
DSC291: Advanced Statistical Natural
Language Processing

Unsupervised Learning
Classification

Zhiting Hu
Lecture 9, April 21, 2022

Outline
● Representation learning
! Variational Autoencoders (VAEs)

● Classification
! Augmentation
! Prompting

2

EM Algorithm
● Observed variables 𝒙, latent variables 𝒛
● To learn a model 𝑝 𝒙, 𝒛|𝜃 , we want to maximize the marginal log-

likelihood

! But it’s too difficult
● EM algorithm:
! maximize a lower bound of ℓ 𝜃; 𝒙
! Or equivalently, minimize an upper bound of ℓ 𝜃; 𝒙

● Key equation:

3

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙 + KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

ℓ 𝜃; 𝒙 = log 𝑝 𝒙 𝜃 = log2
'
𝑝(𝒙, 𝒛|𝜃)

EM Algorithm
● Observed variables 𝒙, latent variables 𝒛
● To learn a model 𝑝 𝒙, 𝒛|𝜃 , we want to maximize the marginal log-

likelihood

! But it’s too difficult
● EM algorithm:
! maximize a lower bound of ℓ 𝜃; 𝒙
! Or equivalently, minimize an upper bound of ℓ 𝜃; 𝒙

● Key equation:

4

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

ℓ 𝜃; 𝒙 = log 𝑝 𝒙 𝜃 = log2
'
𝑝(𝒙, 𝒛|𝜃)

Evidence Lower Bound (ELBO)

Variational free energy

EM Algorithm
● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

! E-step:

§ the posterior distribution over the latent variables given the data and the
current parameters

! M-step:

5

= 𝑝(𝒛|𝒙, 𝜃!)

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= argmax(2
'
𝑞)*+ 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)

Quick Recap
● We often cannot compute posteriors 𝑝 𝒛 𝒙, 𝜃 , and so we need to

approximate them, using variational methods.
● In variational Bayes, we’d like to find an approximation within some

family that minimizes the KL divergence to the posterior, but we can’t
directly minimize this

● Therefore, we defined the ELBO, which we can maximize, and this is
equivalent to minimizing the KL divergence.

6

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

Evidence Lower Bound (ELBO)

Black-box Variational Inference (BBVI)
● Variational distribution 𝑞,(𝒛|𝒙) with parameters 𝜆, e.g.,
! Gaussian mixture distribution:
! Deep neural networks

● ELBO:

● Want to compute the gradient w.r.t variational parameters 𝜆
● Need stochastic gradient estimates
! The score function estimator (a.k.a log-derivative trick, REINFORCE)
! The reparameterization trick (a.k.a the pathwise gradient estimator)

7[Ranganath et al.,14]

ℒ 𝜆 = 𝔼!(𝒛|𝝀) log 𝑝 𝒙, 𝒛 − 𝔼!(𝒛|𝝀) log 𝑞 𝒛 𝜆

Computing Gradients of Expectations w/ reparametrization trick
● Loss:

● Assume that we can express the distribution 𝑞𝝀(𝒛) with a transformation

! E.g.,

● Reparameterization gradient

● Pros: empirically, lower variance of the gradient estimate
● Cons: Not all distributions can be reparameterized 9

𝜖 ∼ 𝑠 𝜖
𝑧 = 𝑡 𝜖, 𝜆

⇔ 𝑧 ∼ 𝑞 𝑧|𝜆

𝜖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0, 1
𝑧 = 𝜖𝜎 + 𝜇 ⇔ 𝑧 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎.

ℒ = 𝔼!𝝀(𝒛) 𝑓,(𝒛)

∇,ℒ = 𝔼𝝐∼𝒔(𝝐) ∇𝒛𝑓, 𝒛 ∇,𝑡 𝜖, 𝜆

ℒ = 𝔼𝝐∼2(𝝐) 𝑓,(𝒛(𝝐, 𝜆))

Reparameterization trick
● Reparametrizing Gaussian distribution

10

𝜖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0, 1
𝑧 = 𝜖𝜎 + 𝜇 ⇔ 𝑧 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎.

