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Discussion
● No Free Lunch (NFL) theorem (suggested reading of Lecture#10):
! No single machine learning algorithm is universally the best-performing 

algorithm for all problems

● Do generalist models (LLMs) violate this theorem?
● Does ”the Bitter Lesson” contradict with this theorem?
! (suggested reading of Lecture#6)
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Latent-space Reasoning (Recap)

● But how to learn a good latent space in the first place?

3[Liu et al., 2024] Generating, Reconstructing, and Representing Discrete and Continuous Data: Generalized Diffusion with Learnable Encoding-Decoding
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Latent-space Reasoning

● But how to learn a good latent space in the first place?
! Compact and well-structured representation of the world, enabling 

realistic generation and consistent reconstruction

4[Liu et al., 2024] Generating, Reconstructing, and Representing Discrete and Continuous Data: Generalized Diffusion with Learnable Encoding-Decoding
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Latent-space Reasoning

● But how to learn a good latent space in the first place?
! Compact and well-structured representation of the world, enabling 

realistic generation and consistent reconstruction
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Variational Autoencoders (VAEs)
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Supervised Learning,
Unsupervised Learning



Probabilistic Models: Why Probability?
● The world is a very uncertain place 
! “What will the weather be like today?”
! “Will I like this movie?” 

● We often can’t prove something is true, but we can still 
ask how likely different outcomes are or ask for the most 
likely explanations

● Predictions need to have associated confidence
! Confidence -> probability

● Not all machine learning models are probabilistic
! … but most of them have probabilistic interpretations

8[CS60020, Bhattacharya; CSC2515, Wang]



Notations

● A random variable 𝒙 represents outcomes or states of the world.

! We write 𝑝(𝒙!) to mean Probability(𝒙 = 	𝒙!)

● Sample space: the space of all possible outcomes (may be discrete, 

continuous, or mixed)

● 𝑝(𝒙) is the probability mass (density) function

! Assigns a number to each point in sample space

! Non-negative, sums (integrates) to 1

! Intuitively: how often does 𝒙 occur, how much do  we believe in 𝒙.

9[CSC2515, Wang]



Notations

● Joint distribution 𝑝 𝒙, 𝒚

● Conditional distribution 𝑝 𝒚|𝒙

! 𝑝 𝒚|𝒙 = " 𝒙,𝒚
" 𝒙

 

● Expectation:
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𝔼 𝑓(𝒙) ='
𝒙
𝑓(𝒙)	𝑝 𝒙

𝔼 𝑓(𝒙) = *
𝒙
𝑓 𝒙 𝑝 𝒙 𝑑𝑥

or



Rules of Probability
● Sum rule

● Product/chain rule

11[CSC2515, Wang]

(Marginalize out 𝑦)



Bayes’ Rule

● This gives us a way of “reversing” conditional probabilities
● We call 𝑝(𝒚) the “prior”, and 𝑝 𝒚|𝒙  the “posterior”
● Ex: Bayes’ Rule in machine learning:
! 𝒟: data (evidence)
! 𝜽: unknown quantities, such as model parameters, predictions
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𝑝 𝒚|𝒙 =
𝑝 𝒙|𝒚 𝑝(𝒚)

𝑝 𝒙
=

𝑝 𝒙|𝒚 𝑝(𝒚)
∑𝒚! 𝑝 𝒙|𝒚′ 𝒑(𝒚′)

𝑝 𝜽|𝒟 =
𝑝 𝒟|𝜽 𝑝(𝜽)

𝑝 𝒟
=

𝑝 𝒙|𝒚 𝑝(𝒚)
∑𝒚! 𝑝 𝒙|𝒚′ 𝒑(𝒚′)

Posterior belief on the 
unknown quantities 
you see data 𝒟 

Likelihood: How likely is the 
observed data under the 
particular unknown quantities 𝜽 

Prior belief on the unknown 
quantities before you see data 𝒟 

[10-601B @ CMU]



Independence
● Two random variables are said to be independent iff their joint 

distribution factors

● Two random variables are conditionally independent given a third if they 
are independent after conditioning on the third
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𝑝 𝒙, 𝒚 = 𝑝 𝒙 𝑝(𝒚)

𝑝 𝒙, 𝒚|𝒛 = 𝑝 𝒙|𝒛 𝑝(𝒚|𝒛)

[CSC2515, Wang]



