DSC291: Machine Learning with Few Labels

Unsupervised Learning

Zhiting Hu Lecture 17, May 13, 2024

HALICIOĞLU DATA SCIENCE INSTITUTE

This Lecture

- Variational Inference (30mins)
- Presentation #1 (10mins):
 - Hung Nguyen, SPARF: Neural Radiance Fields from Sparse & Noisy Poses
- Presentation #2 (10mins):
 - Zhihan Chen, Efficient (Soft) Q-Learning for Text Generation with Limited Good Data

• The EM algorithm:

• E-step:
$$q^{t+1} = \arg \min_{q} F\left(q, \theta^{t}\right)$$

= $p(\mathbf{z}|\mathbf{x}, \theta^{t}) = \frac{p(\mathbf{z}, \mathbf{x}|\theta^{t})}{\sum_{z} p(\mathbf{z}, \mathbf{x}|\theta^{t})}$

• M-step:
$$\theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^t\right)$$

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \mathrm{KL} \left(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta) \right)$$
$$= -F(q, \theta) + \mathrm{KL} \left(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta) \right)$$

• The EM algorithm:

• E-step:
$$q^{t+1} = \arg\min_{q} F(q, \theta^{t})$$

Intractable when
model $p(z, x|\theta)$ is
 $p(z|x, \theta^{t}) = \frac{p(z, x|\theta^{t})}{\sum_{z} p(z, x|\theta^{t})}$
• M-step: $\theta^{t+1} = \arg\min_{\theta} F(q^{t+1}, \theta^{t})$
Approximate $p(z|x, \theta^{t})$:
• find a tractable $q(z|x, v^{*})$ that is
closest to $p(z|x, \theta^{t})$
 $q(z|x, v^{*}) = \min_{v} KL(q(z|x, v) || p(z|x, \theta^{t}))$
 $= \min_{v} F(q(z|x, v), \theta^{t}) + const.$

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \mathrm{KL} \left(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta) \right)$$
$$= -F(q, \theta) + \mathrm{KL} \left(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta) \right)$$

• The EM algorithm:

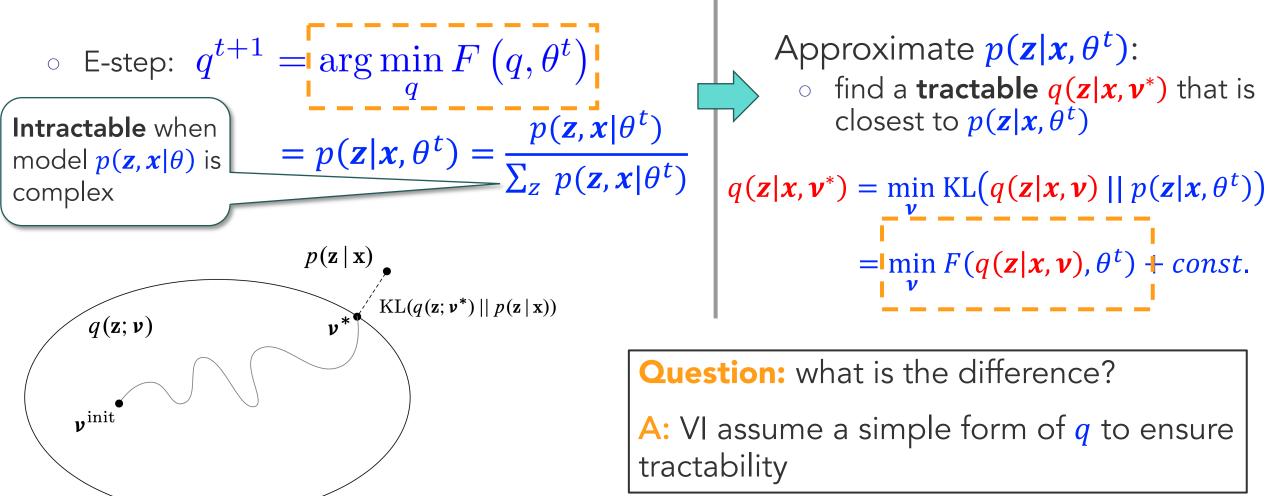
• E-step:
$$q^{t+1} = \arg \min_{q} F(q, \theta^{t})$$