[Courtesy: Tansey, 2016]

BBVI with the reparameterization gradient
● ELBO:

● Gradient w.r.t. 𝜆

15

ℒ 𝜆 = 𝔼!(𝒛|𝝀) log 𝑝 𝒙, 𝒛 − 𝔼!(𝒛|𝝀) log 𝑞 𝒛 𝜆

∇!ℒ =E"∼$(")[∇' log 𝑝 𝑥, 𝑧 − log 𝑞 𝑧 ∇!𝑡 𝜖, 𝜆]

𝜖 ∼ 𝑠 𝜖
𝑧 = 𝑡 𝜖, 𝜆

⇔ 𝑧 ∼ 𝑞 𝑧|𝜆

16

Variational Autoencoders (VAEs)

Variational Auto-Encoders (VAEs)
VAEs are a combination of the following ideas:

● Variational Inference
! ELBO

● Variational distribution parametrized as neural networks

● Reparameterization trick

17[Courtesy: Dhruv, CS 4803]

Variational Auto-Encoders (VAEs)
● Model 𝑝(𝒙, 𝒛 = 𝑝(𝒙 𝒛 𝑝(𝒛)
! 𝑝' 𝒙 𝒛 : a.k.a., generative model, generator, (probabilistic) decoder, …
! 𝑝(𝒛): prior, e.g., Gaussian

● Assume variational distribution 𝑞3 𝒛|𝒙
! E.g., a Gaussian distribution parameterized as deep neural networks
! a.k.a, recognition model, inference network, (probabilistic) encoder, …

● ELBO:

18

ℒ 𝜽,𝝓; 𝒙 = E!" 𝒛 𝒙 log 𝑝(𝒙, 𝒛 − H(𝑞3 𝒛 𝒙)
= E!" 𝒛 𝒙 log 𝑝(𝒙|𝒛 − KL(𝑞3 𝒛 𝒙 || 𝑝(𝒛))

Reconstruction Divergence from prior
(KL divergence between two Guassians

has an analytic form)

Variational Auto-Encoders (VAEs)
● ELBO:

● Reparameterization:
! [𝝁; 𝝈] = 𝑓((𝒙) (a neural network)
! 𝒛 = 𝝁 + 𝝈⨀𝝐, 𝝐 ∼ 𝑵(𝟎, 𝟏)

19

ℒ 𝜽,𝝓; 𝒙 = E!" 𝒛 𝒙 log 𝑝(𝒙, 𝒛 − H(𝑞3 𝒛 𝒙)
= E!" 𝒛 𝒙 log 𝑝(𝒙|𝒛 − KL(𝑞3 𝒛 𝒙 || 𝑝(𝒛))

Example: VAEs for images

20[https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder]

Encoder

Example: VAEs for images

21[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Encoder

Example: VAEs for images

22[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Example: VAEs for images

23

Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Example: VAEs for images

24

Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Example: VAEs for images

25

Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Example: VAEs for images

26

Generating samples:
● Use decoder network. Now sample z

from prior!

Data manifold for 2-d z

Vary 𝑧)

Vary 𝑧*[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Example: VAEs for images

27

Generating samples:
● Use decoder network. Now sample z

from prior!

Data manifold for 2-d z

Vary 𝑧)

Vary 𝑧*

(Degree of smile)

(head pose)[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Variational Auto-Encoders (VAEs)

28

[Kingma & Welling, 2014]

Note: Amortized Variational Inference

29

• Variational distribution as an inference model 𝑞(𝒛 𝒙 with
parameters 𝝓 (which was traditionally factored over samples)
• Amortize the cost of inference by learning a single data-

dependent inference model
• The trained inference model can be used for quick inference

on new data

Example: VAEs for text

30

[Bowman et al., 2015: Generating sentences from a continuous space]

[Li et al., 2020: OPTIMUS: Organizing Sentences via Pre-trained Modeling of a Latent Space]

Example: VAEs for text

31

Latent code interpolation and sentences generation from VAEs

input we looked out at the setting sun . i went to the kitchen . how are you doing ?
mean they were laughing at the same time . i went to the kitchen . what are you doing ?
samp. 1 ill see you in the early morning . i went to my apartment . “ are you sure ?
samp. 2 i looked up at the blue sky . i looked around the room . what are you doing ?
samp. 3 it was down on the dance floor . i turned back to the table . what are you doing ?

