DSC291: Advanced Statistical Natural Language Processing

Unsupervised Learning

Zhiting Hu
Lecture 8, April 21, 2022
UCSanDiego

Outline

- Variational Inference (VI)
- Stachastic VI; Black-box VI
- Variational Autoencoders (VAEs)

EM Algorithm

- Observed variables \boldsymbol{x}, latent variables \boldsymbol{z}
- To learn a model $p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)$, we want to maximize the marginal loglikelihood

$$
\ell(\theta ; \boldsymbol{x})=\log p(\boldsymbol{x} \mid \theta)=\log \sum_{z} p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)
$$

- But it's too difficult
- EM algorithm:
- maximize a lower bound of $\ell(\theta ; \boldsymbol{x})$
- Or equivalently, minimize an upper bound of $\ell(\theta ; \boldsymbol{x})$
- Key equation:

$$
\ell(\theta ; \boldsymbol{x})=\mathbb{E}_{q(\mathbf{z} \mid \boldsymbol{x})}\left[\log \frac{p(\boldsymbol{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \boldsymbol{x})}\right]+\operatorname{KL}(q(\mathbf{z} \mid \boldsymbol{x}) \| p(\mathbf{z} \mid \boldsymbol{x}, \theta))
$$

EM Algorithm

- Observed variables \boldsymbol{x}, latent variables \boldsymbol{z}
- To learn a model $p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)$, we want to maximize the marginal loglikelihood

$$
\ell(\theta ; \boldsymbol{x})=\log p(x \mid \theta)=\log \sum_{z} p(x, z \mid \theta)
$$

- But it's too difficult
- EM algorithm:
- maximize a lower bound of $\ell(\theta ; \boldsymbol{x})$
- Or equivalently, minimize an upper bound of $\ell(\theta ; \boldsymbol{x})$
- Key equation:-----------1 Evidence Lower Bound (ELBO)

$$
\begin{aligned}
\ell(\theta ; \boldsymbol{x}) & =\mathbb{E}_{q(\boldsymbol{z} \mid \boldsymbol{x})}\left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)}{q(\boldsymbol{z} \mid \boldsymbol{x})}\right]+\operatorname{KL}(q(\mathbf{z} \mid \boldsymbol{x}) \| p(\boldsymbol{z} \mid \boldsymbol{x}, \theta)) \\
& =-\underline{F}(\underline{q}, \theta)+\operatorname{KL}(q(\mathbf{z} \mid \boldsymbol{x}) \| p(\mathbf{z} \mid \boldsymbol{x}, \theta))
\end{aligned}
$$

EM Algorithm

- The EM algorithm is coordinate-decent on $F(q, \theta)$
- E-step: $\quad q^{t+1}=\arg \min _{q} F\left(q, \theta^{t}\right)=p\left(\mathbf{z} \mid \boldsymbol{x}, \theta^{t}\right)$
- the posterior distribution over the latent variables given the data and the current parameters
- M-step: $\quad \theta^{t+1}=\arg \min _{\theta} F\left(q^{t+1}, \theta^{t}\right)=\operatorname{argmax}_{\theta} \sum_{z} q^{t+1}(\mathbf{z} \mid \boldsymbol{x}) \log p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)$

$$
\begin{aligned}
\ell(\theta ; \boldsymbol{x}) & =\mathbb{E}_{q(\mathbf{z} \mid \boldsymbol{x})}\left[\log \frac{p(\boldsymbol{x}, \mathbf{z} \mid \theta)}{q(\boldsymbol{z} \mid \boldsymbol{x})}\right]+\operatorname{KL}(q(\mathbf{z} \mid \boldsymbol{x}) \| p(\mathbf{z} \mid \boldsymbol{x}, \theta)) \\
& =-F(q, \theta)+\operatorname{KL}(q(\boldsymbol{z} \mid \boldsymbol{x}) \| p(\mathbf{z} \mid \boldsymbol{x}, \theta))
\end{aligned}
$$

Example: Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components:
- $\quad Z$ is a latent class indicator vector:

$$
p\left(z_{n}\right)=\operatorname{multi}\left(z_{n}: \pi\right)=\prod_{k}\left(\pi_{k}\right)^{z_{n}^{k}}
$$

- X is a conditional Gaussian variable with a class-specific mean/covariance

$$
p\left(x_{n} \mid z_{n}^{k}=1, \mu, \Sigma\right)=\frac{1}{(2 \pi)^{m / 2}\left|\Sigma_{k}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(x_{n}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{n}-\mu_{k}\right)\right\}
$$

- The likelihood of a sample:

$$
\begin{aligned}
p\left(x_{n} \mid \mu, \Sigma\right) & =\sum_{k} p\left(z^{k}=1 \mid \pi\right) p\left(x, \mid z^{k}=1, \mu, \Sigma\right) \\
& =\sum_{z_{n}} \prod_{k}\left(\left(\pi_{k}\right)^{z_{n}^{k}} N\left(x_{n}: \mu_{k}, \Sigma_{k}\right)^{z_{n}^{k}}\right)=\sum_{k} \pi_{k} N\left(x, \mid \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

EM Algorithm for GMM

- Initialize the means μ_{k}, covariances Σ_{k} and mixing coefficients π_{k}
- Iterate until convergence:
- E-step: Evaluate the posterior given current parameters

$$
p\left(z^{k}=1 \mid \boldsymbol{x}\right)=\frac{\pi_{k} \mathcal{N}\left(\boldsymbol{x} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\boldsymbol{x} \mid \mu_{j}, \Sigma_{j}\right)}:=\gamma_{k}
$$

