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This Lecture
● Variational Inference (30mins)

● Presentation #1 (10mins): 
! Hung Nguyen, SPARF: Neural Radiance Fields from Sparse & Noisy Poses

● Presentation #2 (10mins): 
! Zhihan Chen, Efficient (Soft) Q-Learning for Text Generation with Limited Good 

Data
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Recap: EM and Variational Inference
● The EM algorithm:

! E-step:

! M-step:
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ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

= 𝑝 𝒛 𝒙, 𝜃! =
𝑝(𝒛, 𝒙|𝜃')

∑( 𝑝(𝒛, 𝒙|𝜃')
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∑( 𝑝(𝒛, 𝒙|𝜃')
Intractable when 
model 𝑝 𝒛, 𝒙 𝜃  is 
complex

Approximate 𝑝 𝒛 𝒙, 𝜃! : 
! find a tractable 𝑞 𝒛 𝒙, 𝝂∗  that is 

closest to 𝑝 𝒛 𝒙, 𝜃"

𝑞 𝒛 𝒙, 𝝂∗ = min
𝝂
	KL 𝑞 𝒛 𝒙, 𝝂 	||	𝑝 𝒛 𝒙, 𝜃"

                     = min
𝝂
	𝐹 𝑞 𝒛 𝒙, 𝝂 , 𝜃" + 𝑐𝑜𝑛𝑠𝑡.
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𝑝(𝒛, 𝒙|𝜃')
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Intractable when 
model 𝑝 𝒛, 𝒙 𝜃  is 
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𝝂
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𝝂
	𝐹 𝑞 𝒛 𝒙, 𝝂 , 𝜃" + 𝑐𝑜𝑛𝑠𝑡.

Question: what is the difference?

A: VI assume a simple form of 𝑞 to ensure 
tractability 
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Question: What forms of 𝑞(𝒛|𝒙, 𝒗) shall we choose?
● Factorized distribution -> mean field VI
● Mixture of Gaussian distribution -> black-box VI
● Neural-based distribution -> Variational Autoencoders



Example: Mean Field Variational Inference 
● A popular family of variational approximations 

● In this type of variational inference, we assume the variational distribution 
over the latent variables factorizes as 

! (where we omit variational parameters for ease of notation)
! We refer to 𝑞(𝑧$),	the variational approximation for a single latent variable, as 

a “local variational approximation” 

● In the above expression, the variational approximation 𝑞(𝑧))	over each 
latent variable 𝑧) is independent 

8

𝑞 𝒛 =



Example: Mean Field Variational Inference 
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given data.



Example: Mean Field Variational Inference 

10



Mean Field Variational Inference with Coordinate Ascent
Recap: Bayesian mixture of Gaussians
● Treat the mean 𝜇* as latent variables

● For each data 𝑖 = 1,… , 𝑛

● We have 
! observed variables 𝑥%:' 
! latent variables 𝜇%:( 	and 𝑧%:'
! parameters {𝜏), 𝜎), 𝜋}
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Mean Field Variational Inference with Coordinate Ascent
Recap: Bayesian mixture of Gaussians
Assume mean-field 𝑞 𝜇+:-, 𝑧+:. = ∏* 𝑞 𝜇* ∏/ 𝑞(𝑧/)

● Initialize the global variational distributions 𝑞(𝜇!) and parameters {𝜏", 𝜎", 𝜋}
● Repeat: 
! For each data example 𝑖 ∈ {1,2, … , 𝐷}

q Update the local variational distribution 𝑞 𝑧#
! End for
! Update the global variational distributions 𝑞 𝜇!
! Update the parameters {𝜏", 𝜎", 𝜋}

● Until ELBO converges

● What if we have millions of data examples? This could be very slow.
12

(Variational) E-step

(Variational) M-step



Stochastic VI
Recap: Bayesian mixture of Gaussians
Assume mean-field 𝑞 𝜇+:-, 𝑧+:. = ∏* 𝑞 𝜇* ∏/ 𝑞(𝑧/)

● Initialize the global variational distributions 𝑞(𝜇!) and parameters {𝜏", 𝜎", 𝜋}
● Repeat: 
! Sample a data example 𝑖 ∈ {1,2, … , 𝐷}
! Update the local variational distribution 𝑞 𝑧#
! Update the global variational distributions 𝑞(𝜇!) with natural gradient ascent
! Update the parameters {𝜏", 𝜎", 𝜋}

● Until ELBO converges

13[Hoffman et al., Stochastic Variational Inference, 2013] 
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Black-box Variational Inference



Black-box Variational Inference (BBVI)
● We have derived variational inference specific for Bayesian Gaussian 

(mixture) models

● There are innumerable models

● Can we have a solution that does not entail model-specific work?

