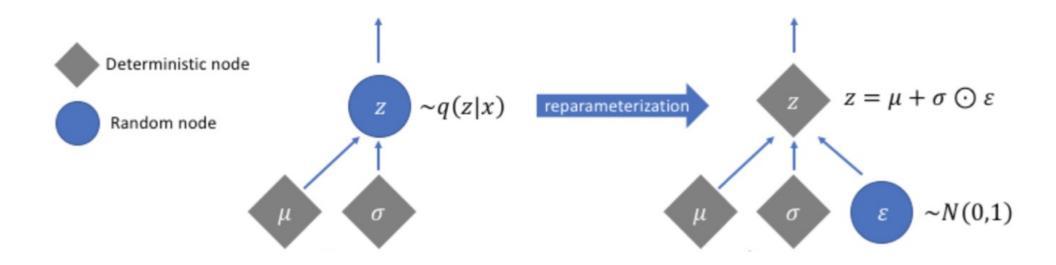
$$\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{\epsilon \sim S(\epsilon)}[\nabla_{\mathbf{z}} f_{\lambda}(\mathbf{z}) \nabla_{\lambda} t(\epsilon, \lambda)]$$

- Pros: empirically, lower variance of the gradient estimate
- Cons: Not all distributions can be reparameterized

Reparameterization trick

• Reparametrizing Gaussian distribution

$$\begin{array}{l} \epsilon \sim Normal(0,1) \\ z = \epsilon \sigma + \mu \end{array} \iff z \sim Normal(\mu, \sigma^2)$$



[Courtesy: Tansey, 2016]

Reparameterization trick

• Reparametrizing Gaussian distribution

$$\begin{array}{l} \epsilon \sim Normal(0,1) \\ z = \epsilon \sigma + \mu \end{array} \iff z \sim Normal(\mu, \sigma^2)$$

- Other reparameterizable distributions: $\epsilon \sim Uniform(\epsilon)$ • Tractable inverse CDF F^{-1} : $z = F^{-1}(\epsilon)$ $\Leftrightarrow z \sim q(z)$
 - Exponential, Cauchy, Logistic, Rayleigh, Pareto, Weibull, Reciprocal, Gompertz, Gumbel, Erlang
 - Location-scale:
 - Laplace, Elliptical, Student's t, Logistic, Uniform, Triangular, Gaussian
 - Composition:
 - Log-Normal (exponentiated normal) Gamma (sum of exponentials) Dirichlet (sum of Gammas) Beta, Chi-Squared, F

[Courtesy: Tansey, 2016]

Computing Gradients of Expectations: Summary

- Loss: $\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$
- Score gradient

$$\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})} [f_{\lambda}(\mathbf{z}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{z}) + \nabla_{\lambda} f_{\lambda}(\mathbf{z})]$$

- Pros: generally applicable to any distribution $q(z|\lambda)$
- Cons: empirically has high variance → slow convergence
- Reparameterization gradient

$$\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{\epsilon \sim s(\epsilon)} [\nabla_{\mathbf{z}} f_{\lambda}(\mathbf{z}) \nabla_{\lambda} t(\epsilon, \lambda)]$$

- o Pros: empirically, lower variance of the gradient estimate
- Cons: Not all distributions can be reparameterized

- Probabilistic model: x -- observed variables, z -- latent variables
- Variational distribution $q_{\lambda}(\mathbf{z}|\mathbf{x})$ with parameters λ , e.g.,
 - Gaussian mixture distribution:
 - "A Gaussian mixture model is a universal approximator of densities, in the sense that any smooth density can be approximated with any specific nonzero amount of error by a Gaussian mixture model with enough components." (Deep Learning book, pp.65)
 - Deep neural networks $\mathcal{L}(\lambda) \triangleq \mathrm{E}_{q_{\lambda}(z)}[\log p(x,z) \log q(z)].$
- ELBO to be maximized:

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(\mathbf{z}|\lambda)}[\log p(\mathbf{x}, \mathbf{z})] - \mathbb{E}_{q(\mathbf{z}|\lambda)}[\log q(\mathbf{z}|\lambda)]$$

• Want to compute the gradient w.r.t variational parameters λ

$$\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$$
 BBVI with the score gradient
$$\nabla_{\lambda}\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})\nabla_{\lambda}\log q_{\lambda}(\mathbf{z}) + \nabla_{\lambda}f_{\lambda}(\mathbf{z})]$$

ELBO:

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(\mathbf{z}|\lambda)}[\log p(\mathbf{x}, \mathbf{z})] - \mathbb{E}_{q(\mathbf{z}|\lambda)}[\log q(\mathbf{z}|\lambda)]$$

• Question: what's the score gradient w.r.t. λ ?

$$\nabla_{\lambda} \mathcal{L} = \mathrm{E}_{q}[\nabla_{\lambda} \log q(z|\lambda)(\log p(x,z) - \log q(z|\lambda))]$$

 Compute noisy unbiased gradients of the ELBO with Monte Carlo samples from the variational distribution

$$abla_{\lambda} \mathcal{L} pprox rac{1}{S} \sum_{s=1}^{S}
abla_{\lambda} \log q(z_s | \lambda) (\log p(x, z_s) - \log q(z_s | \lambda)),$$
where $z_s \sim q(z | \lambda)$.

BBVI with the reparameterization gradient

• ELBO:

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(\mathbf{z}|\lambda)}[\log p(\mathbf{x}, \mathbf{z})] - \mathbb{E}_{q(\mathbf{z}|\lambda)}[\log q(\mathbf{z}|\lambda)]$$

• Question: what's the reparamerization gradient w.r.t. λ ?

$$\begin{array}{l} \epsilon \sim s(\epsilon) \\ z = t(\epsilon, \lambda) \end{array} \iff z \sim q(z|\lambda)$$

$$\nabla_{\lambda} \mathcal{L} = \mathbf{E}_{\epsilon \sim s(\epsilon)} [\nabla_z [\log p(x, z) - \log q(z)] \nabla_{\lambda} t(\epsilon, \lambda)]$$

$$\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$$

$$\nabla_{\lambda}\mathcal{L} = \mathbb{E}_{\epsilon \sim s(\epsilon)}[\nabla_{\mathbf{z}}f_{\lambda}(\mathbf{z}) \nabla_{\lambda}t(\epsilon, \lambda)]$$

Questions?