Table 7: Three sentences which were used as inputs to the vae, presented with greedy decodes from the
mean of the posterior distribution, and from three samples from that distribution.

“ i want to talk to you . ”
“i want to be with you . ”
“i do n’t want to be with you . ”
i do n’t want to be with you .
she did n’t want to be with him .

he was silent for a long moment .
he was silent for a moment .
it was quiet for a moment .
it was dark and cold .
there was a pause .
it was my turn .

Table 8: Paths between pairs of random points in
vae space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

ments). Here we see that the sentences are far less
typical, but for the most part are grammatical and
maintain a clear topic, indicating that the latent
variable is capturing a rich variety of global fea-
tures even for rare sentences.

6.2 Sampling from the posterior

In addition to generating unconditional samples,
we can also examine the sentences decoded from
the posterior vectors p(z|x) for various sentences
x. Because the model is regularized to produce dis-
tributions rather than deterministic codes, it does
not exactly memorize and round-trip the input. In-
stead, we can see what the model considers to be
similar sentences by examining the posterior sam-
ples in Table 7. The codes appear to capture in-
formation about the number of tokens and parts
of speech for each token, as well as topic informa-
tion. As the sentences get longer, the fidelity of
the round-tripped sentences decreases.

6.3 Homotopies

The use of a variational autoencoder allows us to
generate sentences using greedy decoding on con-
tinuous samples from the space of codes. Addi-
tionally, the volume-filling and smooth nature of
the code space allows us to examine for the first
time a concept of homotopy (linear interpolation)
between sentences. In this context, a homotopy be-
tween two codes ~z1 and ~z2 is the set of points on the
line between them, inclusive, ~z(t) = ~z1⇤(1�t)+~z2⇤t
for t 2 [0, 1]. Similarly, the homotopy between two

sentences decoded (greedily) from codes ~z1 and ~z2

is the set of sentences decoded from the codes on
the line. Examining these homotopies allows us to
get a sense of what neighborhoods in code space
look like – how the autoencoder organizes infor-
mation and what it regards as a continuous defor-
mation between two sentences.
While a standard non-variational rnnlm does

not have a way to perform these homotopies, a
vanilla sequence autoencoder can do so. As men-
tioned earlier in the paper, if we examine the ho-
motopies created by the sequence autoencoder in
Table 1, though, we can see that the transition be-
tween sentences is sharp, and results in ungram-
matical intermediate sentences. This gives evi-
dence for our intuition that the vae learns repre-
sentations that are smooth and “fill up” the space.
In Table 8 (and in additional tables in the ap-

pendix) we can see that the codes mostly contain
syntactic information, such as the number of words
and the parts of speech of tokens, and that all in-
termediate sentences are grammatical. Some topic
information also remains consistent in neighbor-
hoods along the path. Additionally, sentences with
similar syntax and topic but flipped sentiment va-
lence, e.g. “the pain was unbearable” vs. “the
thought made me smile”, can have similar embed-
dings, a phenomenon which has been observed with
single-word embeddings (for example the vectors
for “bad” and “good” are often very similar due to
their similar distributional characteristics).

7 Conclusion

This paper introduces the use of a variational
autoencoder for natural language sentences. We
present novel techniques that allow us to train
our model successfully, and find that it can e↵ec-
tively impute missing words. We analyze the la-
tent space learned by our model, and find that it
is able to generate coherent and diverse sentences
through purely continuous sampling and provides
interpretable homotopies that smoothly interpo-
late between sentences.
We hope in future work to investigate factoriza-

tion of the latent variable into separate style and
content components, to generate sentences condi-
tioned on extrinsic features, to learn sentence em-
beddings in a semi-supervised fashion for language

[Bowman et al., 2015]

[Li et al., 2020]

Example: VAEs for text

32
[Li et al., 2020: OPTIMUS: Organizing Sentences via Pre-trained Modeling of a Latent Space]

