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Outline

e Representation learning
o Variational Autoencoders (VAEs)

o Classification
o Augmentation
o Prompting



EM Algorithm

e Observed variables x, latent variables z
e To learn a model p(x, z|8), we want to maximize the marginal log-

likelihood
£(0; x) =logp(x|0) = logz: p(x,z|0)

o But it's too difficult
e EM algorithm:

o maximize a lower bound of £(0; x)
o Or equivalently, minimize an upper bound of £(6; x)

o Key equation:

p(x,z|6)
f(@, X) = Eq(z|x) llog

q(z|x)

] + KL(q(z|%) || p(zlx, 6))



EM Algorithm

e Observed variables x, latent variables z
e To learn a model p(x, z|8), we want to maximize the marginal log-

likelihood
£(0; x) =logp(x|0) = logz: p(x,z|0)

o But it's too difficult
e EM algorithm:

o maximize a lower bound of £(0; x)
o Or equivalently, minimize an upper bound of £(6; x)

e Keyequationr--------------- *  Evidence Lower Bound (ELBO)
| p(x,z[0)],
£(0; x) =:Eq(z|x) log :+ KL(CI(le) || p(z]x, 8))




EM Algorithm

e The EM algorithm is coordinate-decent on F(q, 6)

o E-step: th :argmqinF(q, Qt) = p(z|x,0°)

= the posterior distribution over the latent variables given the data and the
current parameters

o M-step: g+l = arg min (¢"*t1,6") = argmaxg 2 qt*1(z|x) log p(x, z|0)
Z

p(x,z|0)
q(z|x)

£(0;x) = Eq(zx) [log + KL(q(z|x) || p(z|x,0))

= —F(q,6) +KL(q(z|x) || p(zlx, 0)) :




Quick Recap

e We often cannot compute posteriors p(z|x, 8), and so we need to
approximate them, using variational methods.

e In variational Bayes, we'd like to find an approximation within some
family that minimizes the KL divergence to the posterior, but we can't
directly minimize this

e Therefore, we defined the ELBO, which we can maximize, and this is
equivalent to minimizing the KL divergence.

p|x) Evidence Lower Bound (ELBO)

7 KL(g(z:v*) || pz| %))




Black-box Variational Inference (BBVI)

e Variational distribution g;(z|x) with parameters 4, e.g.,
o Gaussian mixture distribution:
o Deep neural networks

e ELBO:
L) = Egznyllogp(x,2)] — Eg(z 1] log q(2[4) ]

e Want to compute the gradient w.r.t variational parameters 1

e Need stochastic gradient estimates

o The score function estimator (a.k.a log-derivative trick, REINFORCE)
o The reparameterization trick (a.k.a the pathwise gradient estimator)

[Ranganath et al.,14]



Computing Gradients of Expectations w/ reparametrization trick

o Loss: L=Eglfa(2)]

e Assume that we can express the distribution q;(z) with a transformation

© SO 2 ~ q(zI2)

z=t(e A)

E.qg.,
> =8 e ~ Normal(0,1)

_ 2
A z ~ Normal(u,o*)

e Reparameterization gradient

L= IEENS(E) [f/’l (Z(E, /1))]

ViL = Eevg(e)|V2f2(2) Vit(e, 1)]
e Pros: empirically, lower variance of the gradient estimate
e Cons: Not all distributions can be reparameterized 0



Reparameterization trick

e Reparametrizing Gaussian distribution

e ~ Normal(0,1)
Z=€0+Uu

|

Deterministic node

z ~ Normal(u, o)

~q(z|x) z=p+0Qs
‘ Random node

oo

[Courtesy: Tansey, 2016]

SN
0 0 ‘~N(0,1)
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BBVI with the reparameterization gradient

e ELBO:
L) = Egzpllogp(x, 2)] — Egz 1) log q(2]4) ]

e Gradientw.rt. A

e ~ s(e)

s=ter - 274

VL :EE~S(6)[ V,[logp(x,2) —log q(2)] V,t(e, )]



Variational Autoencoders (VAESs)



