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Outline
● Variational Inference (VI)
● Stachastic VI; Black-box VI
● Variational Autoencoders (VAEs)
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EM Algorithm
● Observed variables 𝒙, latent variables 𝒛
● To learn a model 𝑝 𝒙, 𝒛|𝜃 , we want to maximize the marginal log-

likelihood

! But it’s too difficult
● EM algorithm: 
! maximize a lower bound of ℓ 𝜃; 𝒙
! Or equivalently, minimize an upper bound of ℓ 𝜃; 𝒙

● Key equation:
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ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙 + KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

ℓ 𝜃; 𝒙 = log 𝑝 𝒙 𝜃 = log2
'
𝑝(𝒙, 𝒛|𝜃)
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ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
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ℓ 𝜃; 𝒙 = log 𝑝 𝒙 𝜃 = log2
'
𝑝(𝒙, 𝒛|𝜃)

Evidence Lower Bound (ELBO)

Variational free energy



EM Algorithm
● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

! E-step:

§ the posterior distribution over the latent variables given the data and the 
current parameters

! M-step: 
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= 𝑝(𝒛|𝒙, 𝜃!)

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= argmax( 2
'
𝑞)*+ 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
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EM Algorithm for GMM
● Initialize the means 𝜇, , covariances Σ, and mixing coefficients 𝜋,
● Iterate until convergence: 
! E-step: Evaluate the posterior given current parameters

! M-step: Re-estimate the parameters given current posterior 
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EM Algorithm
● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

! E-step:

! M-step:

● Limitation: need to be able to compute 𝑝 𝒛 𝒙, 𝜃 , not possible for more 
complicated models --- solution: Variational inference 11

= 𝑝(𝒛|𝒙, 𝜃!)

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

= argmax( 2
'
𝑞)*+ 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)
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Variational Inference

Content adapted from CMU 10-708 Spring 2017



Inference
● Given a model, the goals of inference can include:

! Computing the likelihood of observed data 𝑝(𝒙∗)

! Computing the marginal distribution over a given subset of variables in the 
model 𝑝(𝒙")

! Computing the conditional distribution over a subsets of nodes given a 
disjoint subset of nodes 𝑝(𝒙"|𝒙#)

! Computing a mode of the density (for the above distributions) argmax𝒙 𝑝 𝒙

! ….
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Variational Inference
● Observed variables 𝒙, latent variables 𝒛
● Variational (Bayesian) inference, a.k.a. variational Bayes, is most often 

used to approximately infer the conditional distribution over the latent 
variables given the observations (and parameters)
! i.e., the posterior distribution over the latent variables 

14

𝑝 𝒛 𝒙, 𝜃 =
𝑝(𝒛, 𝒙|𝜃)

∑! 𝑝(𝒛, 𝒙|𝜃)



Motivating Example 
● Why do we often need to use an approximate inference methods (such 

as variational Bayes) to compute the posterior distribution? 

● It’s because we cannot directly compute the posterior distribution for 
many interesting models 
! I.e. the posterior density is in an intractable form (often involving integrals) 

which cannot be easily analytically solved. 

● As a motivating example, we will try to compute the posterior for a 
(Bayesian) mixture of Gaussians. 
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Bayesian mixture of Gaussians
● The mean 𝜇, is treated as a (latent) random variable

● For each data 𝑖 = 1,… , 𝑛

● We have 
! observed variables 𝑥%:'
! latent variables 𝜇%:( and 𝑧%:'
! parameters {𝜏), 𝜋, 𝜎)}

● 𝑝 𝑥":$ , 𝑧":$ , 𝜇":% 𝜏&, 𝜋, 𝜎& =
16



Bayesian mixture of Gaussians
● We can write the posterior distribution as 

● The numerator can be computed for any choice of the latent variables
● The problem is the denominator (the marginal probability of the 

observations)
! This integral cannot easily be computed analytically

● We need some approximation..
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Variational Inference
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The main idea behind variational inference:



Variational Inference
● We want to minimize the KL divergence between our approximation 
𝑞(𝒛|𝒙) and our posterior 𝑝(𝒛|𝒙)

! But we can’t actually minimize this quantity w.r.t 𝑞 because 𝑝(𝒛|𝒙) is unknown

● The ELBO is equal to the negative KL divergence up to a constant ℓ 𝜃; 𝒙
● We maximize the ELBO over 𝑞 to find an “optimal approximation” to 
𝑝(𝒛|𝒙)
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KL 𝑞 𝒛|𝒙 || 𝑝(𝒛|𝒙)

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

Evidence Lower Bound (ELBO)



Variational Inference
● Choose a family of distributions over the latent variables 𝒛 with its own set of 

variational parameters 𝜈 , i.e. 
● We maximize the ELBO over 𝑞 to find an “optimal approximation” to 𝑝 𝒛 𝒙

20

argmax' 𝔼((𝒛|𝒙,𝝂) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙, 𝝂

= argmax' 𝔼((𝒛|𝒙,𝝂) log 𝑝 𝒙, 𝒛|𝜃 − 𝔼((𝒛|𝒙,𝝂) log 𝑞 𝒛 𝒙, 𝝂

𝑞(𝒛|𝒙, 𝒗)

● How do we choose the variational family 𝑞(𝒛|𝒙, 𝒗)?