Variational Auto-encoders: Summary
● A combination of the following ideas:
! Variational Inference: ELBO
! Variational distribution parametrized as neural networks
! Reparameterization trick

● Pros:
! Principled approach to generative models
! Allows inference of 𝑞(𝑧|𝑥), can be useful feature representation for other tasks

● Cons:
! Samples blurrier and lower quality compared to GANs
! Tend to collapse on text data

33

ℒ 𝜽,𝝓; 𝒙 = log 𝑝(𝒙|𝒛 − KL(𝑞3 𝒛 𝒙 || 𝑝(𝒛))

Reconstruction Divergence from prior

(Razavi et al., 2019)

Summary: Representation Learning
● Text 𝒙 → Representation 𝒛

● Self-supervised learning:
! Language modeling: next-word prediction
§ GPT2, GPT3

! Word embedding:
§ skip-gram: predicting context tokens

! Contextualized embedding:
§ BERT: masked language model (MLM)

! Contrastive learning: positive/negative samples, similarity measure / loss

● Unsupervised learning
! EM algorithm
! Variational inference
§ Variational autoencoders (VAEs)

34

35

Classification

Classification in NLP
● We approach many problems in NLP by treating them as problems of

classification.
! Input might be a document, a paragraph, a sentence, a word
! Output is a label from a finite set of classes or labels, defined by your

application or theory

36[Courtesy: UW CSE 447 by Noah Smith]

Text (Document) Classification Examples

37

Text (Document) Classification Examples

I Library-like subjects (e.g., the Dewey decimal system)

I News stories: politics vs. sports vs. business vs. technology ...

I Reviews of films, restaurants, products: postive vs. negative

I Author attributes: identity, political stance, gender, age, ...

I Email, arXiv submissions, etc.: spam vs. not

I What is the reading level of a piece of text?

I How influential will a scientific paper be?

I Will a piece of proposed legislation pass?

I What dialect is a text written in?

I Does the text contain content that will likely o↵end people?

4 / 99

[Courtesy: UW CSE 447 by Noah Smith]

Features of a Text

38[Courtesy: UW CSE 447 by Noah Smith]

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”
A di↵erent representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.
E.g., �freq.

hamburgers
(x) = 1, �freq .

the
(x) = 2, �freq.

delicious
(x) = 0,

�
freq.
don’t touch

(x) = 1.

I Can also be binary word “presence” features.
E.g., �presence

hamburgers
(x) = 1, �presence

the
(x) = 1, �presence

delicious
(x) = 0,

�
presence
don’t touch

(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

8v 2 V, idf(v) = log
n

|i : countxi(v) > 0|
�
tfidf
v (x) = �

freq.
v (x) · idf(v)

I “Bias” feature, �bias which takes a constant value of 1.

29 / 99

Neural features automatically learned from data

“Bag of words” features

Features of a Text

39[Courtesy: UW CSE 447 by Noah Smith]

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”
A di↵erent representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.
E.g., �freq.

hamburgers
(x) = 1, �freq .

the
(x) = 2, �freq.

delicious
(x) = 0,

�
freq.
don’t touch

(x) = 1.

I Can also be binary word “presence” features.
E.g., �presence

hamburgers
(x) = 1, �presence

the
(x) = 1, �presence

delicious
(x) = 0,

�
presence
don’t touch

(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

8v 2 V, idf(v) = log
n

|i : countxi(v) > 0|
�
tfidf
v (x) = �

freq.
v (x) · idf(v)

I “Bias” feature, �bias which takes a constant value of 1.

29 / 99

Neural features automatically learned from data

“Bag of words” features

Features of a Text

40[Courtesy: UW CSE 447 by Noah Smith]

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”
A di↵erent representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.
E.g., �freq.

hamburgers
(x) = 1, �freq .

the
(x) = 2, �freq.

delicious
(x) = 0,

�
freq.
don’t touch

(x) = 1.

