DSC291: Machine Learning with Few Labels

Enhancing Large Language Models: Overview

Zhiting Hu
Lecture 10, April 22, 2024
UCSanDiego
HALICIOĞLU DATA SCIENCE INSTITUTE

Outline: Enhancing the Backend Beyond LMs

- Richer learning mechanisms

```
- Learning with Embodied Experiences
Social Learning
- Multi-modal capabilities
```

- Latent-space reasoning
- Agent models with external augmentations (e.g., tools)

Latent-space Reasoning

- What's the best space for carrying out reasoning?
- Natural language space?
- Raw sensory space (e.g., video)?
- Learned latent space?
- Single-level / multi-level latent space?
- Consider a long-term planning problem, e.g., economic planning for U.S. in 2024
- Extremely complex, long-horizon reasoning
- Inefficient/infeasible with LLM token-by-token reasoning or Video Model frame-by-frame reasoning
- Multi-level latent spaces are needed for multi-granularity reasoning

Latent-space Reasoning

- But how to learn a good latent space in the first place?

Outline: Enhancing the Backend Beyond LMs

- Richer learning mechanisms
- Learning with Embodied Experiences
- Social Learning
- Multi-modal capabilities
- Latent-space reasoning
- Agent models with external augmentations (e.g., tools)

Agent models with external augmentations

- External augmentations for added capabilities:
- Tools: telescope, vehicles, ...
- Data about a skill: demonstration videos of climbing a snowy mountain
- Knowledge bases: domain knowledge

LLMs need external tools for real-world tasks

LLMs need external tools for real-world tasks

Lacking the abilities for

> The original price of MacBook Air is $\$ 1580$. Can you help me purchase it when it gets 10% off?

[^0]
LLMs need external tools for real-world tasks

Lacking the abilities for

Accurate math calculation

The original price of MacBook Air is $\$ 1580$. Can you help me purchase it when it gets 10% off?

Sorry, but this is beyond my capabilities as a language model.

LLMs need external tools for real-world tasks

Lacking the abilities for

- Accurate math calculation

The original price of MacBook Air is $\$ 1580$. Can you help me purchase it when it gets 10% off?

Sorry, but this is beyond my

 capabilities as a language model...
LLMs need external tools for real-world tasks

Lacking the abilities for

- Accurate math calculation

Up-to-date knowledge

The original price of MacBook Air is $\$ 1580$. Can you help me purchase it
when it gets 10% off?

Sorry, but this is beyond my capabilities as a language model.

LLMs need external tools for real-world tasks

Lacking the abilities for

- Accurate math calculation
- Accessing up-to-date knowledge

Sorry, but this is beyond my capabilities as a language model.

LLMs need external tools for real-world tasks

Real-world actions

Lacking the abilities for

- Accurate math calculation
- Accessing up-to-date knowledge

LLMs need external tools for real-world tasks

Lacking the abilities for

- Accurate math calculation
- Accessing up-to-date knowledge
- Taking real-world actions

LLMs need external tools for real-world tasks

Augmenting language models with tools will help unlock those abilities!

- Accurate math calculation

- Accessing up-to-date knowledge

Database

- Taking real-world actions
$\stackrel{A}{9}$ API/Robot

LLMs need external tools for real-world tasks

Augmenting language models with tools will help unlock those abilities!

- Accurate math calculation

苃

- Accessing up-to-date knowledge

Database

- Taking real-world actions
$\overbrace{}^{9-0} \mathrm{API} /$ Robot

Teaching LLMs to Use Tools - Method \#1: Fine-tuning

Train the LLM with the demonstrations of tool calling

Teaching LLMs to Use Tools - Method \#1: Fine-tuning

Train the LLM with the demonstrations of tool calling

Limitations:

Teaching LLMs to Use Tools - Method \#2: Demonstrations

Teaching LLMs to Use Tools - Method \#2: Demonstrations

Prompting LLMs with demonstrations of tool calling

Limitations:

- Shallow Understanding: Can only learn from surface text instead of large-scale data :

- Limited tools: struggles with a large tool set 를
<multiply> (1580, 90\%)