15



Black-box Variational Inference (BBVI)

● Easily use variational inference with any model 

● Perform inference with massive data 

● No mathematical work beyond specifying the model 
16

Black Box Variational Inference (BBVI)
Black box variational inference

REUSABLE 
VARIATIONAL 

FAMILIES

BLACK BOX 
VARIATIONAL 
INFERENCE

p.ˇ; z j x/
ANY MODEL

REUSABLE 
VARIATIONAL 

FAMILIES

REUSABLE 
VARIATIONAL 

FAMILIES

MASSIVE
DATA

� Sample from q.�/
� Form noisy gradients without model-specific computation

� Use stochastic optimization

(Courtesy: Blei et al., 2018)

variational posterior 
𝑞(𝒛|𝒙)



Black-box Variational Inference (BBVI)

● Sample from 𝑞(. ) 

● Form noisy gradients (without model-specific computation) 

● Use stochastic optimization 
17
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Black-box Variational Inference (BBVI)
● Probabilistic model: 𝒙 -- observed variables, 𝒛 -- latent variables
● Variational distribution 𝑞1(𝒛|𝒙) with parameters 𝜆, e.g.,
! Gaussian mixture distribution: 
§ “A Gaussian mixture model is a universal approximator of densities, in the sense 

that any smooth density can be approximated with any specific nonzero amount of 
error by a Gaussian mixture model with enough components.”  (Deep Learning book, 
pp.65)

! Deep neural networks

● ELBO:

● Want to compute the gradient w.r.t variational parameters 𝜆

18[Ranganath et al.,14]

ℒ 𝜆 = 𝔼*(𝒛|𝝀) log	𝑝 𝒙, 𝒛 − 𝔼*(𝒛|𝝀) 	log	𝑞 𝒛 𝜆 	



The General Problem: Computing Gradients of Expectations
● When the objective function ℒ is defined as an expectation of a 

(differentiable) test function 𝑓1(𝒛) w.r.t. a probability distribution 𝑞1 𝒛

● Computing exact gradients w.r.t. the parameters 𝜆 is often unfeasible 
● Need stochastic gradient estimates 
! The score function estimator (a.k.a log-derivative trick, REINFORCE)
! The reparameterization trick (a.k.a the pathwise gradient estimator)

19

ℒ = 𝔼!𝝀(𝒛) 𝑓1(𝒛)



Computing Gradients of Expectations w/ score function
● Loss:

● Log-derivative trick: 
● Gradient w.r.t. 𝜆:

! score function: the gradient of the log of a probability distribution

● Compute noisy unbiased gradients with Monte Carlo samples from 𝑞1	

● Pros: generally applicable to any distribution 𝑞 𝑧 𝜆
● Cons: empirically has high variance → slow convergence
! To reduce variance: Rao-Blackwellization, control variates, importance 

sampling, ... 
20

ℒ = 𝔼!𝝀(𝒛) 𝑓1(𝒛)

∇1ℒ = 𝔼!𝝀(𝒛) 𝑓1 𝒛 ∇1log	𝑞1 𝒛 + ∇1𝑓1(𝒛)

∇1𝑞1 = 𝑞1	∇1log	𝑞1

∇1ℒ ≈
1
𝑆
H

𝒔3𝟏

𝑺
𝑓1 𝒛6 ∇1log	𝑞1 𝒛𝒔 + ∇1𝑓1(𝒛𝒔) where 𝒛6 ∼ 𝑞1(𝒛)



Computing Gradients of Expectations w/ reparametrization trick
● Loss: 

● Assume that we can express the distribution 𝑞𝝀(𝒛) with a transformation

! E.g., 

● Reparameterization gradient

● Pros: empirically, lower variance of the gradient estimate
● Cons: Not all distributions can be reparameterized 21

𝜖 ∼ 𝑠 𝜖
𝑧 = 𝑡 𝜖, 𝜆

⇔ 𝑧 ∼ 𝑞 𝑧|𝜆

𝜖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0, 1
𝑧 = 𝜖𝜎 + 𝜇 ⇔ 𝑧 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎8

ℒ = 𝔼!𝝀(𝒛) 𝑓1(𝒛)

∇1ℒ = 𝔼𝝐∼𝒔(𝝐) ∇𝒛𝑓1 𝒛 	∇1𝑡 𝜖, 𝜆

ℒ = 𝔼𝝐∼6(𝝐) 𝑓1(𝒛(𝝐, 𝜆))