I Can also be binary word “presence” features.
E.g., �presence

hamburgers
(x) = 1, �presence

the
(x) = 1, �presence

delicious
(x) = 0,

�
presence
don’t touch

(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

8v 2 V, idf(v) = log
n

|i : countxi(v) > 0|
�
tfidf
v (x) = �

freq.
v (x) · idf(v)

I “Bias” feature, �bias which takes a constant value of 1.

29 / 99

Neural features automatically learned from data

“Bag of words” features

Features of a Text

41[Courtesy: UW CSE 447 by Noah Smith]

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”
A di↵erent representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.
E.g., �freq.

hamburgers
(x) = 1, �freq .

the
(x) = 2, �freq.

delicious
(x) = 0,

�
freq.
don’t touch

(x) = 1.

I Can also be binary word “presence” features.
E.g., �presence

hamburgers
(x) = 1, �presence

the
(x) = 1, �presence

delicious
(x) = 0,

�
presence
don’t touch

(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

8v 2 V, idf(v) = log
n

|i : countxi(v) > 0|
�
tfidf
v (x) = �

freq.
v (x) · idf(v)

I “Bias” feature, �bias which takes a constant value of 1.

29 / 99

Neural features automatically learned from data

“Bag of words” features

idf weight

42

● df(𝑣) is the document frequency of word 𝑣: the number of documents
that contain 𝑣
! df(𝑣) is an inverse measure of the informativeness of 𝑣
! df(𝑣) £ N

● We define the idf (inverse document frequency) of 𝑣 by

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”
A di↵erent representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.
E.g., �freq.

hamburgers
(x) = 1, �freq .

the
(x) = 2, �freq.

delicious
(x) = 0,

�
freq.
don’t touch

(x) = 1.

I Can also be binary word “presence” features.
E.g., �presence

hamburgers
(x) = 1, �presence

the
(x) = 1, �presence

delicious
(x) = 0,

�
presence
don’t touch

(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

8v 2 V, idf(v) = log
n

|i : countxi(v) > 0|
�
tfidf
v (x) = �

freq.
v (x) · idf(v)

I “Bias” feature, �bias which takes a constant value of 1.

29 / 99

Features of a Text

43[Courtesy: UW CSE 447 by Noah Smith]

Features of a Text
Running example:
x =“The vodka was great, but don’t touch the hamburgers.”
A di↵erent representation of the text sequences: features.

I Often, these are term (word or word sequence) frequencies.
E.g., �freq.

hamburgers
(x) = 1, �freq .

the
(x) = 2, �freq.

delicious
(x) = 0,

�
freq.
don’t touch

(x) = 1.

I Can also be binary word “presence” features.
E.g., �presence

hamburgers
(x) = 1, �presence

the
(x) = 1, �presence

delicious
(x) = 0,

�
presence
don’t touch

(x) = 1.

I Transformations on word frequencies: logarithm, idf weighting

8v 2 V, idf(v) = log
n

|i : countxi(v) > 0|
�
tfidf
v (x) = �

freq.
v (x) · idf(v)

I “Bias” feature, �bias which takes a constant value of 1.

29 / 99

Neural features automatically learned from data

Classification using neural features

44
Use BERT for sentence classification

Classification with few labels
● Data augmentation
● Zero-/few-shot learning via prompting

45

Text data augmentation
● Applies label-preserving transformations on original data points to

expand the data size

46Chen et al., “An Empirical Survey of Data Augmentation for Limited Data Learning in NLP”

Text data augmentation
● Applies label-preserving transformations on original data points to

expand the data size

47Chen et al., “An Empirical Survey of Data Augmentation for Limited Data Learning in NLP”

Text data augmentation: Examples
● Lexical Substitution
! Thesaurus-based substitution

48[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nlp/]

Text data augmentation: Examples
● Lexical Substitution
! Thesaurus-based substitution
! Word-embedding substitution

49[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nlp/]

Text data augmentation: Examples
● Lexical Substitution
! Thesaurus-based substitution
! Word-embedding substitution
! Masked LM

50[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nlp/]

Text data augmentation: Examples
● Lexical Substitution
! Thesaurus-based substitution
! Word-embedding substitution
! Masked LM
! TF-IDF based word replacement
§ words that have low TF-IDF scores are uninformative and thus can be replaced

without affecting the ground-truth labels of the sentence.