Variational Auto-Encoders (VAEs)

VAEs are a combination of the following ideas:

e Variational Inference
o ELBO

e Variational distribution parametrized as neural networks

e Reparameterization trick

[Courtesy: Dhruv, CS 4803]
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Variational Auto-Encoders (VAEs)

e Model pg(x,z) = pg(x|z)p(2)
o pg(x|z): a.k.a., generative model, generator, (probabilistic) decoder, ...
o p(z): prior, e.g., Gaussian

e Assume variational distribution g4 (z|x)

o E.g., a Gaussian distribution parameterized as deep neural networks
o a.k.a, recognition model, inference network, (probabilistic) encoder, ...

e ELBO:

L(6,$; x) = Eq,z1x)[log pe(x, 2)| —H(qgp(2]x))
= Eq,(z1x) 108 pe(x|2)] —KL(q4(z|x) || p(2))

</ ‘l'

Reconstruction Divergence from prior
(KL divergence between two Guassians

has an analytic form) "



Variational Auto-Encoders (VAEs)

 ELBO:
L(6,¢; x) = Eq,(z|x)llog po(x,2)| — H(qe(z|x))

= Eq,(z1x) [10g pe(x|2)] —KL(q4(z|x) || p(2))

e Reparameterization:
o [u; 0] = fp(x) (a neural network)
o z=u+0o0®¢, €~N(0,1)

decoder model decoder model

Deterministic node I

: Q ~q(z|x) reparameterization 0 z=pu+oQe¢
Random node
[ / [ 5
66 oS00
l I

encoder model encoder model 19




Example: VAEs for images

encode > decode >
Inference Generative

Reconstructed
Image

B

=0

Latent
Distribution

[https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder]
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Example: VAEs for images

encode > decode >
Inference Generative

Reconstructed
Image

B

Jﬁ&
fI
£
i A
iy J' l%:‘.é‘g. ‘?\\\\\

Latent
Distribution

Nz
=0

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Input Data

21




Example: VAEs for images

encode > decode >
Inference Generative

Reconstructe
Image

B

=

Latent
Distribution

Encoder network

Hz|x

qp(2|7)
Input Data

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]
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Example: VAEs for images

encode > decode >
Inference Generative

Reconstructe
Image

B

=

Distribution

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Encoder network \/

q4(2|z)
Input Data i

Z
Sample z from z|:L‘ ~ N(Mz|a:: Zz|:1:)

T

LL25FB }Elzla:
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Example: VAEs for images

encode > decode >
Inference Generative

Reconstructe:

z331:|z

Decoder network

po(z|2)

-PIE M| z’

~_

yA

Sample z from z|:L‘ ~ N(Mz|a:: Zz|:1:)

T

Hz|x

nput output
Latent
pistribution Encoder network
qp(2|T)
Input Data

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Zz|m

~_

b
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Example: VAEs for images

T
ey detes SSARSEE fm/mv' NvN\('““"lz, Za2)
ﬂ’m|z lez
Decoder network \/
po(z|2)
nput output Z
Sample z from z|:L‘ ~ J\/‘(uzm, Ez|m)
_ Latent Hz|x Zz|m
Pistribution Encoder network \/
q¢(2|T)

Input Data b
[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n] 25




Data manifold for 2-d z

: VAEs for images

Example
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Vary z,

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images Data manifold for 2-d z

Generating samples: rYryryres
— = =
o %Jse depo?er network. Now sample z “qv‘q"q-"'q-‘;,";.
rom pr|0r. —'—'—'—‘—"—
A VY Yy
A -333333'
Var rararere
Sample x|z from 2|z ~ N (fiz(2; Xg)2) Y4 1"; 3 ‘—-’—-’
/ \ (Degree of smile)) QQQQ-&;&;
\7 —_— = =
Hx|z Em|z : f‘i:‘f‘:‘j.
Decoder network \/ 'j"j"i’ff:‘t;%
wlels ; SRS
o sfeofevtestes

Sample z from z ~ N (0, I)

Vary z
[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n] ary zz  (head pﬂse)