Intractable when
model $p(z, x|\theta)$ is
 $p(z|x, \theta^{t}) = \frac{p(z, x|\theta^{t})}{\sum_{z} p(z, x|\theta^{t})}$
• M-step: $\theta^{t+1} = \arg \min_{\theta} F(q^{t+1}, \theta^{t})$
Approximate $p(z|x, \theta^{t})$:
• find a tractable $q(z|x, v^{*})$ that is
closest to $p(z|x, \theta^{t})$
 $q(z|x, v^{*}) = \min_{v} KL(q(z|x, v) || p(z|x, \theta^{t}))$
 $= \lim_{v} F(q(z|x, v), \theta^{t}) + const.$

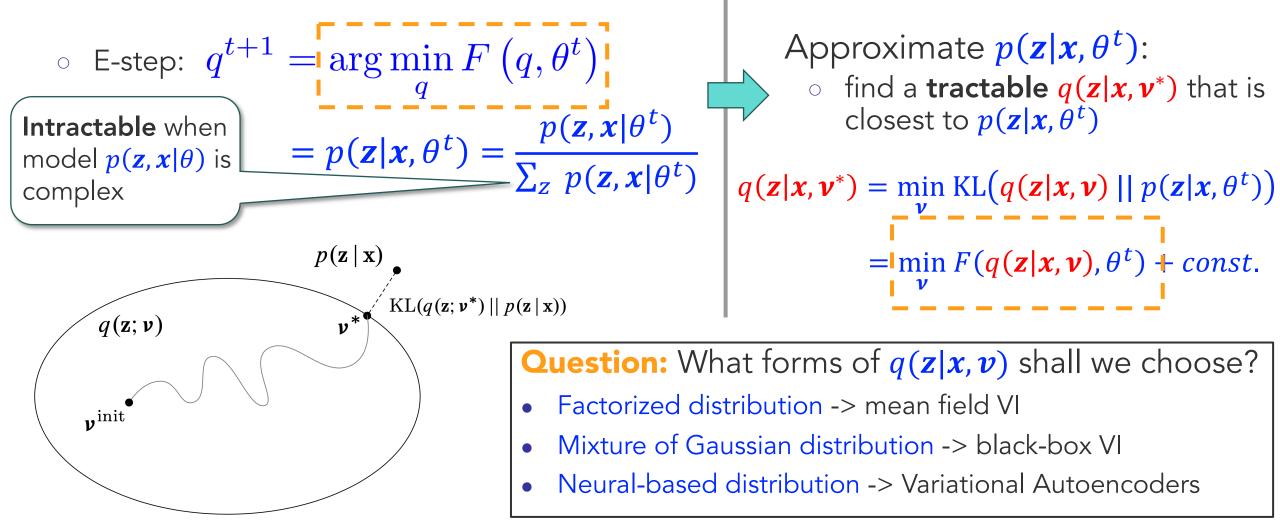
Question: what is the difference?

A: VI assume a simple form of q to ensure tractability

• The EM algorithm:



The EM algorithm:



Example: Mean Field Variational Inference

- A popular family of variational approximations
- In this type of variational inference, we assume the variational distribution over the latent variables factorizes as

$$q(\mathbf{z}) = q(z_1,\ldots,z_m) = \prod_{j=1}^m q(z_j)$$

- (where we omit variational parameters for ease of notation)
- We refer to $q(z_j)$, the variational approximation for a single latent variable, as a "local variational approximation"
- In the above expression, the variational approximation $q(z_j)$ over each latent variable z_j is independent

Example: Mean Field Variational Inference

- Typically, this approximation does not contain the true posterior (because the latent variables are dependent).
 - E.g.: in the (Bayesian) mixture of Gaussians model, all of the cluster assignments z_i for i = 1, ..., n are dependent on each other and on the cluster locations $\mu_{1:K}$ given data.

Example: Mean Field Variational Inference How do we optimize the ELBO in mean field variational inference?

- Typically, we use coordinate ascent optimization.
- I.e. we optimize each latent variable's variational approximation $q(z_j)$ in turn while holding the others fixed.
 - At each iteration we get an updated "local" variational approximation.
 - And we iterate through each latent variable until convergence.