Mean Field Variational Inference 
● A popular family of variational approximations 

● In this type of variational inference, we assume the variational distribution 
over the latent variables factorizes as 

! (where we omit variational parameters for ease of notation)
! We refer to 𝑞(𝑧*), the variational approximation for a single latent variable, as 

a “local variational approximation” 

● In the above expression, the variational approximation 𝑞(𝑧-) over each 
latent variable 𝑧- is independent 
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𝑞 𝒛 =



Mean Field Variational Inference 

22
given data.



Mean Field Variational Inference 
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given data.



Optimizing the ELBO in Mean Field Variational Inference 
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Optimizing the ELBO in Mean Field Variational Inference 
● Recall that the ELBO is defined as:

● Note that we can decompose the entropy term of the ELBO (using the 
mean field variational approximation) as:

● Therefore, under the mean field approximation, the ELBO can be written:
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ℒ = 𝔼( log 𝑝 𝒙, 𝒛 − 𝔼( log 𝑞(𝒛)

ℒ = 𝔼(!𝔼("! log 𝑝 𝒙, 𝒛 −=
01"

2

𝔼(! log 𝑞(𝑧0)



Optimizing the ELBO in Mean Field Variational Inference 
● Therefore, under the mean field approximation, the ELBO can be written:

● Next, we want to derive the coordinate ascent update for a latent 
variable 𝑧- , keeping all other latent variables fixed.
! i.e. we want the argmax+!ℒ. 

● Removing the parts that do not depend on 𝑞(𝑧-), we can write: 
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ℒ = 𝔼(!𝔼("! log 𝑝 𝒙, 𝒛 −=
01"

2

𝔼(! log 𝑞(𝑧0)

ℒ = 𝔼(!𝔼("! log 𝑝 𝒙, 𝒛 − 𝔼(! log 𝑞 𝑧0 + const.



Optimizing the ELBO in Mean Field Variational Inference 
● To find this argmax, we take the derivative of ℒ w.r.t 𝑞(𝑧-) and and set the 

derivative to zero :

● From this, we arrive at the coordinate ascent update: 
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𝑑ℒ
𝑑𝑞(𝑧0)

= 𝔼(!𝔼("! log 𝑝 𝒙, 𝒛 − log 𝑞 𝑧0 − 1 = 0

𝑞∗ 𝑧0 ∝ exp 𝔼("! log 𝑝 𝒙, 𝒛



𝑞 𝒛 =

● The coordinate ascent update: 

! The optimal solution for factor 𝑞(𝑧*) is obtained simply by considering the log 
of the joint distribution over all observed and latent variables and then taking 
the expectation with respect to all of the other factors 𝑞(𝑧(), 𝑘 ≠ 𝑗 , then 
taking exponential and normalizing

● Note that the only assumption we made so far is the mean-field 
factorization: 

! We haven’t yet made any assumptions on the form of 𝑞(𝑧*)

Optimizing the ELBO in Mean Field Variational Inference 
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𝑞∗ 𝑧0 ∝ exp 𝔼("! log 𝑝 𝒙, 𝒛



Simple example: 
● Consider a univariate Gaussian distribution 𝑝 𝑥 = 𝒩(𝑥|𝜇, 𝜏./), given a 

dataset 𝒟 = 𝑥+, … , 𝑥0 :

! Gam(𝜏 𝑎,, 𝑏, = %
- .

𝑏/𝜆/0%exp(−𝑏𝜆) : gamma distribution 

● For this simple problem the posterior distribution can be found exactly. 
But we use it as an example for tutorial anyway
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● Introduce the factorized variational approximation:
● Solution to 𝑞1: 

! We can see 𝑞1∗ is a Gaussian 𝒩 𝑥 𝜇2, 𝜆20% :

Simple example: 

30

𝑞 𝜇, 𝜏 = 𝑞1 𝜇 𝑞2(𝜏)

𝑞∗ 𝑧0 ∝ exp 𝔼("! log 𝑝 𝒙, 𝒛



● Introduce the factorized variational approximation:
● Solution to 𝑞2: 

! We can see 𝑞3∗ is a gamma distribution Gam 𝜏 𝑎2, 𝑏2 :

Simple example: 
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𝑞 𝜇, 𝜏 = 𝑞1 𝜇 𝑞2(𝜏)

𝑞∗ 𝑧0 ∝ exp 𝔼("! log 𝑝 𝒙, 𝒛



Quick Recap
● We often cannot compute posteriors, and so we need to approximate 

them, using variational methods. 
● In variational Bayes, we’d like to find an approximation within some 

family that minimizes the KL divergence to the posterior, but we can’t 
directly minimize this

● Therefore, we defined the ELBO, which we can maximize, and this is 
equivalent to minimizing the KL divergence. 
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ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

Evidence Lower Bound (ELBO)



Quick Recap
● We defined a family of approximations called “mean field” 

approximations, in which there are no dependencies between latent 
variables

● We optimize the ELBO with coordinate ascent updates to iteratively 
optimize each local variational approximation under mean field 
assumptions 
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𝑞∗ 𝑧0 ∝ exp 𝔼("! log 𝑝 𝒙, 𝒛

𝑞 𝒛 =



Key Takeaways
● KL Divergence

● The key equation of EM and VI

! Free energy 𝐹 𝑞, 𝜃

● EM: E-step and M-step optimizing ELBO w.r.t 𝑞 and 𝜃
● Mean-field VI: optimizing ELBO w.r.t factorized 𝑞 components

34

KL 𝑞 𝒙 || 𝑝(𝒙) =2
𝒙

𝑞 𝒙 log
𝑞(𝒙)
𝑝(𝒙)

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

Evidence Lower Bound (ELBO)
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Stochastic VI; Black-box VI



VI with coordinate ascent
Example: Bayesian mixture of Gaussians
● Treat the mean 𝜇, and cluster proportion 𝜋 as latent variables

● For each data 𝑖 = 1,… , 𝑛

● We have 
! observed variables 𝑥%:'
! latent variables 𝜇%:( , 𝜋 and 𝑧%:'
! Hyper-parameters {𝜏), 𝜎)}

36

𝜋 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜶)



VI with coordinate ascent
Example: Bayesian mixture of Gaussians
Assume mean-field 𝑞 𝜇+:4, 𝜋, 𝑧+:5 = ∏, 𝑞 𝜇, 𝑞(𝜋)∏6 𝑞(𝑧6)

● Initialize the global variational distributions 𝑞(𝜇!) and 𝑞 𝜋
● Repeat: 
! For each data example 𝑖 ∈ {1,2, … , 𝐷}

q Update the local variational distribution 𝑞 𝑧"
! End for
! Update the global variational distributions 𝑞(𝜇!) and 𝑞 𝜋

● Until ELBO converges

● What if we have millions of data examples? This could be very slow.
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Stochastic VI
Example: Bayesian mixture of Gaussians
Assume mean-field 𝑞 𝜇+:4, 𝜋, 𝑧+:5 = ∏, 𝑞 𝜇, 𝑞(𝜋)∏6 𝑞(𝑧6)

● Initialize the global variational distributions 𝑞(𝜇!) and 𝑞 𝜋
● Repeat: 
! Sample a data example 𝑖 ∈ {1,2, … , 𝐷}
! Update the local variational distribution 𝑞 𝑧"
! Update the global variational distributions 𝑞(𝜇!) and 𝑞 𝜋 with natural gradient ascent

● Until ELBO converges

● (Setting natural gradient = 0 gives the traditional mean-field update)

38[Hoffman et al., Stochastic Variational Inference, 2013] 



Black-box Variational Inference (BBVI)
● We have derived variational inference specific for Bayesian Gaussian 

(mixture) models

● There are innumerable models

● Can we have a solution that does not entail model-specific work?
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Black-box Variational Inference (BBVI)

● Easily use variational inference with any model 

● Perform inference with massive data 

● No mathematical work beyond specifying the model 
40

Black Box Variational Inference (BBVI)
Black box variational inference

REUSABLE 
VARIATIONAL 

FAMILIES

BLACK BOX 
VARIATIONAL 
INFERENCE

p.ˇ; z j x/
ANY MODEL

REUSABLE 
VARIATIONAL 

FAMILIES

REUSABLE 
VARIATIONAL 

FAMILIES

MASSIVE
DATA

� Sample from q.�/
� Form noisy gradients without model-specific computation

� Use stochastic optimization

(Courtesy: Blei et al., 2018)

variational posterior 
𝑞(𝒛|𝒙)



Black-box Variational Inference (BBVI)

● Sample from 𝑞(. )

● Form noisy gradients (without model-specific computation) 

● Use stochastic optimization 
41
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Black-box Variational Inference (BBVI)
● Probabilistic model: 𝒙 -- observed variables, 𝒛 -- latent variables
● Variational distribution 𝑞8(𝒛|𝒙) with parameters 𝜆, e.g.,
! Gaussian mixture distribution: 
§ “A Gaussian mixture model is a universal approximator of densities, in the sense 

that any smooth density can be approximated with any specific nonzero amount of 
error by a Gaussian mixture model with enough components.”  (Deep Learning book, 
pp.65)

! Deep neural networks

● ELBO:

● Want to compute the gradient w.r.t variational parameters 𝜆

42[Ranganath et al.,14]

ℒ 𝜆 = 𝔼+(𝒛|𝝀) log 𝑝 𝒙, 𝒛 − 𝔼+(𝒛|𝝀) log 𝑞 𝒛 𝜆



The General Problem: Computing Gradients of Expectations
● When the objective function ℒ is defined as an expectation of a 

(differentiable) test function 𝑓8(𝒛) w.r.t. a probability distribution 𝑞8 𝒛

● Computing exact gradients w.r.t. the parameters 𝜆 is often unfeasible 
● Need stochastic gradient estimates 
! The score function estimator (a.k.a log-derivative trick, REINFORCE)
! The reparameterization trick (a.k.a the pathwise gradient estimator)

43

ℒ = 𝔼!𝝀(𝒛) 𝑓8(𝒛)



Computing Gradients of Expectations w/ score function
● Loss:

● Log-derivative trick: 
● Gradient w.r.t. 𝜆:

! score function: the gradient of the log of a probability distribution

● Compute noisy unbiased gradients with Monte Carlo samples from 𝑞8

● Pros: generally applicable to any distribution 𝑞 𝑧 𝜆
● Cons: empirically has high variance → slow convergence
! To reduce variance: Rao-Blackwellization, control variates, importance 

sampling, ... 
44

ℒ = 𝔼!𝝀(𝒛) 𝑓8(𝒛)

∇8ℒ = 𝔼!𝝀(𝒛) 𝑓8 𝒛 ∇8log 𝑞8 𝒛 + ∇8𝑓8(𝒛)

∇8𝑞8 = 𝑞8 ∇8log 𝑞8

∇8ℒ ≈
1
𝑆
2

𝒔:𝟏

𝑺
𝑓8 𝒛= ∇8log 𝑞8 𝒛𝒔 + ∇8𝑓8(𝒛𝒔) where 𝒛= ∼ 𝑞8(𝒛)



Computing Gradients of Expectations w/ reparametrization trick
● Loss: 

● Assume that we can express the distribution 𝑞𝝀(𝒛) with a transformation

! E.g., 

● Reparameterization gradient

● Pros: empirically, lower variance of the gradient estimate
● Cons: Not all distributions can be reparameterized 45

𝜖 ∼ 𝑠 𝜖
𝑧 = 𝑡 𝜖, 𝜆

⇔ 𝑧 ∼ 𝑞 𝑧|𝜆

𝜖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0, 1
𝑧 = 𝜖𝜎 + 𝜇 ⇔ 𝑧 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎/

ℒ = 𝔼!𝝀(𝒛) 𝑓8(𝒛)

∇8ℒ = 𝔼𝝐∼𝒔(𝝐) ∇𝒛𝑓8 𝒛 ∇8𝑡 𝜖, 𝜆

ℒ = 𝔼𝝐∼=(𝝐) 𝑓8(𝒛(𝝐, 𝜆))



Reparameterization trick
● Reparametrizing Gaussian distribution

46

𝜖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0, 1
𝑧 = 𝜖𝜎 + 𝜇 ⇔ 𝑧 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎/

[Courtesy: Tansey, 2016]



Reparameterization trick
● Reparametrizing Gaussian distribution

● Other reparameterizable distributions:
! Tractable inverse CDF 𝐹#$:  
§ Exponential, Cauchy, Logistic, Rayleigh, Pareto, Weibull, Reciprocal, Gompertz, 

Gumbel, Erlang
! Location-scale: 
§ Laplace, Elliptical, Student’s t, Logistic, Uniform, Triangular, Gaussian

! Composition:  
§ Log-Normal (exponentiated normal) Gamma (sum of exponentials) Dirichlet (sum of 

Gammas) Beta, Chi-Squared, F

47

𝜖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0, 1
𝑧 = 𝜖𝜎 + 𝜇 ⇔ 𝑧 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎/

[Courtesy: Tansey, 2016]

𝜖 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝜖
𝑧 = 𝐹.+ 𝜖

⇔ 𝑧 ∼ 𝑞 𝑧



Computing Gradients of Expectations: Summary
● Loss: 

● Score gradient

! Pros: generally applicable to any distribution 𝑞 𝑧 𝜆
! Cons: empirically has high variance → slow convergence

● Reparameterization gradient

! Pros: empirically, lower variance of the gradient estimate
! Cons: Not all distributions can be reparameterized

48

ℒ = 𝔼!𝝀(𝒛) 𝑓8(𝒛)

∇8ℒ = 𝔼!𝝀(𝒛) 𝑓8 𝒛 ∇8log 𝑞8 𝒛 + ∇8𝑓8(𝒛)