Reparameterization trick
● Reparametrizing Gaussian distribution

22

𝜖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0, 1
𝑧 = 𝜖𝜎 + 𝜇 ⇔ 𝑧 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎8

[Courtesy: Tansey, 2016]



Reparameterization trick
● Reparametrizing Gaussian distribution

● Other reparameterizable distributions:
! Tractable inverse CDF 𝐹$%:  
§ Exponential, Cauchy, Logistic, Rayleigh, Pareto, Weibull, Reciprocal, Gompertz, 

Gumbel, Erlang
! Location-scale: 
§ Laplace, Elliptical, Student’s t, Logistic, Uniform, Triangular, Gaussian

! Composition:  
§ Log-Normal (exponentiated normal) Gamma (sum of exponentials) Dirichlet (sum of 

Gammas) Beta, Chi-Squared, F

23

𝜖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0, 1
𝑧 = 𝜖𝜎 + 𝜇 ⇔ 𝑧 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎8

[Courtesy: Tansey, 2016]

𝜖 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝜖
𝑧 = 𝐹;+ 𝜖

⇔ 𝑧 ∼ 𝑞 𝑧



Computing Gradients of Expectations: Summary
● Loss: 

● Score gradient

! Pros: generally applicable to any distribution 𝑞 𝑧 𝜆
! Cons: empirically has high variance → slow convergence

● Reparameterization gradient

! Pros: empirically, lower variance of the gradient estimate
! Cons: Not all distributions can be reparameterized

24
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Recall: Black-box Variational Inference (BBVI)
● Probabilistic model: 𝒙 -- observed variables, 𝒛 -- latent variables
● Variational distribution 𝑞1(𝒛|𝒙) with parameters 𝜆, e.g.,
! Gaussian mixture distribution: 
§ “A Gaussian mixture model is a universal approximator of densities, in the sense 

that any smooth density can be approximated with any specific nonzero amount of 
error by a Gaussian mixture model with enough components.”  (Deep Learning book, 
pp.65)

! Deep neural networks

● ELBO:

● Want to compute the gradient w.r.t variational parameters 𝜆
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Black Box Variational Inference

expectation of an easy-to-implement function f of the
latent and observed variables, where the expectation
is taken with respect to the variational distribution;
and we optimize that objective by sampling from the
variational distribution, evaluating the function f , and
forming the corresponding Monte Carlo estimate of
the gradient. We then use these noisy gradients in
a stochastic optimization algorithm to optimize the
variational parameters.

From the practitioner’s perspective, this method re-
quires only that he or she write functions to evaluate
the model log-likelihood. The remaining calculations
(properties of the variational distribution and evalu-
ating the Monte Carlo estimate) are easily put into a
library to share across models, which means our method
can be quickly applied to new modeling settings.

We will show that reducing the variance of the gradient
estimator is essential to the fast convergence of our
algorithm. We develop several strategies for controlling
the variance. The first is based on Rao-Blackwellization
(Casella and Robert, 1996), which exploits the factor-
ization of the variational distribution. The second is
based on control variates (Ross, 2002; Paisley et al.,
2012), using the gradient of the log probability of the
variational distribution. We emphasize that these vari-
ance reduction methods preserve our goal of black box
inference because they do not require computations
specific to the model.

Finally, we show how to use recent innovations in vari-
ational inference and stochastic optimization to scale
up and speed up our algorithm. First, we use adaptive
learning rates (Duchi et al., 2011) to set the step size
in the stochastic optimization. Second, we develop
generic stochastic variational inference (Ho↵man et al.,
2013), where we additionally subsample from the data
to more cheaply compute noisy gradients. This inno-
vates on the algorithm of Ho↵man et al. (2013), which
requires closed form coordinate updates to compute
noisy natural gradients.

We demonstrate our method in two ways. First, we
compare our method against Metropolis-Hastings-in-
Gibbs (Bishop, 2006), a sampling based technique that
requires similar e↵ort on the part of the practitioner.
We find our method reaches better predictive likeli-
hoods much faster than sampling methods. Second, we
use our method to quickly build and evaluate several
models of longitudinal patient data. This demonstrates
the ease with which we can now consider models gen-
erally outside the realm of variational methods.