Teaching LLMs to Use Tools - Method \#3: Toolken Step 1: Next token/toolken prediction

Adding Toolkens to the vocabulary

Teaching LLMs to Use Tools - Method \#3: Toolken Step 1: Next token/toolken prediction

Adding Toolkens to the vocabulary

Teaching LLMs to Use Tools - Method \#3: Toolken Step 1: Next token/toolken prediction

Adding Toolkens to the vocabulary

Teaching LLMs to Use Tools - Method \#3: Toolken Step 1: Next token/toolken prediction

Adding Toolkens to the vocabulary

Teaching LLMs to Use Tools - Method \#3: Toolken Step 2: Argument prediction in a separate tool mode

Generating arguments with in-context learning

Teaching LLMs to Use Tools - Method \#3: Toolken Step 3: Execute the tool call and return the result

Finally, the tool call is executed and the result is sent back to the reasoning mode

Teaching LLMs to Use Tools - Method \#3: Toolken

Example - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into

Answer:

Teaching LLMs to Use Tools - Method \#3: Toolken

Example - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is

Teaching LLMs to Use Tools - Method \#3: Toolken

Example - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is $\operatorname{GCD}(64,48)$

Teaching LLMs to Use Tools - Method \#3: Toolken

Example - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into

Answer: The maximal side length of each section is 16

Teaching LLMs to Use Tools - Method \#3: Toolken

Example - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is 16 meters. Therefore, the area is

Teaching LLMs to Use Tools - Method \#3: Toolken

Example - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is 16 meters. Therefore, the area is
(16)

Teaching LLMs to Use Tools - Method \#3: Toolken

Example - Math Reasoning

Question: John has a rectangular garden, of which the length is 64 meters and the width is 48 meters. He wants to divide the garden into identical square sections, each with the largest possible area. What's the area of each section?

Answer: The maximal side length of each section is 16 meters. Therefore, the area is 256 square meters

Teaching LLMs to Use Tools - Method \#3: Toolken

 Example - Knowledge-based QAQuestion: Which team is the winner of 2005-06 FA CUP?
Question: Which team is the winer of 2005-06 FACUP?

KB tools

[^1]
Teaching LLMs to Use Tools - Method \#3: Toolken

 Example - Knowledge-based QAQuestion: Which team is the winner of 2005-06 FA CUP?

KB tools

Answer: The winner is

Teaching LLMs to Use Tools - Method \#3: Toolken

 Example - Knowledge-based QAQuestion: Which team is the winner of 2005-06 FA CUP?
Answer: The winner is winner_of (2005-06 FA CUP)

Teaching LLMs to Use Tools - Method \#3: Toolken

 Example - Knowledge-based QAQuestion: Which team is the winner of 2005-06 FA CUP?

KB tools

Answer: The winner is Liverpool

Agent models with external augmentations

- External augmentations for added capabilities:
- Tools: telescope, vehicles, ...
- Data about a skill: demonstration videos of climbing a snowy mountain
- Knowledge bases: domain knowledge
- Agent automatically chooses appropriate augmentations for a given task
- How to represent millions of potential augmentations?
- Learning unified embedding of tools, data, knowledge [Hao et al., 2023]
- Another dimension rarely considered so far: constraint by budget
- Different augmentations will invoke different costs (financial, time, etc.)
- Need to strike the optimal balance between task performance vs costs

Key Takeaways

- Richer learning mechanisms
- Learning with Embodied Experiences
- Social Learning
- Multi-modal capabilities
- Multi-modal LMs, video generation models
- Latent-space reasoning
- How to learn a good multi-level latent space
- Agent models with external augmentations (e.g., tools)
- Unified embedding, budget for augmentations

Discussion

- No Free Lunch (NFL) theorem (suggested reading of Lecture\#10):
- No single machine learning algorithm is universally the best-performing algorithm for all problems
- Do generalist models (LLMs) violate this theorem?
- Does "the Bitter Lesson" contradict with this theorem?
- (suggested reading of Lecture\#6)

Questions?

[^0]: Sorry, but this is beyond my capabilities as a language model.

[^1]: Answer:

