
DSC291: Machine Learning with Few Labels

Unsupervised Learning

Zhiting Hu
Lecture 13, April 29, 2024



Logistics
● 04/29: today, lecture #13
● 05/01: no class
● 05/03: Zoom (zoom link on Piazza)
● 05/06: Zoom
● 05/08: Zoom
● 05/10: Zoom
● 05/13 and future: in-person, lecture + paper presentations
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Recap: Unsupervised Learning
● Each data instance is partitioned into two parts:
! observed variables 𝒙
! latent (unobserved) variables 𝒛

● Want to learn a model 𝑝! 𝒙, 𝒛

3[Content adapted from CMU 10-708]
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Recap: Why is Learning Harder? 
● Complete log likelihood: if both 𝒙 and 𝒛 can be observed, then

! Decomposes into a sum of factors, the parameter for each factor can be 
estimated separately

● But given that 𝒛 is not observed, ℓ" 𝜃; 𝒙, 𝒛  is a random quantity, cannot 
be maximized directly

● Incomplete (or marginal) log likelihood: with 𝒛 unobserved, our 
objective becomes the log of a marginal probability: 

! All parameters become coupled together
! In other models when 𝒛 is complex (continuous) variables (as we’ll see later), 

marginalization over 𝒛 is intractable.
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ℓ" 𝜃; 𝒙, 𝒛 = log	𝑝 𝒙, 𝒛 𝜃 = 	log	𝑝 𝒛 𝜃# + log	𝑝(𝒙|𝒛, 𝜃$)

ℓ 𝜃; 𝒙 = log	𝑝 𝒙 𝜃 = 	log1
#
𝑝(𝒙, 𝒛|𝜃)



Recap: Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

! A deterministic function of 𝜃
! Inherit the factorizability of ℓ! 𝜃; 𝒙, 𝒛

● Use this as the surrogate objective
● Does maximizing this surrogate yield a maximizer of the likelihood? 
! We can show that:
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𝔼% ℓ" 𝜃; 𝒙, 𝒛 =1
#
𝑞 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)

ℓ 𝜃; 𝒙 ≥ 𝔼' ℓ( 𝜃; 𝒙, 𝒛 + 𝐻 𝑞



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

● Question: show that 

● Hint: a useful inequality: Jensen’s inequality
! If 𝑓 is convex:
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𝔼% ℓ" 𝜃; 𝒙, 𝒛 =1
#
𝑞 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)

ℓ 𝜃; 𝒙 ≥ 𝔼' ℓ( 𝜃; 𝒙, 𝒛 + 𝐻 𝑞

𝔼)(𝒚) 𝑓(𝒚) ≥ 𝑓(𝔼)(𝒚)[𝒚])



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

● Question: show that 
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𝔼% ℓ" 𝜃; 𝒙, 𝒛 =1
#
𝑞 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)

ℓ 𝜃; 𝒙 ≥ 𝔼' ℓ( 𝜃; 𝒙, 𝒛 + 𝐻 𝑞



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

● Question: show that 
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𝔼% ℓ" 𝜃; 𝒙, 𝒛 =1
#
𝑞 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)

ℓ 𝜃; 𝒙 ≥ 𝔼' ℓ( 𝜃; 𝒙, 𝒛 + 𝐻 𝑞



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

Jensen’s inequality
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𝔼% ℓ" 𝜃; 𝒙, 𝒛 =1
#
𝑞 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)

≥

= 𝔼% ℓ" 𝜃; 𝒙, 𝒛 + 𝐻 𝑞

Evidence Lower Bound (ELBO)



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

● Conclusion-1:

● Question: show that 
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𝔼% ℓ" 𝜃; 𝒙, 𝒛 =-
#
𝑞 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)

ℓ 𝜃; 𝒙 = 𝔼%(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

ℓ 𝜃; 𝒙 ≥ 𝔼% ℓ" 𝜃; 𝒙, 𝒛 + 𝐻 𝑞 = 𝔼%(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	 (ELBO)



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

● Conclusion-1:

● Question: show that 

! Since KL divergence is non-negative, this is another way to prove Conclusion-1
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𝔼% ℓ" 𝜃; 𝒙, 𝒛 =-
#
𝑞 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)

ℓ 𝜃; 𝒙 = 𝔼%(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

ℓ 𝜃; 𝒙 ≥ 𝔼% ℓ" 𝜃; 𝒙, 𝒛 + 𝐻 𝑞 = 𝔼%(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	 (ELBO)



Lower Bound and Free Energy

● For fixed data 𝒙, define a functional called the (variational) free energy: 

● The EM algorithm is coordinate-decent on 𝐹
! At each step 𝑡:

§ E-step:

§ M-step: 
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𝐹 𝑞, 𝜃 = −𝔼' ℓ( 𝜃; 𝒙, 𝒛 − 𝐻 𝑞 ≥ −ℓ(𝜃; 𝒙)



E-step: minimization of 𝐹 𝑞, 𝜃  w.r.t 𝑞 
● Question: show that that optimal solution of E-step is

! I.e., the posterior distribution over the latent variables given the data and the 
current parameters. 

● Hint: use the fact
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𝑞./0 = argmin' 	𝐹 𝑞, 𝜃. = 𝑝(𝒛|𝒙, 𝜃.)

ℓ 𝜃; 𝒙 = 𝔼%(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

Evidence Lower Bound (ELBO)

Variational free energy



E-step: minimization of 𝐹 𝑞, 𝜃  w.r.t 𝑞 
● Claim:

! This is the posterior distribution over the latent variables given the data and 
the current parameters. 