∇8ℒ = 𝔼𝝐∼𝒔(𝝐) ∇𝒛𝑓8 𝒛 ∇8𝑡 𝜖, 𝜆



Recall: Black-box Variational Inference (BBVI)
● Probabilistic model: 𝒙 -- observed variables, 𝒛 -- latent variables
● Variational distribution 𝑞8(𝒛|𝒙) with parameters 𝜆, e.g.,
! Gaussian mixture distribution: 
§ “A Gaussian mixture model is a universal approximator of densities, in the sense 

that any smooth density can be approximated with any specific nonzero amount of 
error by a Gaussian mixture model with enough components.”  (Deep Learning book, 
pp.65)

! Deep neural networks

● ELBO:

● Want to compute the gradient w.r.t variational parameters 𝜆
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Black Box Variational Inference

expectation of an easy-to-implement function f of the
latent and observed variables, where the expectation
is taken with respect to the variational distribution;
and we optimize that objective by sampling from the
variational distribution, evaluating the function f , and
forming the corresponding Monte Carlo estimate of
the gradient. We then use these noisy gradients in
a stochastic optimization algorithm to optimize the
variational parameters.

From the practitioner’s perspective, this method re-
quires only that he or she write functions to evaluate
the model log-likelihood. The remaining calculations
(properties of the variational distribution and evalu-
ating the Monte Carlo estimate) are easily put into a
library to share across models, which means our method
can be quickly applied to new modeling settings.

We will show that reducing the variance of the gradient
estimator is essential to the fast convergence of our
algorithm. We develop several strategies for controlling
the variance. The first is based on Rao-Blackwellization
(Casella and Robert, 1996), which exploits the factor-
ization of the variational distribution. The second is
based on control variates (Ross, 2002; Paisley et al.,
2012), using the gradient of the log probability of the
variational distribution. We emphasize that these vari-
ance reduction methods preserve our goal of black box
inference because they do not require computations
specific to the model.

Finally, we show how to use recent innovations in vari-
ational inference and stochastic optimization to scale
up and speed up our algorithm. First, we use adaptive
learning rates (Duchi et al., 2011) to set the step size
in the stochastic optimization. Second, we develop
generic stochastic variational inference (Ho↵man et al.,
2013), where we additionally subsample from the data
to more cheaply compute noisy gradients. This inno-
vates on the algorithm of Ho↵man et al. (2013), which
requires closed form coordinate updates to compute
noisy natural gradients.

We demonstrate our method in two ways. First, we
compare our method against Metropolis-Hastings-in-
Gibbs (Bishop, 2006), a sampling based technique that
requires similar e↵ort on the part of the practitioner.
We find our method reaches better predictive likeli-
hoods much faster than sampling methods. Second, we
use our method to quickly build and evaluate several
models of longitudinal patient data. This demonstrates
the ease with which we can now consider models gen-
erally outside the realm of variational methods.

Related work. There have been several lines of work
that use sampling methods to approximate gradients
in variational inference. Wingate and Weber (2013)

have independently considered a similar procedure to
ours, where the gradient is construed as an expectation
and the KL is optimized with stochastic optimization.
They too include a term to reduce the variance, but
do not describe how to set it. We further innovate
on their approach with Rao-Blackwellization, speci-
fied control variates, adaptive learning rates, and data
subsampling. Salimans and Knowles (2012) provide a
framework based on stochastic linear regression. Un-
like our approach, their method does not generalize
to arbitrary approximating families and requires the
inversion of a large matrix that becomes impractical in
high dimensional settings. Kingma and Welling (2013)
provide an alternative method for variational inference
through a reparameterization of the variational distri-
butions. In contrast to our approach, their algorithm is
limited to only continuous latent variables. Carbonetto
et al. (2009) present a stochastic optimization scheme
for moment estimation based on the specific form of
the variational objective when both the model and
the approximating family are in the same exponential
family. This di↵ers from our more general modeling
setting where latent variables may be outside of the
exponential family. Finally, Paisley et al. (2012) use
Monte Carlo gradients for di�cult terms in the varia-
tional objective and also use control variates to reduce
variance. However, theirs is not a black-box method.
Both the objective function and control variates they
propose require model-specific derivations.

2 Black Box Variational Inference

Variational inference transforms the problem of approx-
imating a conditional distribution into an optimization
problem (Jordan et al., 1999; Bishop, 2006; Wainwright
and Jordan, 2008). The idea is to posit a simple family
of distributions over the latent variables and find the
member of the family that is closest in KL divergence
to the conditional distribution.