Mean Field Variational Inference with Coordinate Ascent

Recap: Bayesian mixture of Gaussians

• Treat the mean μ_k as latent variables

 $\mu_k \sim \mathcal{N}(0, \tau^2)$ for $k = 1, \ldots, K$

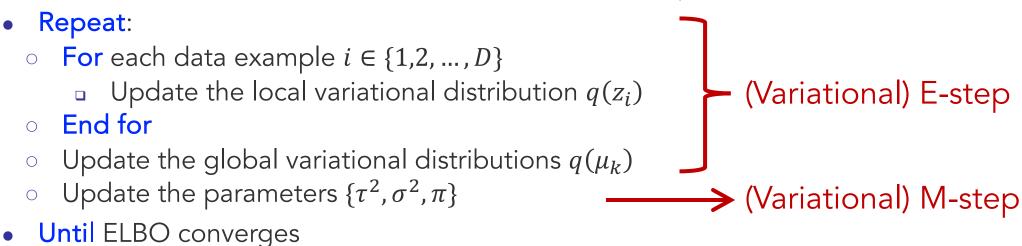
- For each data i = 1, ..., n $z_i \sim \operatorname{Cat}(\pi).$ $x_i \sim \mathcal{N}(\mu_{z_i}, \sigma^2).$
- We have
 - observed variables $x_{1:n}$
 - \circ latent variables $\mu_{1:k}$ and $z_{1:n}$
 - parameters $\{\tau^2, \sigma^2, \pi\}$

Mean Field Variational Inference with Coordinate Ascent

Recap: Bayesian mixture of Gaussians

Assume mean-field $q(\mu_{1:K}, z_{1:n}) = \prod_k q(\mu_k) \prod_i q(z_i)$

• Initialize the global variational distributions $q(\mu_k)$ and parameters $\{\tau^2, \sigma^2, \pi\}$



• What if we have millions of data examples? This could be very slow.

Stochastic VI

Recap: Bayesian mixture of Gaussians

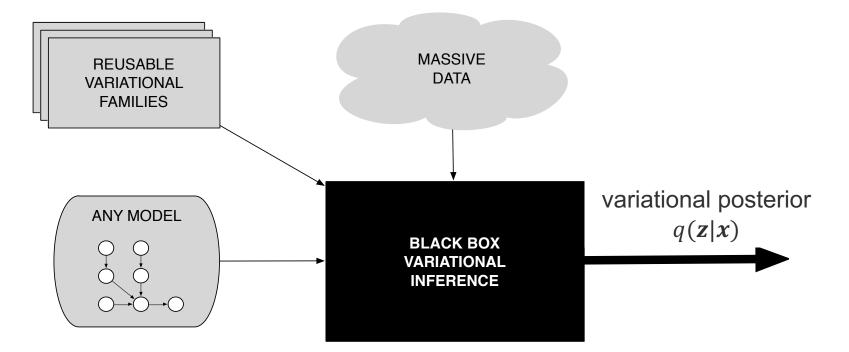
Assume mean-field $q(\mu_{1:K}, z_{1:n}) = \prod_k q(\mu_k) \prod_i q(z_i)$

- Initialize the global variational distributions $q(\mu_k)$ and parameters $\{\tau^2, \sigma^2, \pi\}$
- Repeat:
 - Sample a data example $i \in \{1, 2, ..., D\}$
 - Update the local variational distribution $q(z_i)$
 - Update the global variational distributions $q(\mu_k)$ with **natural gradient ascent**
 - Update the parameters $\{\tau^2, \sigma^2, \pi\}$
- Until ELBO converges

[Hoffman et al., Stochastic Variational Inference, 2013]

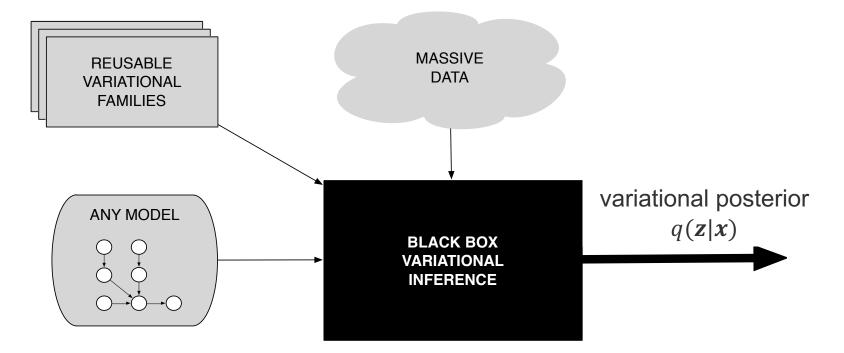
Black-box Variational Inference

- We have derived variational inference specific for Bayesian Gaussian (mixture) models
- There are innumerable models
- Can we have a solution that does not entail model-specific work?



