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Recap: KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two
distributions p(x) and q(x)

)
KL(q(x) || p(x)) = 2 a(x) log- p(x) QL/J J&)

o a.k.a. Relative entropy
o KL>=0 (Jensen’s inequality)
o Intuitively:
= |f g is high and p is high, then we are happy (i.e. low KL divergence)
= |f q is high and p is low then we pay a price (i.e. high KL divergence).
= |f q is low then we don't care (i.e. also low KL divergence, regardless of p)
o not a true “distance”:
= not commutative (symmetric) KL(p||q) ! = KL(q||p)
= doesn't satisfy triangle inequality




o .q sed L : W /Lbé)[ fét
eCap. supervise earning f“‘@ V\WL Vif

e Model to be learned pg(x)

e Observe full data D = { x; W s JﬁWff"’%
o e.g., x; includes both input (e.g., image) and output (e.g., image label) x)
o D defines an empirical data distribution §(x) )
= x~D o x~plx) &YWP(\L(/GJ f\‘fi}%
e Maximum |_I|(6|I.hOOd Es.tlmatlon. (MLE) min — B, 500 [ log pg (%) ]
o The most classical learning algorithm b e _
o Show that MLE is minimizing the V(I_Zivergence between the

empirical data distribution and the model distribution
min KL(B(X) || pg (%)) = —Ep(x) [ log pg(x) | + H(H(x))
S

Cross entropy 5
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nsupervised Learning wa) 0.

e Each data instance is partitioned into two parts: I
o observed variables x

o latent (unobserved) variables z - -
s k(o)

e Want to learn a model pg(x, 2)
o —

@ (09t

[Content adapted from CMU 10-708] 4



Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...
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Fig. 1.2 Isolated Word Problem




Latent (unobserved) variables

e A variable can be unobserved (latent) because:
o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process
= e.g., speech recognition models, mixture models, ...
o a real-world object (and/or phenomena), but difficult or impossible to measure
= e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
o a real-world object (and/or phenomena), but sometimes wasn’t measured,
because of faulty sensors, etc.
e Discrete latent variables can be used to partition/cluster data into sub-
groups
e Continuous latent variables (factors) can be used for dimensionality
reduction (e.g., factor analysis, etc.)



Models (GMMs) /W\W%(

Example; Gaussian .
onsider a mixture of K Gaussian components: k /é{}j’ \%
Th,=| D
PlulwD)=3, 2Nl 2) =1
— -
- | PAN M —
7 mixture proportion  mixture component
R« —
l

e This model can be used for unsupervised clustering.

o This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc. g



Zb "—%Xn
Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components: i‘ M~ l
o Zis alatent class indicator vector: Q’yfbp

0.
p(z,)=multi(z, : 7[) = (7Z'k )Zf’c A -3 ﬁs
7 H i [

Q X Is a conditional Gaussian variable with a class-specific mean/c/ovarlégce

1
p(‘xnlznzl’ﬂﬂz):Nx ,Z = eXp-l(‘xn-ﬂ) Z_ (xn-/’l)
- ™ ( n Ile k) (27[)’"/2‘2]{‘1/2 { 2 k k k }
o The likelihood of a sample: Parameters to be learned:

mixture component
mixture proportion

w2) =) p(z" =1|7)p(x,|z* =1, 1, %) —
= Zzn Hk ((”k)Z'I: N(x, ::ukDZk)Zﬁ ): Zk TN (x| 1y, 2,)

p(x,



Example: Gaussian Mixture Models (GMMs)
ﬂaz)zzk7?kN(x9!ﬂkﬂzk)

o Consider a mixture of K Gaussian components: P(X,
e Recall MLE for completely observed data

o Data log-likelihood: ¢ (8;D) = long(Z,,,,x ) = long(Z | m)p(x, |z, 1u,0)