Variational Auto-Encoders (VAEs)

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section 2.3 can be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters

repeat
XM « Random minibatch of M datapoints (drawn from full dataset)
€ <+ Random samples from noise distribution p(e€)

g < Vo LM (0, ¢p; XM €) (Gradients of minibatch estimator (8))

0, ¢ + Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (8, ¢)
return 9, ¢

[Kingma & Welling, 2014]



Note: Amortized Variational Inference

- Variational distribution as an inference model g4 (z|x) with
parameters ¢ (which was traditionally factored over samples)

« Amortize the cost of inference by learning a single data-
dependent inference model

 The trained inference model can be used for quick inference
on new data

29



Example: VAEs for text

RNNs work <EOS>

linear

RNNs work <EOS> RNNs work

[Bowman et al., 2015: Generating sentences from a continuous space]

Encoder Decoder
ﬂ [CLS] h _& X
BERT VVD W GPT-

[Li et al., 2020: OPTIMUS: Organizing Sentences via Pre-trained Modeling of a Latent Space]
30



Example: VAEs for text

Latent code interpolation and sentences generation from VAEs

“ i want to talk to you . ”

“t. want to be with you . ”
[Bowman et al., 2015] “ do n’t want to be with you .

1 do n’t want to be with you .

she did n’t want to be with him .

2

0.0 children are looking for the water to be clear.

0.1 children are looking for the water.

0.2 children are looking at the water.

0.3 the children are looking at a large group of people.

0.4 the children are watching a group of people.
[Li et al., 2020] 0.5 the people are watching a group of ducks.

0.6 the people are playing soccer in the field.

0.7 there are people playing a sport.

0.8 there are people playing a soccer game.

0.9 there are two people playing soccer.

1.0 there are two people playing soccer.



Example: VAEs for text

Source x 4 Target xp

a girl makes a silly face two soccer players are playing soccer

Input ¢ Output p

e a girl poses for a picture e two soccer players are at a soccer game.

e a girl in a blue shirt is taking pictures of a microscope e two football players in blue uniforms are at a field hockey game
e a woman with a red scarf looks at the stars e two men in white uniforms are field hockey players

e a boy is taking a bath e two baseball players are at the baseball diamond

e a little boy is eating a bowl of soup e two men are in baseball practice

Table 2: Sentence transfer via arithmetic zp = zg — 24 + z¢. The output sentences are in blue.

32
[Li et al., 2020: OPTIMUS: Organizing Sentences via Pre-trained Modeling of a Latent Space]



Variational Auto-encoders: Summary

e A combination of the following ideas:
o Variational Inference: ELBO
o Variational distribution parametrized as neural networks
o Reparameterization trick

L(O,¢; x) = [logpg(x|z)] — KL(qe(z|x) || p(2))

</ ‘l'

Reconstruction Divergence from prior

e Pros: (Razavi et al., 2019)
o Principled approach to generative models

o Allows inference of q(z|x), can be useful teature representation for other tasks

e Cons:
o Samples blurrier and lower quality compared to GANs

o Tend to collapse on text data
33



Summary: Representation Learning '

e Textx — Representation z

e Self-supervised learning: ’
o Language modeling: next-word prediction
= GPT2, GPT3 H ’
o Word embedding: —Past ' TFuture —

= skip-gram: predicting context tokens Present
o Contextualized embedding:
= BERT: masked language model (MLM)

o Contrastive learning: positive/negative samples, similarity measure / loss

e Unsupervised learning
o EM algorithm
o Variational inference

= Variational autoencoders (VAES)
34



Classification



Classification in NLP

e We approach many problems in NLP by treating them as problems of
classification.
o Input might be a document, a paragraph, a sentence, a word

o QOutput is a label from a finite set of classes or labels, defined by your
application or theory

[Courtesy: UW CSE 447 by Noah Smith] 36



Text (Document) Classification Examples

Library-like subjects (e.g., the Dewey decimal system)

News stories: politics vs. sports vs. business vs. technology ...
Reviews of films, restaurants, products: postive vs. negative
Author attributes: identity, political stance, gender, age, ...
Email, arXiv submissions, etc.: spam vs. not

What is the reading level of a piece of text?