Related work. There have been several lines of work
that use sampling methods to approximate gradients
in variational inference. Wingate and Weber (2013)

have independently considered a similar procedure to
ours, where the gradient is construed as an expectation
and the KL is optimized with stochastic optimization.
They too include a term to reduce the variance, but
do not describe how to set it. We further innovate
on their approach with Rao-Blackwellization, speci-
fied control variates, adaptive learning rates, and data
subsampling. Salimans and Knowles (2012) provide a
framework based on stochastic linear regression. Un-
like our approach, their method does not generalize
to arbitrary approximating families and requires the
inversion of a large matrix that becomes impractical in
high dimensional settings. Kingma and Welling (2013)
provide an alternative method for variational inference
through a reparameterization of the variational distri-
butions. In contrast to our approach, their algorithm is
limited to only continuous latent variables. Carbonetto
et al. (2009) present a stochastic optimization scheme
for moment estimation based on the specific form of
the variational objective when both the model and
the approximating family are in the same exponential
family. This di↵ers from our more general modeling
setting where latent variables may be outside of the
exponential family. Finally, Paisley et al. (2012) use
Monte Carlo gradients for di�cult terms in the varia-
tional objective and also use control variates to reduce
variance. However, theirs is not a black-box method.
Both the objective function and control variates they
propose require model-specific derivations.

2 Black Box Variational Inference

Variational inference transforms the problem of approx-
imating a conditional distribution into an optimization
problem (Jordan et al., 1999; Bishop, 2006; Wainwright
and Jordan, 2008). The idea is to posit a simple family
of distributions over the latent variables and find the
member of the family that is closest in KL divergence
to the conditional distribution.

In a probabilistic model, let x be observations, z be
latent variables, and � the free parameters of a varia-
tional distribution q.z j�/. Our goal is to approximate
p.z j x/ with the free parameter �. In variational infer-
ence we optimize the Evidence Lower BOund (ELBO),

L.�/ , Eq�.z/Œlogp.x; z/ � log q.z/ç: (1)

Maximizing the ELBO is equivalent to minimizing the
KL divergence (Jordan et al., 1999; Bishop, 2006). Intu-
itively, the first term rewards variational distributions
that place high mass on configurations of the latent
variables that also explain the observations; the second
term rewards variational distributions that are entropic,
i.e., that maximize uncertainty by spreading their mass
on many configurations.

[Ranganath et al.,14]

ℒ 𝜆 = 𝔼*(𝒛|𝝀) log	𝑝 𝒙, 𝒛 − 𝔼*(𝒛|𝝀) 	log	𝑞 𝒛 𝜆 	



BBVI with the score gradient 
● ELBO:

● Gradient w.r.t. 𝜆 (using the log-derivative trick)

● Compute noisy unbiased gradients of the ELBO with Monte Carlo samples 
from the variational distribution

26[Ranganath et al.,14]

ℒ 𝜆 = 𝔼!(𝒛|𝝀) log	𝑝 𝒙, 𝒛 − 𝔼!(𝒛|𝝀) 	log	𝑞 𝒛 𝜆 	

Rajesh Ranganath, Sean Gerrish, David M. Blei

Practitioners derive variational algorithms to maximize
the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
coordinate-ascent updates are available for condition-
ally conjugate exponential family models (Ghahramani
and Beal, 2001), where the distribution of each latent
variable given its Markov blanket falls in the same fam-
ily as the prior, for a small set of variational families.
However, these updates require analytic computation
of various expectations for each new model, a problem
which is exacerbated when the variational family falls
outside this small set. This leads to tedious bookkeep-
ing and overhead for developing new models.

The expectation in Eq. 1 is with respect to a known
distribution whose parameter – � – is known. We
will therefore use stochastic optimization to maximize
the ELBO. In stochastic optimization, we maximize a
function using noisy estimates of its gradient (Robbins
and Monro, 1951; Kushner and Yin, 1997; Bottou and
LeCun, 2004). We will form the derivative of the objec-
tive as an expectation with respect to the variational
approximation and then sample from the variational
approximation to get noisy but unbiased gradients,
which we use to update our parameters. For each sam-
ple, our noisy gradient requires evaluating the possibly
unnormalized joint distribution of the observed and
sampled variables, the variational distribution, and the
gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
the variational distribution and sampling method can
be derived once for each type of variational distribution
and reused for many models and applications.