In a probabilistic model, let x be observations, z be
latent variables, and � the free parameters of a varia-
tional distribution q.z j�/. Our goal is to approximate
p.z j x/ with the free parameter �. In variational infer-
ence we optimize the Evidence Lower BOund (ELBO),

L.�/ , Eq�.z/Œlogp.x; z/ � log q.z/ç: (1)

Maximizing the ELBO is equivalent to minimizing the
KL divergence (Jordan et al., 1999; Bishop, 2006). Intu-
itively, the first term rewards variational distributions
that place high mass on configurations of the latent
variables that also explain the observations; the second
term rewards variational distributions that are entropic,
i.e., that maximize uncertainty by spreading their mass
on many configurations.

[Ranganath et al.,14]

ℒ 𝜆 = 𝔼+(𝒛|𝝀) log 𝑝 𝒙, 𝒛 − 𝔼+(𝒛|𝝀) log 𝑞 𝒛 𝜆



BBVI with the score gradient 
● ELBO:

● Gradient w.r.t. 𝜆 (using the log-derivative trick)

● Compute noisy unbiased gradients of the ELBO with Monte Carlo samples 
from the variational distribution

50[Ranganath et al.,14]

ℒ 𝜆 = 𝔼!(𝒛|𝝀) log 𝑝 𝒙, 𝒛 − 𝔼!(𝒛|𝝀) log 𝑞 𝒛 𝜆

Rajesh Ranganath, Sean Gerrish, David M. Blei

Practitioners derive variational algorithms to maximize
the ELBO over the variational parameters by expand-
ing the expectation in Eq. 1 and then computing gradi-
ents to use in an optimization procedure. Closed form
coordinate-ascent updates are available for condition-
ally conjugate exponential family models (Ghahramani
and Beal, 2001), where the distribution of each latent
variable given its Markov blanket falls in the same fam-
ily as the prior, for a small set of variational families.
However, these updates require analytic computation
of various expectations for each new model, a problem
which is exacerbated when the variational family falls
outside this small set. This leads to tedious bookkeep-
ing and overhead for developing new models.

The expectation in Eq. 1 is with respect to a known
distribution whose parameter – � – is known. We
will therefore use stochastic optimization to maximize
the ELBO. In stochastic optimization, we maximize a
function using noisy estimates of its gradient (Robbins
and Monro, 1951; Kushner and Yin, 1997; Bottou and
LeCun, 2004). We will form the derivative of the objec-
tive as an expectation with respect to the variational
approximation and then sample from the variational
approximation to get noisy but unbiased gradients,
which we use to update our parameters. For each sam-
ple, our noisy gradient requires evaluating the possibly
unnormalized joint distribution of the observed and
sampled variables, the variational distribution, and the
gradient of the log of the variational distribution. This
is a black box method in that the gradient of the log of
the variational distribution and sampling method can
be derived once for each type of variational distribution
and reused for many models and applications.

Stochastic optimization. Let us now review
stochastic optimization. Let f .x/ be a function to
be maximized and ht .x/ be the realization of a ran-
dom variable H.x/ whose expectation is the gradient of
f .x/. Finally, let ⇢t be a nonnegative scalar. Stochastic
optimization updates x at the tth iteration with

xtC1  xt C ⇢t ht .xt /:

This converges to a maximum of f .x/ when ⇢t , the
learning rate, follows the Robbins-Monro conditions,

P1

tD1 ⇢t D 1P1

tD1 ⇢
2
t < 1:

Because of its simplicity, stochastic optimization is
widely used in statistics and machine learning.

A noisy gradient of the ELBO. To optimize the
ELBO with stochastic optimization, we need to de-
velop an unbiased estimator of its gradient which can

Algorithm 1 Black Box Variational Inference

Input: data x, joint distribution p, mean field vari-
ational family q.
Initialize � randomly, t D 1.
repeat
// Draw S samples from q

for s D 1 to S do
zŒsç ⇠ q

end for
⇢ = tth value of a Robbins Monro sequence
� = �C ⇢

1
S

PS
sD1 r� log q.zŒsç j�/.logp.x; zŒsç/�

log q.zŒsç j�//

t D t C 1

until change of � is less than 0.01.

be computed from samples from the variational poste-
rior. To do this, we write the gradient of the ELBO
(Eq. 1) as an expectation with respect to the variational
distribution,

r�L D EqŒr� log q.zj�/.logp.x; z/ � log q.zj�//ç:

(2)

The derivation of Eq. 2 can be found in the appendix.
Note that in statistics the gradient r� log q.zj�/ of the
log of a probability distribution is called the score func-
tion (Cox and Hinkley, 1979). The joint p.x; z/ can be
replaced by its unnormalized version (see the appendix
for details). For subsequent sections, any appearance
of p.x; z/ may be replaced by an unnormalized version.

With this equation in hand, we compute noisy unbiased
gradients of the ELBO with Monte Carlo samples from
the variational distribution,

r�L ⇡
1

S

SX
sD1

r� log q.zsj�/.logp.x; zs/ � log q.zsj�//;

where zs ⇠ q.zj�/:

(3)

With Eq. 3, we can use stochastic optimization to
optimize the ELBO.

