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Recap: Expectation Maximization (EM)
● Supervised MLE is easy:
! Observe both 𝒙 and 𝒛

● Unsupervised MLE is hard:
! Observe only 𝒙

● EM, intuitively:
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max	
!

ℓ" 𝜃; 𝒙, 𝒛 = log	𝑝 𝒙, 𝒛 𝜃

max	
!

ℓ 𝜃; 𝒙 = log	𝑝 𝒙 𝜃 = 	log0
#
𝑝(𝒙, 𝒛|𝜃)

M-step:  max
!
	𝔼$(𝒛|𝒙) 	log	𝑝 𝒙, 𝒛 𝜃 	 Let’s “pretend” we also observe 

𝒛 (its distribution)

E-step: 𝑞(𝒛|𝒙) = 𝑝(𝒛|𝒙, 𝜃)
We don’t actually observe q, 
let’s estimate it
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This is an iterative 
process



Recap: Expectation Maximization (EM)
● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

! E-step:

§ the posterior distribution over the latent variables given the data and the 
current parameters

! M-step: 
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= 𝑝(𝒛|𝒙, 𝜃!)

ℓ 𝜃; 𝒙 = 𝔼$(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

= argmax$ 𝔼%!"# log	𝑝 𝒙, 𝒛 𝜃



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
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● Consider a mixture of K Gaussian components
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Example: Gaussian Mixture Models (GMMs)
● E-step: computing the posterior of 𝑧- given the current estimate of the 

parameters (i.e., 𝜋	, 𝜇, Σ)
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Example: Gaussian Mixture Models (GMMs)
● M-step: computing the parameters given the current estimate of 𝑧-
! Once we have 𝑞!"# 𝑧$ 𝑥 = 𝑝 𝑧$ 𝑥, 𝜃! = 𝛾$, we can compute the expected 

likelihood:

! We need to fit 𝐾 Gaussians, just need to weight examples by 𝛾$ 	
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𝜃*+, = argmax!0
.
𝑞*+, 𝑧. = 1 𝑥 	log	𝑝(𝑥, 𝑧. = 1|𝜃)



Example: Gaussian Mixture Models (GMMs)
● M-step: computing the parameters given the current estimate of 𝑧-
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EM Algorithm for GMM: Quick Summary
● Initialize the means 𝜇. , covariances Σ. and mixing coefficients 𝜋. 
● Iterate until convergence: 
! E-step: Evaluate the posterior given current parameters

! M-step: Re-estimate the parameters given current posterior 
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Example: Gaussian Mixture Models (GMMs)
● Start: “guess” the centroid 𝜇. and covariance Σ. of each of the K clusters 
● Loop:
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Summary: EM Algorithm
● A way of maximizing likelihood function for latent variable models. Finds MLE 

of parameters when the original (hard) problem can be broken up into two 
(easy) pieces 
! Estimate some “missing” or “unobserved” data from observed data and current 

parameters. 
! Using this “complete” data, find the maximum likelihood parameter estimates. 
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Summary: EM Algorithm
● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

! E-step:

! M-step:
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= 𝑝(𝒛|𝒙, 𝜃!)

ℓ 𝜃; 𝒙 = 𝔼$(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

= argmax! 0
#
𝑞*+, 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)



Each EM iteration guarantees to improve the likelihood 
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ℓ 𝜃; 𝒙 = 𝔼$(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

E-step M-step

[PRML, Chap 9.4]



EM Variants 
● Sparse EM 
! Do not re-compute exactly the posterior probability on each data point under all 

models, because it is almost zero. 
! Instead keep an “active list” which you update every once in a while. 

● Generalized (Incomplete) EM: 
! It might be hard to find the ML parameters in the M-step, even given the 

completed data. We can still make progress by doing an M-step that improves 
the likelihood a bit (e.g. gradient step). 
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Summary: EM Algorithm
● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

! E-step:

! M-step:

● Limitation: need to be able to compute 𝑝 𝒛 𝒙, 𝜃 , not possible for more 
complicated models --- solution: Variational inference 17
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Variational Inference

Content adapted from CMU 10-708 Spring 2017



Inference
● Given a model, the goals of inference can include:

! Computing the likelihood of observed data 𝑝(𝒙∗)

! Computing the marginal distribution over a given subset of variables in the 
model 𝑝(𝒙&)

! Computing the conditional distribution over a subsets of nodes given a 
disjoint subset of nodes 𝑝(𝒙&|𝒙')

! Computing a mode of the density (for the above distributions) argmax𝒙	𝑝 𝒙

! ….
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Variational Inference
● Observed variables 𝒙, latent variables 𝒛
● Variational (Bayesian) inference, a.k.a. variational Bayes, is most often 

used to approximately infer the conditional distribution over the latent 
variables given the observations (and parameters)
! i.e., the posterior distribution over the latent variables 
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𝑝 𝒛 𝒙, 𝜃 =
𝑝(𝒛, 𝒙|𝜃)

∑& 𝑝(𝒛, 𝒙|𝜃)



Motivating Example 
● Why do we often need to use an approximate inference methods (such 

as variational Bayes) to compute the posterior distribution? 

● It’s because we cannot directly compute the posterior distribution for 
many interesting models 
! I.e. the posterior density is in an intractable form (often involving integrals) 

which cannot be easily analytically solved. 

● As a motivating example, we will try to compute the posterior for a 
(Bayesian) mixture of Gaussians. 
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Bayesian mixture of Gaussians
● The mean 𝜇. is treated as a (latent) random variable

● For each data 𝑖 = 1,… , 𝑛

● We have 
! observed variables 𝑥#:* 
! latent variables 𝜇#:$ and 𝑧#:*
! parameters {𝜏+, 𝜋, 𝜎+}

● 𝑝 𝑥':) , 𝑧':) , 𝜇':* 𝜏+, 𝜋, 𝜎+ =
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Bayesian mixture of Gaussians
● We can write the posterior distribution as 

● The numerator can be computed for any choice of the latent variables
● The problem is the denominator (the marginal probability of the 

observations)
! This integral cannot easily be computed analytically

● We need some approximation..
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Variational Inference
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The main idea behind variational inference:



Variational Inference
● We want to minimize the KL divergence between our approximation 
𝑞(𝒛|𝒙) and our posterior 𝑝(𝒛|𝒙) 

! But we can’t actually minimize this quantity w.r.t 𝑞	because 𝑝(𝒛|𝒙) is unknown

● The ELBO is equal to the negative KL divergence up to a constant ℓ 𝜃; 𝒙
● We maximize the ELBO over 𝑞 to find an “optimal approximation” to 
𝑝(𝒛|𝒙)
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KL 𝑞 𝒛|𝒙 	||	𝑝(𝒛|𝒙)

ℓ 𝜃; 𝒙 = 𝔼$(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

Evidence Lower Bound (ELBO)



Variational Inference
● Choose a family of distributions over the latent variables 𝒛 with its own set of 

variational parameters 𝜈 , i.e. 
● We maximize the ELBO over 𝑞 to find an “optimal approximation” to 𝑝 𝒛 𝒙
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argmax, 	𝔼%(𝒛|𝒙,𝝂) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙, 𝝂

= argmax, 	𝔼%(𝒛|𝒙,𝝂) log	𝑝 𝒙, 𝒛|𝜃 − 𝔼%(𝒛|𝒙,𝝂) 	log	𝑞 𝒛 𝒙, 𝝂 	

𝑞(𝒛|𝒙, 𝒗)

● How do we choose the variational family 𝑞(𝒛|𝒙, 𝒗)?



Questions?