● Proof (easy): recall

! 𝐹 𝑞, 𝜃"  is minimized when KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃" = 0, which is achieved only 
when 𝑞 𝒛 𝒙 = 𝑝 𝒛 𝒙, 𝜃+
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𝑞./0 = argmin' 	𝐹 𝑞, 𝜃. = 𝑝(𝒛|𝒙, 𝜃.)

ℓ 𝜃+; 𝒙 = 𝔼%(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃+

𝑞 𝒛 𝒙
	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃+

Independent of 𝑞 −𝐹 𝑞, 𝜃+ ≥ 0



M-step: minimization of 𝐹 𝑞, 𝜃  w.r.t 𝜽 
● Note that the free energy breaks into two terms:

! The first term is the expected complete log likelihood and the second term, 
which does not depend on q, is the entropy.

● Thus, in the M-step, maximizing with respect to 𝜃 for fixed 𝑞 we only 
need to consider the first term: 

! Under optimal 𝑞"#$, this is equivalent to solving a standard MLE of fully 
observed model 𝑝 𝒙, 𝒛 𝜃 , with z replaced by its expectation w.r.t 𝑝(𝒛|𝒙, 𝜃!)
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𝐹 𝑞, 𝜃 = −𝔼' ℓ( 𝜃; 𝒙, 𝒛 − 𝐻 𝑞 ≥ −ℓ(𝜃; 𝒙)

𝜃+,- = argmax!	𝔼% ℓ" 𝜃; 𝒙, 𝒛 = argmax!-
#
𝑞+,- 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)



EM Algorithm: Quick Summary
● Observed variables 𝒙, latent variables 𝒛
● To learn a model 𝑝 𝒙, 𝒛|𝜃 , we want to maximize the marginal log-

likelihood

! But it’s too difficult
● EM algorithm: 
! maximize a lower bound of ℓ 𝜃; 𝒙
! Or equivalently, minimize an upper bound of −ℓ 𝜃; 𝒙

● Key equation:
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ℓ 𝜃; 𝒙 = 𝔼%(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

ℓ 𝜃; 𝒙 = log	𝑝 𝒙 𝜃 = 	log-
#
𝑝(𝒙, 𝒛|𝜃)

Evidence Lower Bound (ELBO)

Variational free energy



EM Algorithm: Quick Summary
● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

! E-step:

§ the posterior distribution over the latent variables given the data and the 
current parameters

! M-step: 
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= 𝑝(𝒛|𝒙, 𝜃!)

ℓ 𝜃; 𝒙 = 𝔼%(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

= argmax! -
#
𝑞+,- 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
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Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components
● The expected complete log likelihood

● E-step: computing the posterior of 𝑧. given the current estimate of the 
parameters (i.e., 𝜋	, 𝜇, Σ) 
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𝑝 𝑧"# = 1, 𝑥	 𝜇 ! , Σ(!))

𝑝 𝑥	 𝜇 ! , Σ(!))



Example: Gaussian Mixture Models (GMMs)
● E-step: computing the posterior of 𝑧. given the current estimate of the 

parameters (i.e., 𝜋	, 𝜇, Σ)
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Example: Gaussian Mixture Models (GMMs)
● M-step: computing the parameters given the current estimate of 𝑧.
! Once we have 𝑞!&' 𝑧# 𝑥 = 𝑝 𝑧# 𝑥, 𝜃! = 𝛾#, we can compute the expected 

likelihood:

! We need to fit 𝐾 Gaussians, just need to weight examples by 𝛾# 	
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𝜃+,- = argmax!-
/
𝑞+,- 𝑧/ = 1 𝑥 	log	𝑝(𝑥, 𝑧/ = 1|𝜃)



Example: Gaussian Mixture Models (GMMs)
● M-step: computing the parameters given the current estimate of 𝑧.
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EM Algorithm for GMM: Quick Summary
● Initialize the means 𝜇/ , covariances Σ/ and mixing coefficients 𝜋/ 
● Iterate until convergence: 
! E-step: Evaluate the posterior given current parameters

! M-step: Re-estimate the parameters given current posterior 
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Example: Gaussian Mixture Models (GMMs)
● Start: “guess” the centroid 𝜇/ and covariance Σ/ of each of the K clusters 
● Loop:
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Summary: EM Algorithm
● A way of maximizing likelihood function for latent variable models. Finds MLE 

of parameters when the original (hard) problem can be broken up into two 
(easy) pieces 
! Estimate some “missing” or “unobserved” data from observed data and current 

parameters. 
! Using this “complete” data, find the maximum likelihood parameter estimates. 
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Summary: EM Algorithm
● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

! E-step:

! M-step:

● Limitation: need to be able to compute 𝑝 𝒛 𝒙, 𝜃 , not possible for more 
complicated models --- solution: Variational inference 26

= 𝑝(𝒛|𝒙, 𝜃!)

ℓ 𝜃; 𝒙 = 𝔼%(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

= argmax! -
#
𝑞+,- 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)



Each EM iteration guarantees to improve the likelihood 
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ℓ 𝜃; 𝒙 = 𝔼%(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

E-step M-step

[PRML, Chap 9.4]



EM Variants 
● Sparse EM 
! Do not re-compute exactly the posterior probability on each data point under all 

models, because it is almost zero. 
! Instead keep an “active list” which you update every once in a while. 

● Generalized (Incomplete) EM: 
! It might be hard to find the ML parameters in the M-step, even given the 

completed data. We can still make progress by doing an M-step that improves 
the likelihood a bit (e.g. gradient step). 
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Questions?