Entropy
● Shannon entropy

! The average level of "information", "surprise", or "uncertainty" inherent to 
the variable 𝒙	's possible outcomes
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𝐻 𝑝 = −-
𝒙
𝑝 𝒙 log	𝑝 𝒙



KL Divergence
● Kullback-Leibler (KL) divergence: measures the closeness of two 

distributions 𝑝(𝒙) and 𝑞(𝒙)

! a.k.a. Relative entropy
! KL >= 0  (Jensen’s inequality)
! Intuitively:
§ If 𝑞 is high and 𝑝 is high, then we are happy (i.e. low KL divergence) 
§ If 𝑞 is high and 𝑝 is low then we pay a price (i.e. high KL divergence).
§ If 𝑞 is low then we don’t care (i.e. also low KL divergence, regardless of 𝑝) 

! not a true “distance”: 
§ not commutative (symmetric) KL p||q 	! = KL(q||p)
§ doesn’t satisfy triangle inequality
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KL 𝑞 𝒙 	||	𝑝(𝒙) =-
𝒙

𝑞 𝒙 	log
𝑞(𝒙)
𝑝(𝒙)



Supervised Learning
● Model to be learned 𝑝# 𝒙
● Observe full data 𝒟 = 	𝒙$	 $%&'

! e.g., 𝒙& 	includes both input (e.g., image) and output (e.g., image label)
! 𝒟	defines an empirical data distribution 0𝑝 𝒙
§ 𝒙 ∼ 𝒟	 ⇔ 	𝒙 ∼ 0𝑝 𝒙

● Maximum Likelihood Estimation (MLE)
! The most classical learning algorithm 

● MLE is minimizing the KL divergence between the empirical data 
distribution and the model distribution

21

min
#
− 𝔼(∼ *+ 𝒙

1
log	𝑝#(𝒙)

KL :𝑝(𝒙)	||	𝑝#(𝒙) = −𝔼 *+ 𝒙 	log	𝑝# 𝒙 	 + 𝐻( :𝑝(𝒙))	

Cross entropy



Unsupervised Learning
● Each data instance is partitioned into two parts:
! observed variables 𝒙
! latent (unobserved) variables 𝒛

● Want to learn a model 𝑝# 𝒙, 𝒛

22[Content adapted from CMU 10-708]
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Latent (unobserved) variables
● A variable can be unobserved (latent) because: 
! imaginary quantity: meant to provide some simplified and abstractive view of 

the data generation process 
§ e.g., speech recognition models, mixture models, ...
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Latent (unobserved) variables
● A variable can be unobserved (latent) because: 
! imaginary quantity: meant to provide some simplified and abstractive view of 

the data generation process 
§ e.g., speech recognition models, mixture models, ...

! a real-world object (and/or phenomena), but difficult or impossible to measure 
§ e.g., the temperature of a star, causes of a disease, evolutionary ancestors ... 

! a real-world object (and/or phenomena), but sometimes wasn’t measured, 
because of faulty sensors, etc.

● Discrete latent variables can be used to partition/cluster data into sub- 
groups 

● Continuous latent variables (factors) can be used for dimensionality 
reduction (e.g., factor analysis, etc.) 

25



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:

● This model can be used for unsupervised clustering. 
! This model (fit by AutoClass) has been used to discover new kinds of stars in 

astronomical data, etc.  

26



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:

27

Parameters to be learned:



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
● Recall MLE for completely observed data
! Data log-likelihood:

! MLE:

● What if we do not know 𝑧,? 28



Why is Learning Harder? 
● Complete log likelihood: if both 𝒙 and 𝒛 can be observed, then

! Decomposes into a sum of factors, the parameter for each factor can be 
estimated separately

● But given that 𝒛 is not observed, ℓ- 𝜃; 𝒙, 𝒛  is a random quantity, cannot 
be maximized directly

● Incomplete (or marginal) log likelihood: with 𝒛 unobserved, our 
objective becomes the log of a marginal probability: 

! All parameters become coupled together
! In other models when 𝒛 is complex (continuous) variables (as we’ll see later), 

marginalization over 𝒛 is intractable.
29

ℓ- 𝜃; 𝒙, 𝒛 = log	𝑝 𝒙, 𝒛 𝜃 = 	log	𝑝 𝒛 𝜃. + log	𝑝(𝒙|𝒛, 𝜃()

ℓ 𝜃; 𝒙 = log	𝑝 𝒙 𝜃 = 	log-
.
𝑝(𝒙, 𝒛|𝜃)



Questions?