How influential will a scientific paper be?

Will a piece of proposed legislation pass?

What dialect is a text written in?

vvvyvivvivVvVvYVvyy

Does the text contain content that will likely offend people?

[Courtesy: UW CSE 447 by Noah Smith] 37



Features of a Text

Running example:
x = "The vodka was great, but don’t touch the hamburgers.”
A different representation of the text sequences: features.

“Bag of words” features

[Courtesy: UW CSE 447 by Noah Smith] 38



Features of a Text

Running example:
x = "The vodka was great, but don’t touch the hamburgers.”
A different representation of the text sequences: features.

» Often, these are term (word or word sequence) frequencies.
E'g" qbﬁ;lerfn]w.burgers(w) =1, gb{EGeQ(m) =2, qb{dﬁ;el?c.ious(m) =0,

(bémq"t t h(w) _ 1 “Bag of words” features
on ouc

[Courtesy: UW CSE 447 by Noah Smith] 39



Features of a Text

Running example:
x = "The vodka was great, but don’t touch the hamburgers.”
A different representation of the text sequences: features.

» Often, these are term (word or word sequence) frequencies.

E & qbﬁ;\erfn]{burgers(w) =1, gb{:\eeq(m) =2, qb]clcreelgc.ious(m) =0,
qbﬁ“eq- (z) = 1. “Bag of words” features

don’t touch

» Can also be binary word “presence” features.
Eg ¢Z)T€S€TLC€ (w) — 1 ¢presence( ) — 1 ¢presence( ) — O

hamburgers the delicious
presence ( ) —1
don't touch o

[Courtesy: UW CSE 447 by Noah Smith] 40



Features of a Text

Running example:
x = "The vodka was great, but don’t touch the hamburgers.”
A different representation of the text sequences: features.

» Often, these are term (word or word sequence) frequencies.

E & qbﬁ;\erfn]{burgers( ) =1, gb{:leeq ( ) 2, gb]dcgelgc.ious(m) =0,
(bﬁ“eq- (z) = 1. “Bag of words” features

don’t touch

» Can also be binary word “presence” features.
E g ¢presence (w) — 1 ¢presence( ) — 1 ¢presence( ) — O

hamburgers the delicious
presence ( ) —1
don't touch o

» Transformations on word frequencies: logarithm, idf weighting

n
|3 : county, (v) > 0

odY () = " () - idf (v)

Vv € V,idf(v) = log

[Courtesy: UW CSE 447 by Noah Smith] 41



idf weight

o df(v) is the document frequency of word v: the number of documents
that contain v

o df(v) is an inverse measure of the informativeness of v
o df(v) <N

e We define the idf (inverse document frequency) of v by

n
i @ county, (v) > 0
oY (x) = ¢l () - idf (v)

Vv € V,idf(v) = log

42



Features of a Text

Running example:
x = "The vodka was great, but don’t touch the hamburgers.”
A different representation of the text sequences: features.

» Often, these are term (word or word sequence) frequencies.
E & qb]l?;ler?{burgers( ) =1, gb{;;zq ( ) 2, gb]clcfiiqc.ious(m) =0,
freq. _
¢d7:)€r?'t touch (w) = L.
» Can also be binary word “presence” features.
E g ¢I)’I"€S€’I’LC€ (w) — 1 ¢presence( ) — 1 ¢]?7”68€7’LC6( ) — O

hamburgers the delicious
presence ( ) —1
don’t touch S

» Transformations on word frequencies: logarithm, idf weighting

n
|3 : county, (v) > 0

odY () = " () - idf (v)

» Neural features automatically learned from data

Vv € V,idf(v) = log

[Courtesy: UW CSE 447 by Noah Smith]
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Classification using neural features

86% Spam

156% Not Spam

[ Classifier ]

BN 1

BERT

1 2 3 4 oo 512

[CLS]

Use BERT for sentence classification

44



Classification with few labels

e Data augmentation
e Zero-/few-shot learning via prompting

45



Text data augmentation

e Applies label-preserving transformations on original data points to
expand the data size