_ZlogHﬂk +ZlOgHN(Xn,,Uk,O')
o MLE: —ZZZklogﬂ'k Zzzn 7o -7 (%, ,Uk) +C

Ty e = argmax ¢ (0; D),

My 4 e = argmax ¢ (0;D) = s = Z ;
Oy e = argmax ¢ (0;D) '

e What if we do not know z,7? 0



Why is Learning Harder?

e Complete log likelihood: if both x and z can be observed, then

?.(0;x,z) =logp(x,z|0) = logp(z|6,) + log p(x|z,6,)
o Decomposes into a sum of factors, the parameter for each factor can be
estimated separately
e But given that z is not observed, £.(8; x, z) is a random quantity, cannot
be maximized directly

e Incomplete (or marginal) log likelihood: with z unobserved, our
objective becomes the log of a marginal probability:

2(0; x) = log p(x]6) = log 22 D (x, z|6)

o All parameters become coupled together
o In other models when z is complex (continuous) variables (as we'll see later),

marginalization over z is intractable.
11



Expectation Maximization (EM)

9 Mixture Models and EM

9.1

9.2

9.3

This class ———> 9.4

K-means Clustering . . . . .........

9.1.1 Image segmentation and compression

Mixtures of Gaussians . . . . .. ... ...
9.2.1 Maximum likelihood . . . . .. . ..
9.2.2 EM for Gaussian mixtures . . . . . .
An Alternative Viewof EM . . . . ... ..
9.3.1 Gaussian mixtures revisited . . . . .
9.3.2 Relationto K-means . . .. .. ...
9.3.3 Mixtures of Bernoulli distributions . .
9.3.4 EM for Bayesian linear regression . .
The EM Algorithm in General . . . . . . . .
Exercises . ... .. .....
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Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:
Eql2c(0;%,2)] = ) q(zlx) logp(x, 216)

o A deterministic function of
o Inherit the factorizability of ¢.(6; x, 2)

e Use this as the surrogate objective

e Does maximizing this surrogate yield a maximizer of the likelihood?
o We can show that:

£(0;x) 2 E;|£.(0;x,2)] + H(q)

13



Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eql£c(63%,2)] = ) a(zlx) log p(x, 216)

. :show that £(6;x) = E,[£.(0; x,2)] + H(q)
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Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:
Eql2c(0;%,2)] = ) q(zlx) logp(x, 216)

¢ (0;x)=log p(x|0)
~log p(x,Z|6)

Jensen’s inequality

p(x,2]0)
=1lo Z|X
— gzc/( v 7(Z|X)
@ZQ(Z | X) log 219) Evidence Lower Bound (ELBO)
[ fi(z\x)

=Y g(z| x)log p(x,z|0) - g(z| X)logg(z | X)

= E4[£:(0;x,2)] + H(q) 16



Expectation Maximization (EM)
e For any distribution g(z|x), define expected complete log likelihood:

Eql£c(63%,2)] = ) a(zlx) log p(x, 216)

e Conclusion-1:

£(0;x) = Eq[fc(é?;x, z)| + H(q) — IECI(le) llogp(x’zle)

q(z|x)

(ELBO)

o : show that

p(x,z|0)
q(z|x)

£(0;x) = Eq(z») [log ] + KL(q(zlx) || p(zlx, 6))
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Expectation Maximization (EM)
e For any distribution g(z|x), define expected complete log likelihood:

Eql£c(63%,2)] = ) a(zlx) log p(x, 216)

e Conclusion-1:

2(0;x) = Eg[€.(0;x,2)] + H(q) = Eg(zx) [logp(x»ZIH)

q(z|x)

(ELBO)

o : show that

p(x,z|0)
q(z|x)

£(0;x) = Eq(z») [log ] + KL(q(zlx) || p(zlx, 6))

o Since KL divergence is non-negative, this is another way to prove Conclusion-1

18



Lower Bound and Free Energy

e Forfixed data x, define a functional called the (variational) free energy:

F(q,0) = —E4[£.(8;x,2)] — H(q) = —£(6; x)

e The EM algorithm is coordinate-decent on F
o At each step t:
1 — argmin F (q, Ht)

q

arg m@in F (th , Ht)

= E-step: @

= M-step: (975“‘ 1

19



E-step: minimization of F(q,0) w.r.t g

e Claim: .

q**' = argmin, F(q,6%) = p(z|x,0%)

o This is the posterior distribution over the latent variables given the data and
the current parameters.

e Proof (easy): recall

,z|6°
f(et; X) = [Eq(z|x) [logpgzzzl.lx) ) + KL(CI(le) | p(z]x, et))

Independent of g —F(q,0% >0

o F(q,0% is minimized when KL(q(z|x) || p(z|x,6%)) = 0, which is achieved only
when q(z|x) = p(z|x,6")

20



M-step: minimization of F(gq,0) w.r.t 6
e Note that the free energy breaks into two terms:

F(q,0) = —E4[£.(0;x,2)] —H(q) = —£(0; x)

o The first term is the expected complete log likelihood and the second term,
which does not depend on g, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed g we only
need to consider the first term:

6! = argmaxg E,[£.(0; x,z)] = argmaxg 2 qtt1(z|x) log p(x, z|0)
Z

o Under optimal ¢**1, this is equivalent to solving a standard MLE of fully
observed model p(x, z|9), with z replaced by its expectation w.r.t p(z|x, 6")

21



EM Algorithm: Quick Summary

e Observed variables x, latent variables z
e To learn a model p(x, z|8), we want to maximize the marginal log-

likelihood
£(0; x) =logp(x|0) = logz: p(x,z|0)

o But it's too difficult
e EM algorithm:

o maximize a lower bound of £(0; x)
o Or equivalently, minimize an upper bound of —£(6; x)

e Keyequationr--------------- *  Evidence Lower Bound (ELBO)
| p(x,z[0)],
£(0; x) =:IEq(Z|x) log i+ KL(q(z|x) || p(z|x,6))

22



EM Algorithm: Quick Summary

e The EM algorithm is coordinate-decent on F(q, 6)

o E-step: qt“ :argmqinF(Qa Qt) = p(z|x,6°)

= the posterior distribution over the latent variables given the data and the
current parameters

o M-step: g+l = arg m@inF (th,Ht) = argmaxy z gttt (z|x) log p(x,z|0)
Z

p(x,z|0)
q(z|x)

£(0;x) = Eq(zx) [log + KL(q(z|x) || p(z|x,0))

= —F(q,6) + KL(q(zlx) || p(zlx, 6)) 2




Example: Gaussian Mixture Models (GMMs) @

o Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ ()" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1
(Zﬂ)m/lek’

p(x, |25 =1, u,%) = expli(x, - 1) S (x, - 1)}

o The likelihood of a sample: .
mixture component

mixture proportion

1,2 =Y p(z* =1|7)p(x,| " =1, 41,%) —
= Zzn Hk ((”k)zg N(x, :,ukazk)zic ): Zk TN (x| 1y, 2,)

p(x,

24



Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components
e The expected complete log likelihood

E, [£c(0;7, 2)] —ZE logp (2, | )] +ZE logp (wy | 2n, 1, 2)]
—ZZE IOgﬂk——ZZE ( —Mk)Tzﬁl(xn—uk)+10g|2k|+0>

e E-step: computing the posterior of z,, given the current estimate of the

parameters (i.e., T, u, X)

AON G, 050 7
Zﬂ(t)N(xn9|/’l(t) Zl(t))\ p(x,,u(t),Z(t))

p(z, =1]x,u",2) =

25



Example: Gaussian Mixture Models (GMMs)

e E-step: computing the posterior of z,, given the current estimate of the
parameters (i.e., T, u, X)

p(z" = Dp(z | 2* = 1)
p(x)
__ p(EF=1Dp(z | " =1)
S p(z =1)p(x | 27 =1)
_ mN (x| prs B
> o TN (x|, %)
= Tk

p(z" =1]z)=

26



Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

o Once we have ¢'*1(z¥|x) = p(z*|x, 8%) = y*, we can compute the expected
likelihood:

6t*1 = argmaxg 2 q**1(z* = 1|x) log p(x, z* = 1|0)
k

eq+1 [log (p (3372 ‘ 9))]
=Y " (logp (+F = 1]0) +log P (z | 2" = 1,0))
k

=) wlogme + ) yklog N (a; uk, i)
L k

o We need to fit K Gaussians, just need to weight examples by y;,

27



Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

7, =argmax(l (0)), = 52-(1.(0))=0,Vk, st an =1

o = 2Bl B )

OF
i —argmax(®)), = ) = 2en”

Z Z'k(t) Fact:
non dlogA™|
k(t) t+1) (t+1)\T oA"Y
* Tn (xn o ‘U )('xn o lu )
z“k = arg max<l(9)>’ = Zg‘m) - Zn Zkrk(t) : Ox’ Ax =xx"

28



EM Algorithm for GMM: Quick Summary

e Initialize the means u;, , covariances X, and mixing coefficients

e lterate until convergence:
o E-step: Evaluate the posterior given current parameters

ﬂ-kN (CE ‘ :ukvzk)
S N (| g, B5)

p(zF =1 @)= =

o M-step: Re-estimate the parameters given current posterior

e Initialize the means y,; , covariances X; and mixing coefficients 7ty

e Iterate until convergence:
o E-step: Evaluate the posterior given current parameters

o M-step: Re-estimate the parameters given current posterior

29



Example: Gaussian Mixture Models (GMMs)

e Start: “guess” the centroid u; and covariance X of each of the K clusters

e Loop:
e L=1 . " L=4
2|0 R A S

!‘ :gO ° . ) [

o O # | S
» 2 ¢ &

(a) (c) (d) (e)
L=6 L=8 L=10 L=12

30



Summary: EM Algorithm

e A way of maximizing likelihood function for latent variable models. Finds MLE
of parameters when the original (hard) problem can be broken up into two
(easy) pieces

o Estimate some “missing” or “unobserved” data from observed data and current
parameters.

o Using this “complete” data, find the maximum likelihood parameter estimates.

31



Summary: EM Algorithm

e The EM algorithm is coordinate-decent on F(q, 6)

o E-step: th :argmqinF(q, Qt) = p(z|x,6°)

o M-step: gt = arg meinF (¢"*t1,0") = argmaxg 2 q**1(z|x) log p(x, 2|0)
VA

p(x,z|0)
q(z|x)

£(0;x) = Eq(zx) [log + KL(q(z|x) || p(zlx, 6))

= —F(q,0) + KL(q(z|x) || p(z]x,6))

e Limitation: need to be able to compute p(z|x, 8), not possible for more

complicated models --- solution: Variational inference .



Each EM iteration guarantees to improve the likelihood

p(x,z|0)
q(z|x)

log

£(6;x) = Eqzx) + KL(CI(Z|x) 1 p(zlx,@))

KL(ng)I [
y Y
) ' KL(g|lp) = 0 — SR N S I

£(q,9) Inp(X(6) L(g,0°') Inp(X[6°) L(g,6™") In p(X|6)

y y A 4 A 4 A 4 y

E-step M-step

[PRML, Chap 9.4] 33



EM Variants
e Sparse EM

o Do not re-compute exactly the posterior probability on each data point under all
models, because it is almost zero.

o Instead keep an "active list” which you update every once in a while.

e Generalized (Incomplete) EM:

o It might be hard to find the ML parameters in the M-step, even given the
completed data. We can still make progress by doing an M-step that improves
the likelihood a bit (e.g. gradient step).

34