51[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nlp/]

Text data augmentation: Examples
● Lexical Substitution
! Thesaurus-based substitution
! Word-embedding substitution
! Masked LM
! TF-IDF based word replacement

● Paraphrasing
! Back Translation

52[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nlp/]

Text data augmentation: Examples
● Lexical Substitution
! Thesaurus-based substitution
! Word-embedding substitution
! Masked LM
! TF-IDF based word replacement

● Paraphrasing
! Back Translation

● Random Noise Injection

53[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nlp/]

Spelling error:

Unigram noising:

Text data augmentation: Examples
● Lexical Substitution
! Thesaurus-based substitution
! Word-embedding substitution
! Masked LM
! TF-IDF based word replacement

● Paraphrasing
! Back Translation

● Random Noise Injection
● MixUp

54[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nlp/]

Text data augmentation: Examples
● Lexical Substitution
! Thesaurus-based substitution
! Word-embedding substitution
! Masked LM
! TF-IDF based word replacement

● Paraphrasing
! Back Translation

● Random Noise Injection
● MixUp
● Generative Models
! Finetune a large pre-trained LM (BERT, GPT2, etc)
! Use the fine-tuned LM to generate new data

55[Courtesy: Amit Chaudhary https://amitness.com/2020/05/data-augmentation-for-nlp/]

Classification with few labels
● Data augmentation
● Zero-/few-shot learning via prompting

56

Increasing LM size

https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

Downstream
training data

Downstream
test data

Traditional fine-tuning

58[Courtesy: Mohit Iyyer, CS685]

Zero-shot

59

No fine-tuning! Literally just take a pretrained LM and give it the prefix

[Courtesy: Mohit Iyyer, CS685]

One-shot

60[Courtesy: Mohit Iyyer, CS685]

Few-shot

61[Courtesy: Mohit Iyyer, CS685]

Performance (TriviaQA)

62[Courtesy: Mohit Iyyer, CS685]

Performance (TriviaQA)

63[Courtesy: Mohit Iyyer, CS685]

Sub-optimal and sensitive discrete/hard prompts

64[Courtesy: Mohit Iyyer, CS685]

Sub-optimal and sensitive discrete/hard
prompts

Discrete/hard prompts

• natural language instructions/task descriptions

Problems

• requiring domain expertise/understanding of the model’s inner

workings

• performance still lags far behind SotA model tuning results

• sub-optimal and sensitive

- prompts that humans consider reasonable is not necessarily
effective for language models (Liu et al., 2021)

- pre-trained language models are sensitive to the choice of
prompts (Zhao et al., 2021)

Sub-optimal and sensitive discrete/hard prompts

65

Liu et al., 2021

[Courtesy: Mohit Iyyer, CS685]

Continuous/soft prompts
● Learning continuous/soft prompts (Liu et al., 2021; Li and Liang., 2021;

Qin and Eisner., 2021; Lester et al., 2021)
! A sequence of additional task-specific tunable tokens prepended to the input

text

66[Courtesy: Mohit Iyyer, CS685]

Continuous/soft prompts
● Learning continuous/soft prompts (Liu et al., 2021; Li and Liang., 2021;

Qin and Eisner., 2021; Lester et al., 2021)
! A sequence of additional task-specific tunable tokens prepended to the input

text

67[Courtesy: Mohit Iyyer, CS685]

(Lester et al., 2021)

Continuous/soft prompts
● Learning continuous/soft prompts (Liu et al., 2021; Li and Liang., 2021;

Qin and Eisner., 2021; Lester et al., 2021)
! A sequence of additional task-specific tunable tokens prepended to the input

text

68[Courtesy: Mohit Iyyer, CS685]

Prompt Tuning becomes
more competitive with scale

Key Takeaways
● Text features:
! Bag-of-words, TF-IDF weighting, neural features

● Data augmentation
! Lexical Substitution
! Paraphrasing
! Random Noise Injection
! MixUp
! Generative Models

● Prompting for few-shot learning

69

Questions?

