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Recap: Expectation Maximization (EM)

e Supervised MLE is easy: max £.(0;x,z) =logp(x, z|0)

o Observe both x and z

e Unsupervised MLE is hard: ~ Max £(6; x) = log p(x|0) = 1082 p(x,z[0)
Z

o QObserve only x

e EM, intuitively:

E-step: q(z|x) = p(z|x, 0)

M-step: max Eq(z1x) | log p(x, 2|0) |

We don't actually observe g,
let’s estimate it

Let’s “pretend” we also observe
z (its distribution)



Recap: Expectation Maximization (EM)

e Supervised MLE is easy: max £.(6; x,z) = logp(x,z|6)
=
o QObserve both x and z

e Unsupervised MLE is hard: ~ Max £(6; x) = log p(x|0) = 1082 p(x,z[0)
o Observe only x ‘
e EM, intuitively:

We don't actually observe g,

—> E-step: qt+1(z|x) = p(z|x, Ht) let's estimate it

] Let’s “pretend” we also observe

_ M-step: max E log p(x,z|6
P- ™ qt+1(z|x)[ gp(x,z|0) z (its distribution)

This is an iterative
process



Recap: Expectation Maximization (EM)

e The EM algorithm is coordinate-decent on F(q, 6)

t+1

o E-step: ¢ :argmqinF(%Qt) = p(z|x,0°)

= the posterior distribution over the latent variables given the data and the

current parameters

o M-step: 9'*! = argmin F' (¢'™!,0") = argmaxy Ieq+1[log p(x,z|0)]

0

f(@, x) = IEq(Z|x) llOg

p(x,z|0)

q(z|x)

+ KL(q(z|x) || p(z]x, 6))

= —F(q,0) + KL(q(zl%) || p(z|x, 0)) 4




Example: Gaussian Mixture Models (GMMs) @

o Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ ()" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1
(Zﬂ)m/lek’

p(x, |25 =1, u,%) = expli(x, - 1) S (x, - 1)}

o The likelihood of a sample: .
mixture component

mixture proportion

1,2 =Y p(z* =1|7)p(x,| " =1, 41,%) —
= Zzn Hk ((”k)zg N(x, :,ukazk)zic ): Zk TN (x| 1y, 2,)

p(x,



Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components



Example: Gaussian Mixture Models (GMMs)

e E-step: computing the posterior of z,, given the current estimate of the
parameters (i.e., T, u, X)

p(z" = Dp(z | 2* = 1)
p(x)
__ p(EF=1Dp(z | " =1)
S p(z =1)p(x | 27 =1)
_ mN (x| prs B
> o TN (x|, %)
= Tk

p(z" =1]z)=




Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

o Once we have ¢'*1(z¥|x) = p(z*|x, 8%) = y*, we can compute the expected
likelihood:

6t*1 = argmaxg 2 q**1(z* = 1|x) log p(x, z* = 1|0)
k

eq+1 [log (p (3372 ‘ 9))]
=Y " (logp (+F = 1]0) +log P (z | 2" = 1,0))
k

=) wlogme + ) yklog N (a; uk, i)
L k

o We need to fit K Gaussians, just need to weight examples by y;,



Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

7, =argmax(l (0)), = 52-(1.(0))=0,Vk, st an =1

o = 2Bl B )

OF
i —argmax(®)), = ) = 2en”

Z Z'k(t) Fact:
non dlogA™|
k(t) t+1) (t+1)\T oA"Y
* Tn (xn o ‘U )('xn o lu )
z“k = arg max<l(9)>’ = Zg‘m) - Zn Zkrk(t) : Ox’ Ax =xx"

O0A
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EM Algorithm for GMM: Quick Summary

e Initialize the means u;, , covariances X, and mixing coefficients

e lterate until convergence:
o E-step: Evaluate the posterior given current parameters

ﬂ-kN (CB ‘ :ukvzk)

p(z" =1]x) =
S N (| g, B5)

= Yk

o M-step: Re-estimate the parameters given current posterior

11



Example: Gaussian Mixture Models (GMMs)

e Start: “guess” the centroid u; and covariance X of each of the K clusters

e Loop:
e L=1 . " L=4
2|0 R A S

!‘ :gO ° . ) [

o O # | S
» 2 ¢ &

(a) (c) (d) (e)
L=6 L=8 L=10 L=12
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Summary: EM Algorithm

e A way of maximizing likelihood function for latent variable models. Finds MLE
of parameters when the original (hard) problem can be broken up into two
(easy) pieces

o Estimate some “missing” or “unobserved” data from observed data and current
parameters.

o Using this “complete” data, find the maximum likelihood parameter estimates.
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Summary: EM Algorithm

e The EM algorithm is coordinate-decent on F(q, 6)

o E-step: qt“ :argmqinF(Qa Qt) = p(z|x,6°)

o M-step: gt = arg m@jnF (¢"*t1,0") = argmaxg 2 q**1(z|x) log p(x, 2|0)
VA

p(x,z|0)
q(z|x)

£(0;x) = Eq(zx) [log + KL(q(z|x) || p(zlx, 6))