The basic algorithm is summarized in Algorithm 1. We
note that the score function and sampling algorithms
depend only on the variational distribution, not the
underlying model. Thus we can build up a collection of
these functions for various variational approximations
and reuse them in a package for a broad class of mod-
els. Further we did not make any assumptions about
the form of the model, only that the practitioner can
compute the log of the joint p.x; zs/. This algorithm
significantly reduces the e↵ort needed to implement
variational inference in a wide variety of models.

Rajesh Ranganath, Sean Gerrish, David M. Blei
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BBVI with the reparameterization gradient 
● ELBO:

● Gradient w.r.t. 𝜆
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ℒ 𝜆 = 𝔼!(𝒛|𝝀) log 𝑝 𝒙, 𝒛 − 𝔼!(𝒛|𝝀) log 𝑞 𝒛 𝜆

∇Cℒ =ED∼F(D)[ ∇! log 𝑝 𝑥, 𝑧 − log 𝑞 𝑧 ∇C𝑡 𝜖, 𝜆 ]

𝜖 ∼ 𝑠 𝜖
𝑧 = 𝑡 𝜖, 𝜆

⇔ 𝑧 ∼ 𝑞 𝑧|𝜆
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Variational Autoencoders (VAEs)



Variational Auto-Encoders (VAEs)
VAEs are a combination of the following ideas: 

● Variational Inference
! ELBO

● Variational distribution parametrized as neural networks 

● Reparameterization trick

53[Courtesy: Dhruv, CS 4803]



Variational Auto-Encoders (VAEs)
● Model 𝑝( 𝒙, 𝒛 = 𝑝( 𝒙 𝒛 𝑝(𝒛)
! 𝑝9 𝒙 𝒛 : a.k.a., generative model, generator, (probabilistic) decoder, …
! 𝑝(𝒛): prior, e.g., Gaussian

● Assume variational distribution 𝑞A 𝒛|𝒙
! E.g., a Gaussian distribution parameterized as deep neural networks  
! a.k.a, recognition model, inference network, (probabilistic) encoder, …

● ELBO:
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ℒ 𝜽,𝝓; 𝒙 = E!" 𝒛 𝒙 log 𝑝( 𝒙, 𝒛 − H(𝑞A 𝒛 𝒙 )
= E!" 𝒛 𝒙 log 𝑝( 𝒙|𝒛 − KL(𝑞A 𝒛 𝒙 || 𝑝(𝒛))

Reconstruction Divergence from prior
(KL divergence between two Guassians

has an analytic form)



Variational Auto-Encoders (VAEs)
● ELBO:

● Reparameterization:
! [𝝁; 𝝈] = 𝑓:(𝒙) (a neural network)
! 𝒛 = 𝝁 + 𝝈⨀𝝐, 𝝐 ∼ 𝑵(𝟎, 𝟏)

55

ℒ 𝜽,𝝓; 𝒙 = E!" 𝒛 𝒙 log 𝑝( 𝒙, 𝒛 − H(𝑞A 𝒛 𝒙 )
= E!" 𝒛 𝒙 log 𝑝( 𝒙|𝒛 − KL(𝑞A 𝒛 𝒙 || 𝑝(𝒛))



Example: VAEs for images

56[https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder]



Encoder

Example: VAEs for images

57[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Encoder

Example: VAEs for images

58[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images

61

Encoder

[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Generating samples:
● Use decoder network. Now sample z 

from prior! 

Data manifold for 2-d z 

Vary 𝑧%

Vary 𝑧)[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for images
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Generating samples:
● Use decoder network. Now sample z 

from prior! 

Data manifold for 2-d z 

Vary 𝑧%

Vary 𝑧)

(Degree of smile)

(head pose)[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]



Example: VAEs for text

64

• Latent code interpolation and sentences generation 
from VAEs [Bowman et al., 2015]. 

input we looked out at the setting sun . i went to the kitchen . how are you doing ?
mean they were laughing at the same time . i went to the kitchen . what are you doing ?
samp. 1 ill see you in the early morning . i went to my apartment . “ are you sure ?
samp. 2 i looked up at the blue sky . i looked around the room . what are you doing ?
samp. 3 it was down on the dance floor . i turned back to the table . what are you doing ?

Table 7: Three sentences which were used as inputs to the vae, presented with greedy decodes from the
mean of the posterior distribution, and from three samples from that distribution.

“ i want to talk to you . ”
“i want to be with you . ”
“i do n’t want to be with you . ”
i do n’t want to be with you .
she did n’t want to be with him .

he was silent for a long moment .
he was silent for a moment .
it was quiet for a moment .
it was dark and cold .
there was a pause .
it was my turn .

Table 8: Paths between pairs of random points in
vae space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

ments). Here we see that the sentences are far less
typical, but for the most part are grammatical and
maintain a clear topic, indicating that the latent
variable is capturing a rich variety of global fea-
tures even for rare sentences.

6.2 Sampling from the posterior

In addition to generating unconditional samples,
we can also examine the sentences decoded from
the posterior vectors p(z|x) for various sentences
x. Because the model is regularized to produce dis-
tributions rather than deterministic codes, it does
not exactly memorize and round-trip the input. In-
stead, we can see what the model considers to be
similar sentences by examining the posterior sam-
ples in Table 7. The codes appear to capture in-
formation about the number of tokens and parts
of speech for each token, as well as topic informa-
tion. As the sentences get longer, the fidelity of
the round-tripped sentences decreases.

6.3 Homotopies

The use of a variational autoencoder allows us to
generate sentences using greedy decoding on con-
tinuous samples from the space of codes. Addi-
tionally, the volume-filling and smooth nature of
the code space allows us to examine for the first
time a concept of homotopy (linear interpolation)
between sentences. In this context, a homotopy be-
tween two codes ~z1 and ~z2 is the set of points on the
line between them, inclusive, ~z(t) = ~z1⇤(1�t)+~z2⇤t
for t 2 [0, 1]. Similarly, the homotopy between two

sentences decoded (greedily) from codes ~z1 and ~z2

is the set of sentences decoded from the codes on
the line. Examining these homotopies allows us to
get a sense of what neighborhoods in code space
look like – how the autoencoder organizes infor-
mation and what it regards as a continuous defor-
mation between two sentences.
While a standard non-variational rnnlm does

not have a way to perform these homotopies, a
vanilla sequence autoencoder can do so. As men-
tioned earlier in the paper, if we examine the ho-
motopies created by the sequence autoencoder in
Table 1, though, we can see that the transition be-
tween sentences is sharp, and results in ungram-
matical intermediate sentences. This gives evi-
dence for our intuition that the vae learns repre-
sentations that are smooth and “fill up” the space.
In Table 8 (and in additional tables in the ap-

pendix) we can see that the codes mostly contain
syntactic information, such as the number of words
and the parts of speech of tokens, and that all in-
termediate sentences are grammatical. Some topic
information also remains consistent in neighbor-
hoods along the path. Additionally, sentences with
similar syntax and topic but flipped sentiment va-
lence, e.g. “the pain was unbearable” vs. “the
thought made me smile”, can have similar embed-
dings, a phenomenon which has been observed with
single-word embeddings (for example the vectors
for “bad” and “good” are often very similar due to
their similar distributional characteristics).

7 Conclusion

This paper introduces the use of a variational
autoencoder for natural language sentences. We
present novel techniques that allow us to train
our model successfully, and find that it can e↵ec-
tively impute missing words. We analyze the la-
tent space learned by our model, and find that it
is able to generate coherent and diverse sentences
through purely continuous sampling and provides
interpretable homotopies that smoothly interpo-
late between sentences.
We hope in future work to investigate factoriza-

tion of the latent variable into separate style and
content components, to generate sentences condi-
tioned on extrinsic features, to learn sentence em-
beddings in a semi-supervised fashion for language



Variational Auto-Encoders (VAEs)
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[Kingma & Welling, 2014]



Note: Amortized Variational Inference

66

• Variational distribution as an inference model 𝑞G 𝒛 𝒙 with 
parameters 𝝓 (which was traditionally factored over samples)
• Amortize the cost of inference by learning a single data-

dependent inference model
• The trained inference model can be used for quick inference 

on new data



Variational Auto-encoders: Summary
● A combination of the following ideas: 
! Variational Inference: ELBO
! Variational distribution parametrized as neural networks 
! Reparameterization trick

● Pros:
! Principled approach to generative models 
! Allows inference of 𝑞(𝑧|𝑥), can be useful feature representation for other tasks 

● Cons:
! Samples blurrier and lower quality compared to GANs
! Tend to collapse on text data
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ℒ 𝜽,𝝓; 𝒙 = log 𝑝( 𝒙|𝒛 − KL(𝑞A 𝒛 𝒙 || 𝑝(𝒛))

Reconstruction Divergence from prior

(Razavi et al., 2019)



Key Takeaways
● Stochastic VI
● Computing Gradients of Expectations
! Score gradient

! Reparameterization gradient

● Black-box VI
● Variational autoencoders (VAEs)
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ℒ = 𝔼!𝝀(𝒛) 𝑓8(𝒛)

∇8ℒ = 𝔼!𝝀(𝒛) 𝑓8 𝒛 ∇8log 𝑞( 𝒛 + ∇8𝑓8(𝒛)

∇8ℒ = 𝔼𝝐∼𝒔(𝝐) ∇𝒛𝑓8 𝒛 ∇8𝑡 𝜖, 𝜆 + ∇𝝀𝑓8(𝒛)



Questions?