Methods Level Diversity Tasks Related Work
. . Kolomiyets et al. (2011), Zhang et al. (2015a),
r:{:f;‘gl‘é‘m Token Low ge":gis:‘lf;;g‘l’l“ Yang (2015), Miao et al. (2020),
p 2 € Wei and Zou (2019)
Wt e Text classification Kolomiyets et al. (2011), Gao et al. (2019)

p via LM Token Medium  Sequence labeling Kobayashi (2018), Wu et al. (2019a)
Machine translation  Fadaee et al. (2017)
Text classification .

: : : Iyyer et al. (2015), Xie et al. (2017)
Rendom WecTlon; gy Low  Jcquencelabeling 1o e etal. (2018), Lample et al. (2018)
deletion, swapping Machine translation Xie et al. (2020), Wei and Zou (2019)

Dialogue generation ) i
Semantic Parsing : g
o i Jia and Liang (2016) , Andreas (2020)
Composiional  poken  High  poduencelabeite - Nye eral. (2020), Feng et al. (2020)
g guage MOCCHNE  pyrrer et al. (2020) , Guo et al. (2020)
Text generation
Text classification
Machine translation  Yu et al. (2018), Xie et al. (2020)
Paraphrasing  Sentence High Question answering  Chen et al. (2019), He et al. (2020)
Dialogue generation  Chen et al. (2020c), Cai et al. (2020)
Text summarization
Conditional Sanit Hish Text classification Anaby-Tavor et al. (2020), Kumar et al. (2020)
generation SRRIEe & Question answering  Zhang and Bansal (2019), Yang et al. (2020)

46
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Text data augmentation

e Applies label-preserving transformations on original data points to
expand the data size

Text classification

Miyato et al. (2017), Ebrahimi et al. (2018b)

Whltet_tbolt ';‘oﬁfr;or Medium  Sequence labeling Ebrahimi et al. (2018a), Cheng et al. (2019),
anac S Machine translation  Chen et al. (2020d)
Text classification
Sequence labeling Jia and Liang (2017)
Black-box Token or Medium Machine translation  Belinkov and Bisk (2017), Zhao et al. (2017)
attack  Sentence Textual entailment Ribeiro et al. (2018), McCoy et al. (2019)
Dialogue generation  Min et al. (2020), Tan et al. (2020)
Text Summarization
Hiddsi-s658  "Pokieiian Text classification Hsu et al. (2017), Hsu et al. (2018)
st a?tion Sentetice High Sequence labeling Wau et al. (2019b), Chen et al. (2021)
Peti Speech recognition = Malandrakis et al. (2019), Shen et al. (2020)
Text classification Miao et al. (2020), Chen et al. (2020c¢)
Interpolation Token High Sequence labeling Cheng et al. (2020b), Chen et al. (2020a)

Machine translation

Guo et al. (2020)

Chen et al., “An Empirical Survey of Data Augmentation for Limited Data Learning in NLP”
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Text data augmentation: Examples

e Lexical Substitution
o Thesaurus-based substitution

It is awesome — RIEChEE—> |t is amazing

amazing
awe-inspiring  synonyms
awing

[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nip/]
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Text data augmentation: Examples

e Lexical Substitution
o Thesaurus-based substitution
o Word-embedding substitution

Nearest neighbors in word2vec

A
It is amazing
perfect fastastic
: It is awesome é Itis perfect

awesome f It Is fantastic
amazing un

o best 5
a

[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nip/] 49



Text data augmentation: Examples

e Lexical Substitution
o Thesaurus-based substitution

o Word-embedding substitution
o Masked LM

pretty
really

+

BERT Thisis very cool —

() €

This is cool

[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nip/]

L

T
..

—

This is pretty cool
This is really cool

This is super cool
This is kinda cool
This is very cool

50



Text data augmentation: Examples

e Lexical Substitution
Thesaurus-based substitution
Word-embedding substitution

Masked LM
TF-IDF based word replacement

O
O
O
O

= words that have low TF-IDF scores are uninformative and thus can be replaced

without affecting the ground-truth labels of the sentence.