= —F(q,0) + KL(q(z|x) || p(z]x,6))
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Each EM iteration guarantees to improve the likelihood

p(x,z|0)
q(z|x)

log

£(6;x) = Eqzx) + KL(CI(Z|x) 1 p(zlx,@))

KL(ng)I [
y Y
) ' KL(g|lp) = 0 — SR N S I

£(q,9) Inp(X(6) L(g,0°') Inp(X[6°) L(g,6™") In p(X|6)

y y A 4 A 4 A 4 y

E-step M-step

[PRML, Chap 9.4] 15



EM Variants
e Sparse EM

o Do not re-compute exactly the posterior probability on each data point under all
models, because it is almost zero.

o Instead keep an "active list” which you update every once in a while.

e Generalized (Incomplete) EM:

o It might be hard to find the ML parameters in the M-step, even given the
completed data. We can still make progress by doing an M-step that improves
the likelihood a bit (e.g. gradient step).
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Summary: EM Algorithm

e The EM algorithm is coordinate-decent on F(q, 6)

o E-step: th :argmqinF(q, Qt) = p(z|x,0°)

o M-step: gt = arg meinF (¢"*t1,0") = argmaxg 2 q**1(z|x) log p(x, 2|0)
VA

p(x,z|0)
q(z|x)

£(0;x) = Eq(zx) [log + KL(q(z|x) || p(zlx, 6))

= —F(q,0) + KL(q(z|x) || p(zlx, 6))

e Limitation: need to be able to compute p(z|x, 8), not possible for more

complicated models --- solution: Variational inference -



Variational Inference

Content adapted from CMU 10-708 Spring 2017



Inference
e Given a model, the goals of inference can include:
o Computing the likelihood of observed data p(x*)

o Computing the marginal distribution over a given subset of variables in the
model p(x,)

o Computing the conditional distribution over a subsets of nodes given a
disjoint subset of nodes p(x,|x5)

o Computing a mode of the density (for the above distributions) argmax, p(x)
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Variational Inference

e Observed variables x, latent variables z

e Variational (Bayesian) inference, a.k.a. variational Bayes, is most often
used to approximately infer the conditional distribution over the latent
variables given the observations (and parameters)

o i.e., the posterior distribution over the latent variables

p(z,x|0)
Y.z p(z,x|0)

p(z|x,0) =
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Motivating Example

e Why do we often need to use an approximate inference methods (such
as variational Bayes) to compute the posterior distribution?

e It's because we cannot directly compute the posterior distribution for
many interesting models

o l.e. the posterior density is in an intractable form (often involving integrals)
which cannot be easily analytically solved.

e As a motivating example, we will try to compute the posterior for a
(Bayesian) mixture of Gaussians.
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Bayesian mixture of Gaussians

e The mean uy is treated as a (latent) random variable
pe ~N(0,7%) for k=1,..., K

e Foreachdatai=1,..,n
z; ~ Cat(m).
z; ~ N(ts,,07).

e We have

o observed variables x;.,
o latent variables uy., and z;.,
o parameters {t%, 7, 0%}

K n
¢ p(xl:nrzl:nl :ul:lez;T[:O-z) — Hk=1 p(:u‘k) Hizl p(zz)p(x?/|zzaﬂ’lf()



Bayesian mixture of Gaussians

e We can write the posterior distribution as

[T p(x) Ty p(2:)p(24] 23, pr:xc)

p(/l'lzKa zl:n|$1:n) = -
f“fl:K Zzlzn I—[le p(“k) [1;-1 P(Zi)p($i|2z', Nl:K)

e The numerator can be computed for any choice of the latent variables

.
e The problem is the denominator (the marginal probability of the
observations)

o This integral cannot easily be computed analytically
e We need some approximation..
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Variational Inference

The main idea behind variational inference:

e Choose a family of distributions over the latent variables zi..,,
with its own set of variational parameters v, i.e.

q(21:m|V)

e Then, we find the setting of the parameters that makes our
approximation ¢ closest to the posterior distribution.
e This is where optimization algorithms come in.

e Then we can use ¢ with the fitted parameters in place of the
posterior.

e E.g.to form predictions about future data, or to investigate the posterior

distribution over the hidden variables, find modes, etc. -



Variational Inference

e We want to minimize the KL divergence between our approximation
q(z|x) and our posterior p(z|x)

KL(q(z|x) || p(z]x))

o But we can’t actually minimize this quantity w.r.t g because p(z|x) is unknown

Evidence Lower Bound (ELBO)

I . z|0 :
20 %) ={Eqgapy [logp(x 4 )J -+ KL(q(z1x) || p(zlx, 0))

e The ELBO is equal to the negative KL divergence up to a constant £(6; x)
e We maximize the ELBO over q to find an “optimal approximation” to
p(z|x)
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Variational Inference

e Choose a family of distributions over the latent variables z with its own set of
variational parameters v , i.e. q(z|x,v)

e We maximize the ELBO over q to find an “optimal approximation” to p(z|x)

p(x,z|6)
q(z|x,v)
— dI'gimax,, II3q(z|x,v) [log p(x: Z|6’)] o II3q(z|x,v)[ log CI(le» V) ]

argmax,, Egzjxv) [log

pa|x)

"KL v*) || p(z| %))

e How do we choose the variational family q(z|x, v)?
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