- Easily use variational inference with any model
- Perform inference with massive data
- No mathematical work beyond specifying the model

(Courtesy: Blei et al., 2018)



- Sample from q(.)
- Form noisy gradients (without model-specific computation)
- Use stochastic optimization

(Courtesy: Blei et al., 2018)

- Probabilistic model: x -- observed variables, z -- latent variables
- Variational distribution $q_{\lambda}(\mathbf{z}|\mathbf{x})$ with parameters λ , e.g.,
 - Gaussian mixture distribution:
 - "A Gaussian mixture model is a universal approximator of densities, in the sense that any smooth density can be approximated with any specific nonzero amount of error by a Gaussian mixture model with enough components." (Deep Learning book, pp.65)
 - Deep neural networks
- ELBO:

 $\mathcal{L}(\lambda) = \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{\lambda})}[\log p(\boldsymbol{x}, \boldsymbol{z})] - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{\lambda})}[\log q(\boldsymbol{z}|\boldsymbol{\lambda})]$

• Want to compute the gradient w.r.t variational parameters λ

[Ranganath et al.,14]

The General Problem: Computing Gradients of Expectations

• When the objective function \mathcal{L} is defined as an expectation of a (differentiable) test function $f_{\lambda}(\mathbf{z})$ w.r.t. a probability distribution $q_{\lambda}(\mathbf{z})$

$$\mathcal{L} = \mathbb{E}_{q_{\lambda}(\boldsymbol{z})}[f_{\lambda}(\boldsymbol{z})]$$

- Computing exact gradients w.r.t. the parameters λ is often unfeasible
- Need stochastic gradient estimates
 - The score function estimator (a.k.a log-derivative trick, REINFORCE)
 - The reparameterization trick (a.k.a the pathwise gradient estimator)

Computing Gradients of Expectations w/ score function

- Loss: $\mathcal{L} = \mathbb{E}_{q_{\lambda}(z)}[f_{\lambda}(z)]$
- Log-derivative trick: $\nabla_{\lambda}q_{\lambda} = q_{\lambda} \nabla_{\lambda}\log q_{\lambda}$
- Gradient w.r.t. λ :

$$\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{q_{\lambda}(\boldsymbol{z})}[f_{\lambda}(\boldsymbol{z}) \nabla_{\lambda} \log q_{\lambda}(\boldsymbol{z}) + \nabla_{\lambda} f_{\lambda}(\boldsymbol{z})]$$

• score function: the gradient of the log of a probability distribution

- Compute noisy unbiased gradients with Monte Carlo samples from q_{λ} $\nabla_{\lambda} \mathcal{L} \approx \frac{1}{S} \sum_{s=1}^{S} f_{\lambda}(\mathbf{z}_{s}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{z}_{s}) + \nabla_{\lambda} f_{\lambda}(\mathbf{z}_{s})$ where $\mathbf{z}_{s} \sim q_{\lambda}(\mathbf{z})$
- Pros: generally applicable to any distribution $q(z|\lambda)$
- Cons: empirically has high variance \rightarrow slow convergence
 - To reduce variance: Rao-Blackwellization, control variates, importance sampling, ...

Computing Gradients of Expectations w/ reparametrization trick

- Loss: $\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$
- Assume that we can express the distribution $q_{\lambda}(z)$ with a transformation

$$\begin{array}{l} \epsilon \sim s(\epsilon) \\ z = t(\epsilon, \lambda) \end{array} \iff z \sim q(z|\lambda) \end{array}$$

• E.g.,

$$\begin{aligned} \epsilon \sim Normal(0,1) \\ z = \epsilon \sigma + \mu \end{aligned} \Leftrightarrow z \sim Normal(\mu, \sigma^2) \end{aligned}$$

• Reparameterization gradient

 $\mathcal{L} = \mathbb{E}_{\epsilon \sim s(\epsilon)}[f_{\lambda}(\mathbf{z}(\epsilon, \lambda))]$

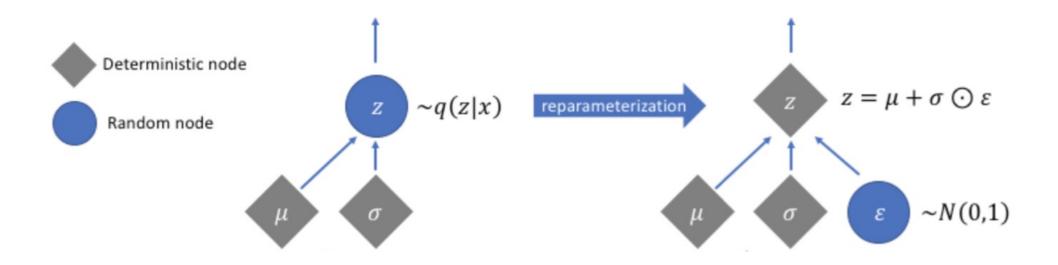
 $\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{\epsilon \sim s(\epsilon)} [\nabla_{z} f_{\lambda}(z) \nabla_{\lambda} t(\epsilon, \lambda)]$

- Pros: empirically, lower variance of the gradient estimate
- Cons: Not all distributions can be reparameterized