This virus has spread worldwide

|

A virus has spread worldwide

[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nlp/]
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Text data augmentation: Examples

English

e Lexical Substitution =
o Thesaurus-based substitution This is very cool
o Word-embedding substitution
o Masked LM

o TF-IDF based word replacement

e Paraphrasing
o Back Translation

English

translate

French

This is very cool

[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nip/]

» C'est trés cool

l translate

That's very cool
B

English

Back-translation Augmentations

French

Mandarin

Italian

» That's very cool

» That's cool

» This Is very nice

52



Text data augmentation: Examples

e Lexical Substitution Spelling error
o Thesaurus-bas§d SUbStIt.UtIC.)n Iy RR—
o Word-embedding substitution This is very cool < .........
o Masked LM This id very cool
o TF-IDF based word replacement

e Paraphrasing Unigram noising:

o Back Translation

Unigram Frequency Distribution

e« Random Noise Injection count
the | I sample &
and || ] replace
words to |[ 1 \
a ([ L3 R — text
of |[—

[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nip/] 53



Text data augmentation: Examples

e Lexical Substitution
o Thesaurus-based substitution

o Word-embedding substitution
o Masked LM

o TF-IDF based word replacement
e Paraphrasing

. Sent 1
o Back Translation Srienee
e Random Noise Injection
. Sentence 2
Y MIXUP
Sentence 1
Sentence 2

[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nip/]

Original Mixup algorithm

_ﬂ *05+. *05 =

50%: Cat, 50% Dog

wordMixup Technique

Word
Embeddings 40%
Combined Encoder Sentence L softmax
embedding (CNN/LSTM) Embedding
60%
Wword
Embeddings
sentMixup Technique
Word Encoder Sentence 40%
Embeddings (CNN/LSTM) Embedding \
Combined »
Embedding g
word Encoder Sentence 60%
Embeddings (CNN/LSTM) Embedding




Text data augmentation: Examples

e Lexical Substitution
Thesaurus-based substitution

O
o Word-embedding substitution
o Masked LM

O

TF-IDF based word replacement

e Paraphrasing
o Back Translation

e Random Noise Injection
o MIXUP
e Generative Models

o Finetune a large pre-trained LM (BERT, GPT2, etc)

o Use the fine-tuned LM to generate new data

[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nip/]

Finetune on training data

GPT2

Task: Learn to generate training data
Output: POSITIVE<SEP>It is very useful app<EOS>

Generate new samples

GPT2

Prompt: POSITIVE <SEP>lt is very
Generate: POSITIVE <SEP> It is very helpful tool<EOS>
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Classification with few labels

e Data augmentation
e Zero-/few-shot learning via prompting

56



Increasing LM size

1000 -~

GPT-3 (175B) —_

100 2 Megatron-Turing NLG (530B)

Megatron-LM (8.3B)

Model Size (in billions of parameters)

10
1 -GPT-2 (1.5B)
BERT-Large (340M)
0.1
“ELMo (94M)
0.01
2018 2019 2020 2021 2022

https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/



Traditional fine-tuning

[Courtesy: Mohit lyyer, CS685]

Downstream
training data

The model is trained via repeated gradient updates using a

large corpus of example tasks.

sea otter => loutre de mer

WV
Vv

gradient update

peppermint => menthe poivrée

gradient update

(_Ié

Vv

plush giraffe => girafe peluche -

gradient update

cheese =>

example #1

example #2

example #N

Downstream

test data
58
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Zero-shot

The model predicts the answer given only a natural lanquage
description of the task. No gradient updates are performed.

Translate English to French: task description

cheese => prompt

No fine-tuning! Literally just take a pretrained LM and give it the prefix

[Courtesy: Mohit lyyer, CS685] 59



One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer example
cheese => prompt

[Courtesy: Mohit lyyer, CS685] 60



Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivree

plush girafe => girafe peluche

cheese => prompt

[Courtesy: Mohit lyyer, CS685] 61



Performance (TriviaQA)

Question

Miami Beach in Florida borders which ocean?