Stochastic optimization. Let us now review
stochastic optimization. Let f .x/ be a function to
be maximized and ht .x/ be the realization of a ran-
dom variable H.x/ whose expectation is the gradient of
f .x/. Finally, let ⇢t be a nonnegative scalar. Stochastic
optimization updates x at the tth iteration with

xtC1  xt C ⇢t ht .xt /:

This converges to a maximum of f .x/ when ⇢t , the
learning rate, follows the Robbins-Monro conditions,

P1

tD1 ⇢t D 1P1

tD1 ⇢
2
t < 1:

Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can

Algorithm 1 Black Box Variational Inference

Input: data x, joint distribution p, mean field vari-
ational family q.
Initialize � randomly, t D 1.
repeat
// Draw S samples from q

for s D 1 to S do
zŒsç ⇠ q

end for
⇢ = tth value of a Robbins Monro sequence
� = �C ⇢

1
S

PS
sD1 r� log q.zŒsç j�/.logp.x; zŒsç/�

log q.zŒsç j�//

t D t C 1

until change of � is less than 0.01.

be computed from samples from the variational poste-
rior. To do this, we write the gradient of the ELBO
(Eq. 1) as an expectation with respect to the variational
distribution,

r�L D EqŒr� log q.zj�/.logp.x; z/ � log q.zj�//ç:

(2)

The derivation of Eq. 2 can be found in the appendix.
Note that in statistics the gradient r� log q.zj�/ of the
log of a probability distribution is called the score func-
tion (Cox and Hinkley, 1979). The joint p.x; z/ can be
replaced by its unnormalized version (see the appendix
for details). For subsequent sections, any appearance
of p.x; z/ may be replaced by an unnormalized version.

With this equation in hand, we compute noisy unbiased
gradients of the ELBO with Monte Carlo samples from
the variational distribution,

r�L ⇡
1

S

SX
sD1

r� log q.zsj�/.logp.x; zs/ � log q.zsj�//;

where zs ⇠ q.zj�/:

(3)

With Eq. 3, we can use stochastic optimization to
optimize the ELBO.

The basic algorithm is summarized in Algorithm 1. We
note that the score function and sampling algorithms
depend only on the variational distribution, not the
underlying model. Thus we can build up a collection of
these functions for various variational approximations
and reuse them in a package for a broad class of mod-
els. Further we did not make any assumptions about
the form of the model, only that the practitioner can
compute the log of the joint p.x; zs/. This algorithm
significantly reduces the e↵ort needed to implement
variational inference in a wide variety of models.
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the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
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gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
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xtC1  xt C ⇢t ht .xt /:
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learning rate, follows the Robbins-Monro conditions,

P1

tD1 ⇢t D 1P1

tD1 ⇢
2
t < 1:

Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can

Algorithm 1 Black Box Variational Inference

Input: data x, joint distribution p, mean field vari-
ational family q.
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repeat
// Draw S samples from q

for s D 1 to S do
zŒsç ⇠ q

end for
⇢ = tth value of a Robbins Monro sequence
� = �C ⇢

1
S

PS
sD1 r� log q.zŒsç j�/.logp.x; zŒsç/�

log q.zŒsç j�//

t D t C 1

until change of � is less than 0.01.

be computed from samples from the variational poste-
rior. To do this, we write the gradient of the ELBO
(Eq. 1) as an expectation with respect to the variational
distribution,
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of p.x; z/ may be replaced by an unnormalized version.

With this equation in hand, we compute noisy unbiased
gradients of the ELBO with Monte Carlo samples from
the variational distribution,

r�L ⇡
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r� log q.zsj�/.logp.x; zs/ � log q.zsj�//;

where zs ⇠ q.zj�/:

(3)

With Eq. 3, we can use stochastic optimization to
optimize the ELBO.

The basic algorithm is summarized in Algorithm 1. We
note that the score function and sampling algorithms
depend only on the variational distribution, not the
underlying model. Thus we can build up a collection of
these functions for various variational approximations
and reuse them in a package for a broad class of mod-
els. Further we did not make any assumptions about
the form of the model, only that the practitioner can
compute the log of the joint p.x; zs/. This algorithm
significantly reduces the e↵ort needed to implement
variational inference in a wide variety of models.
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ℒ 𝜆 = 𝔼!(𝒛|𝝀) log	𝑝 𝒙, 𝒛 − 𝔼!(𝒛|𝝀) 	log	𝑞 𝒛 𝜆 	

∇7ℒ	=E8∼:(8)[	∇; log	𝑝 𝑥, 𝑧 − log	𝑞 𝑧 	∇7𝑡 𝜖, 𝜆 ]	

𝜖 ∼ 𝑠 𝜖
𝑧 = 𝑡 𝜖, 𝜆

⇔ 𝑧 ∼ 𝑞 𝑧|𝜆



Questions?