Reparameterization trick

• Reparametrizing Gaussian distribution

$$\begin{array}{l} \epsilon \sim Normal(0,1) \\ z = \epsilon \sigma + \mu \end{array} \iff z \sim Normal(\mu,\sigma^2) \end{array}$$



Reparameterization trick

• Reparametrizing Gaussian distribution

$$\begin{array}{l} \epsilon \sim Normal(0,1) \\ z = \epsilon \sigma + \mu \end{array} \iff z \sim Normal(\mu,\sigma^2) \end{array}$$

- Other reparameterizable distributions: $\epsilon \sim Uniform(\epsilon)$ Tractable inverse CDF F^{-1} : $z = F^{-1}(\epsilon)$ $\Leftrightarrow z \sim q(z)$
 - - Exponential, Cauchy, Logistic, Rayleigh, Pareto, Weibull, Reciprocal, Gompertz, Gumbel, Erlang
 - Location-scale:
 - Laplace, Elliptical, Student's t, Logistic, Uniform, Triangular, Gaussian
 - Composition:
 - Log-Normal (exponentiated normal) Gamma (sum of exponentials) Dirichlet (sum of Gammas) Beta, Chi-Squared, F

Computing Gradients of Expectations: Summary

- Loss: $\mathcal{L} = \mathbb{E}_{q_{\lambda}(z)}[f_{\lambda}(z)]$
- Score gradient

 $\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{q_{\lambda}(\boldsymbol{z})}[f_{\lambda}(\boldsymbol{z}) \nabla_{\lambda} \log q_{\lambda}(\boldsymbol{z}) + \nabla_{\lambda} f_{\lambda}(\boldsymbol{z})]$

- Pros: generally applicable to any distribution $q(z|\lambda)$
- \circ Cons: empirically has high variance \rightarrow slow convergence
- Reparameterization gradient

 $\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{\epsilon \sim s(\epsilon)} [\nabla_{z} f_{\lambda}(z) \nabla_{\lambda} t(\epsilon, \lambda)]$

- Pros: empirically, lower variance of the gradient estimate
- Cons: Not all distributions can be reparameterized

- Probabilistic model: x -- observed variables, z -- latent variables
- Variational distribution $q_{\lambda}(\mathbf{z}|\mathbf{x})$ with parameters λ , e.g.,
 - Gaussian mixture distribution:
 - "A Gaussian mixture model is a universal approximator of densities, in the sense that any smooth density can be approximated with any specific nonzero amount of error by a Gaussian mixture model with enough components." (Deep Learning book, pp.65)
 - Deep neural networks

$$\mathcal{L}(\lambda) \triangleq \mathrm{E}_{q_{\lambda}(z)}[\log p(x, z) - \log q(z)]$$

• ELBO:

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{\lambda})}[\log p(\boldsymbol{x}, \boldsymbol{z})] - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{\lambda})}[\log q(\boldsymbol{z}|\boldsymbol{\lambda})]$$

• Want to compute the gradient w.r.t variational parameters λ

[Ranganath et al.,14]

BBVI with the score gradient

 $\mathcal{L}(\lambda) = \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{\lambda})}[\log p(\boldsymbol{x}, \boldsymbol{z})] - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{\lambda})}[\log q(\boldsymbol{z}|\boldsymbol{\lambda})]$

• Gradient w.r.t. λ (using the log-derivative trick)

 $\nabla_{\lambda} \mathcal{L} = \mathrm{E}_{q} [\nabla_{\lambda} \log q(z|\lambda) (\log p(x,z) - \log q(z|\lambda))]$

• Compute noisy unbiased gradients of the ELBO with Monte Carlo samples from the variational distribution

$$\nabla_{\lambda} \mathcal{L} \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} \log q(z_s | \lambda) (\log p(x, z_s) - \log q(z_s | \lambda)),$$

where $z_s \sim q(z|\lambda)$.

BBVI with the reparameterization gradient

• ELBO:

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{\lambda})}[\log p(\boldsymbol{x}, \boldsymbol{z})] - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{\lambda})}[\log q(\boldsymbol{z}|\boldsymbol{\lambda})]$$

• Gradient w.r.t. λ

$$\begin{array}{l} \epsilon \sim s(\epsilon) \\ z = t(\epsilon, \lambda) \end{array} \iff z \sim q(z|\lambda) \end{array}$$

 $\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{\epsilon \sim s(\epsilon)} \left[\nabla_{z} \left[\log p(x, z) - \log q(z) \right] \nabla_{\lambda} t(\epsilon, \lambda) \right]$

Questions?