What was the occupation of Lovely Rita according to the song by the Beatles

Who was Poopdeck Pappys most famous son?

The Nazi regime was Germany's Third Reich; which was the first Reich?

At which English racecourse did two horses collapse and die in the parade ring due to electrocution, in February 2011?

Which type of hat takes its name from an 1894 novel by George Du Maurier where the title character has the surname O'Ferrall ?

What was the Elephant Man's real name?

[Courtesy: Mohit lyyer, CS685] 62



Performance (TriviaQA)

70 Fine-tuned SOTA

TriviaQA

Accuracy
8 & 8 38

N
o

ki
o

0.1B
[Courtesy: Mohit lyyer, CS685]

0.4B

08B 1.3B 26B 6.7B 13B
Parameters in LM (Billions)

—e— Zero-Shot
—e— One-Shot
—eo— Few-Shot (K=64)

175B
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Sub-optimal and sensitive discrete/hard prompts

Discrete/hard prompts
e natural language instructions/task descriptions

Problems
e requiring domain expertise/understanding of the model’s inner

workings

e performance still lags far behind SotA model tuning results
e sub-optimal and sensitive

- prompts that humans consider reasonable is not necessarily
effective for language models (Liu et al., 2021)

- pre-trained language models are sensitive to the choice of
prompts (Zhao et al., 2021)

[Courtesy: Mohit lyyer, CS685] 64



Sub-optimal and sensitive discrete/hard prompts

Prompt P@1
X] 1s located in [Y]. (original) 31.29
[ X] 1s located in which country or state? [Y]. | 19.78
[ X] 1s located in which country? [Y]. 31.40
(X] is located in which country? In [Y]. 51.08

Table 1. Case study on LAMA-TREx P17 with bert-base-cased. A
single-word change in prompts could yield a drastic difference.

Liu et al., 2021

[Courtesy: Mohit lyyer, CS685] 65



Continuous/soft prompts

e Learning continuous/soft prompts (Liu et al., 2021; Li and Liang., 2021;
Qin and Eisner., 2021; Lester et al., 2021)

o A sequence of additional task-specific tunable tokens prepended to the input

text
Fine-tuning
Transformer (Translation)
R fee=a - - @ - .- .
F Tiandamr(&lmduﬁon)
- - .

mwonner('l'ablo-to-bxt)

nnrrrnli

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Prefix-tuning

DDDDDDDDDDD

name Starbucks type coffee shop [SEP] Starbucks serves coffee

[Courtesy: Mohit Iyyer, CS685] Input (table-to-text) Output (table-to-text) 66




Continuous/soft prompts

e Learning continuous/soft prompts (Liu et al., 2021; Li and Liang., 2021;
Qin and Eisner., 2021; Lester et al., 2021)

o A sequence of additional task-specific tunable tokens prepended to the input
text

Prompt Tuning
(Ours)

-
Pre-trained Model

* Frozen *

".\ l.v '.\

H{_.J . v /
Tunable SO“ |npUt TeXt (LeSter et al., 2021)
Prompt

[Courtesy: Mohit lyyer, CS685] 67



Continuous/soft prompts

e Learning continuous/soft prompts (Liu et al., 2021; Li and Liang., 2021;
Qin and Eisner., 2021; Lester et al., 2021)

o A sequence of additional task-specific tunable tokens prepended to the input

text
100
—Hl- Prompt Design
—=x— Prompt Tuning
90 —®— Model Tuning

4
) ,/ :/ x/ )
: / x/ e /'/
A

()
60 x/
1

SuperGLUE Score

A Prompt Tuning becomes

more competitive with scale

50 u

08 10° 1010 101
Model Parameters

[Courtesy: Mohit lyyer, CS6ov 68



Key Takeaways

e Text features:
o Bag-of-words, TF-IDF weighting, neural features

e Data augmentation
Lexical Substitution
Paraphrasing

Random Noise Injection
MixUp

Generative Models

O o O O O

e Prompting for few-shot learning
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