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Discussion

e No Free Lunch (NFL) theorem (suggested reading of Lecture#10):

o No single machine learning algorithm is universally the best-performing
algorithm for all problems

e Do generalist models (LLMs) violate this theorem?

e Does "the Bitter Lesson” contradict with this theorem?
o (suggested reading of Lecture#6)



Latent-space Reasoning (Recap)

e But how to learn a good latent space in the first place?
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Latent-space Reasoning

e But how to learn a good latent space in the first place?

o Compact and well-structured representation of the world, enabling
realistic generation and consistent reconstruction
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[Liu et al., 2024] Generating, Reconstructing, and Representing Discrete and Continuous Data: Generalized Diffusion with Learnable Encoding-Decoding
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Latent-space Reasoning

e But how to learn a good latent space in the first place?

o Compact and well-structured representation of the world, enabling
realistic generation and consistent reconstruction
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Variational Autoencoders (VAEs)

[Liu et al., 2024] Generating, Reconstructing, and Representing Discrete and Continuous Data: Generalized Diffusion with Learnable Encoding-Decoding



Supervised Learning,
Unsupervised Learning



a comedy to brighten your day

Probabilistic Models: Why Probability?

e The world is a very uncertain place
o "What will the weather be like today?”
"Will I like this movie?”

e We often can't prove something is true, but we can still
ask how likely different outcomes are or ask for the most
likely explanations

 RaletelaliRet St
e Predictions need to have associated confidence (w) 2o -

—

o Confidence -> probability

e Not all machine learning models are probabilistic
o ... but most of them have probabilistic interpretations

[CS60020, Bhattacharya; CSC2515, Wang] 8



Notations

e A random variable x represents outcomes or states of the world.

o We write p(x,) to mean Probability(x = x)

e Sample space: the space of all possible outcomes (may be discrete,

continuous, or mixed)

e p(x) is the probability mass (density) function
o Assigns a number to each point in sample space
o Non-negative, sums (integrates) to 1

o Intuitively: how often does x occur, how much do we believe in x.

[CSC2515, Wang]



Notations

e Joint distribution p(x, y)

o Conditional distribution p(y|x)

p(x,y)
p(x)

o pylx) =
o Expectation:

EIf ()] = ) f(x)p@)

or

E[f (x)] = f FOp(x)dx
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Rules of Probability

e Sumrule

p(x) = E P(X, J/) (Marginalize out y)
y

p(x) = E EE P(X5 X550, Xy )

X2 X3 AN
e Product/chain rule

p(x,y)=p(y|x)p(x)
P(XpsesXy) = p(X) p(X, [ X))o p(Xy | Xp5eees X )

[CSC2515, Wang]
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Bayes’ Rule
p(x|y)pr(y)

p(x)

e This gives us a way of “reversing” conditional probabilities

p(y|x) =

e We call p(y) the “prior”, and p(y|x) the “posterior”

e Ex: Bayes’ Rule in machine learning:
o D: data (evidence)
o 0: unknown quantities, such as model parameters, predictions

Likelihood: How likely is the
observed data under the

Posterior belief on the D (D | 9)[? (9) particular unknown quantities 6
unknown quantities —— P(G |D) — (D)
you see data D p Prior belief on the unknown

quantities before you see data D
[10-601B @ CMU] 12



Independence

e Two random variables are said to be independent iff their joint
distribution factors

p(x,y) = p(X)p(y)

e Two random variables are conditionally independent given a third if they
are independent after conditioning on the third

p(x,y|z) = p(x|2)p(y|z)

[CSC2515, Wang] 13



Entropy
e Shannon entropy H(p) = —2 p(x)log p(x)

o The average level of "information", "surprise", or "uncertainty" inherent to
the variable x 's possible outcomes
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KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two
distributions p(x) and q(x)

KL(g() [ () = Z a(x) log-

o a.k.a. Relative entropy
o KL>=0 (Jensen’s inequality)
o Intuitively:
= |f g is high and p is high, then we are happy (i.e. low KL divergence)
= |f q is high and p is low then we pay a price (i.e. high KL divergence).
= |f g is low then we don't care (i.e. also low KL divergence, regardless of p)
o not a true “distance”:
= not commutative (symmetric) KL(p||q) ! = KL(q||p)
= doesn't satisfy triangle inequality

p(x)
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Supervised Learning

e Model to be learned pg(x)

e Observe full data D = { x; }V,
o e.g., x; includes both input (e.g., image) and output (e.g., image label)
o D defines an empirical data distribution §(x)
= x~D & x~px)

e Maximum Likelihood Estimation (MLE) min — Ey_5(x) [ log pg(x) ]

o The most classical learning algorithm g

e MLE is minimizing the KL divergence between the empirical data
distribution and the model distribution

KL(P(x) || po(x)) = —Ej(x)[ log pg(x) | + H(P(x))

Cross entropy 1



Unsupervised Learning

e Each data instance is partitioned into two parts:
o observed variables x
o latent (unobserved) variables z

e Want to learn a model pg(x, 2)

[Content adapted from CMU 10-708]

VAE
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...
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Fig. 1.2 Isolated Word Problem

LCoocepr: a xiogle word
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...

3
%
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:
o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process
= e.g., speech recognition models, mixture models, ...
o a real-world object (and/or phenomena), but difficult or impossible to measure
= e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
o a real-world object (and/or phenomena), but sometimes wasn’t measured,
because of faulty sensors, etc.
e Discrete latent variables can be used to partition/cluster data into sub-
groups
e Continuous latent variables (factors) can be used for dimensionality
reduction (e.g., factor analysis, etc.)
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Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(x,|1,2) = Zk TN (x| 14, 2,)
A\

mixture proportion  mixture component

e This model can be used for unsupervised clustering.

o This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.
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Example: Gaussian Mixture Models (GMMs) @

o Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ ()" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1

1
(27[)'"/2’2,(’1/2 exp{_%('xn - 1) 2 (x, _:uk)}

p(x,|zy =1, p,%) =

Parameters to be learned:

o The likelihood of a sample: .
mixture component

mixture proportion

w2) =) p(z" =1|7)p(x,|z* =1, 1, %) —
= Zzn Hk ((”k)zs N(x, :,ukazk)zic ): Zk TN (x| 1y, 2,)

p(x,
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Example: Gaussian Mixture Models (GMMs)
ﬂaz)zzk7?kN(x9!ﬂkﬂzk)

o Consider a mixture of K Gaussian components: P(X,
e Recall MLE for completely observed data

o Data log-likelihood: , (0; D) = long(Zn,x ) = long(Z |\ m)p(x, |z, 14,0)

_Zlognﬂ-k +ZlogHN(xn,,uk,o-)
o MLE: _Zzzklogﬂk Zzzn 52 L (x,-1) +C

Ty e = argmax ¢ (0; D),

My 4 e = argmax ¢ (0;D) = s = Z ;
Oy e = argmax ¢ (0;D) '

e What if we do not know z,7? o8



Why is Learning Harder?

e Complete log likelihood: if both x and z can be observed, then

?.(0;x,z) =logp(x,z|0) = logp(z|6,) + log p(x|z,6,)
o Decomposes into a sum of factors, the parameter for each factor can be
estimated separately
e But given that z is not observed, £.(8; x, z) is a random quantity, cannot
be maximized directly

e Incomplete (or marginal) log likelihood: with z unobserved, our
objective becomes the log of a marginal probability:

2(0; x) = log p(x]6) = log 22 D (x, z|6)

o All parameters become coupled together
o In other models when z is complex (continuous) variables (as we'll see later),

marginalization over z is intractable.
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