- M-step: Re-estimate the parameters given current posterior

$$
\begin{aligned}
& \mathbb{E}_{q^{t+1}}[\log (p(\boldsymbol{x}, z \mid \boldsymbol{\theta}))] \\
= & \sum_{k} \gamma_{k}\left(\log p\left(z^{k}=1 \mid \boldsymbol{\theta}\right)+\log P\left(\boldsymbol{x} \mid z^{k}=1, \boldsymbol{\theta}\right)\right) \\
= & \sum_{k} \gamma_{k} \log \pi_{k}+\sum_{k} \gamma_{k} \log \mathcal{N}\left(\boldsymbol{x} ; \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

EM Algorithm

- The EM algorithm is coordinate-decent on $F(q, \theta)$
- E-step: $\quad q^{t+1}=\arg \min _{q} F\left(q, \theta^{t}\right)=p\left(\mathbf{z} \mid \boldsymbol{x}, \theta^{t}\right)$
- M-step: $\quad \theta^{t+1}=\arg \min _{\theta} F\left(q^{t+1}, \theta^{t}\right)=\operatorname{argmax}_{\theta} \sum_{z} q^{t+1}(\mathbf{z} \mid \boldsymbol{x}) \log p(\boldsymbol{x}, \mathbf{z} \mid \theta)$

$$
\begin{aligned}
\ell(\theta ; \boldsymbol{x}) & =\mathbb{E}_{q(\mathbf{z} \mid \boldsymbol{x})}\left[\log \frac{p(\boldsymbol{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \boldsymbol{x})}\right]+\operatorname{KL}(q(\mathbf{z} \mid \boldsymbol{x}) \| p(\mathbf{z} \mid \boldsymbol{x}, \theta)) \\
& =-F(q, \theta)+\operatorname{KL}(q(\mathbf{z} \mid \boldsymbol{x}) \| p(\boldsymbol{z} \mid \boldsymbol{x}, \theta))
\end{aligned}
$$

- Limitation: need to be able to compute $p(\boldsymbol{z} \mid \boldsymbol{x}, \theta)$, not possible for more complicated models --- solution: Variational inference

Variational Inference

Inference

- Given a model, the goals of inference can include:
- Computing the likelihood of observed data $p\left(\boldsymbol{x}^{*}\right)$
- Computing the marginal distribution over a given subset of variables in the model $p\left(\boldsymbol{x}_{A}\right)$
- Computing the conditional distribution over a subsets of nodes given a disjoint subset of nodes $p\left(\boldsymbol{x}_{A} \mid \boldsymbol{x}_{B}\right)$
- Computing a mode of the density (for the above distributions) $\operatorname{argmax}_{x} p(\boldsymbol{x})$
-

Variational Inference

- Observed variables \boldsymbol{x}, latent variables \boldsymbol{z}
- Variational (Bayesian) inference, a.k.a. variational Bayes, is most often used to approximately infer the conditional distribution over the latent variables given the observations (and parameters)
- i.e., the posterior distribution over the latent variables

$$
p(\mathbf{z} \mid \boldsymbol{x}, \theta)=\frac{p(\mathbf{z}, \boldsymbol{x} \mid \theta)}{\sum_{\boldsymbol{z}} p(\mathbf{z}, \boldsymbol{x} \mid \theta)}
$$

Motivating Example

- Why do we often need to use an approximate inference methods (such as variational Bayes) to compute the posterior distribution?
- It's because we cannot directly compute the posterior distribution for many interesting models
- I.e. the posterior density is in an intractable form (often involving integrals) which cannot be easily analytically solved.
- As a motivating example, we will try to compute the posterior for a (Bayesian) mixture of Gaussians.

Bayesian mixture of Gaussians

- The mean μ_{k} is treated as a (latent) random variable

$$
\mu_{k} \sim \mathcal{N}\left(0, \tau^{2}\right) \text { for } k=1, \ldots, K
$$

- For each data $i=1, \ldots, n$

$$
\begin{aligned}
z_{i} & \sim \operatorname{Cat}(\pi) \\
x_{i} & \sim \mathcal{N}\left(\mu_{z_{i}}, \sigma^{2}\right)
\end{aligned}
$$

- We have
- observed variables $x_{1: n}$
- latent variables $\mu_{1: k}$ and $z_{1: n}$
- parameters $\left\{\tau^{2}, \pi, \sigma^{2}\right\}$
- $p\left(x_{1: n}, z_{1: n}, \mu_{1: k} \mid \tau^{2}, \pi, \sigma^{2}\right)=\prod_{k=1}^{K} p\left(\mu_{k}\right) \prod_{i=1}^{n} p\left(z_{i}\right) p\left(x_{i} \mid z_{i}, \mu_{1: K}\right)$

Bayesian mixture of Gaussians

- We can write the posterior distribution as
$p\left(\mu_{1: K}, z_{1: n} \mid x_{1: n}\right)=\frac{\prod_{k=1}^{K} p\left(\mu_{k}\right) \prod_{i=1}^{n} p\left(z_{i}\right) p\left(x_{i} \mid z_{i}, \mu_{1: K}\right)}{\int_{\mu_{1: K}} \sum_{z_{1: n}} \prod_{k=1}^{K} p\left(\mu_{k}\right) \prod_{i=1}^{n} p\left(z_{i}\right) p\left(x_{i} \mid z_{i}, \mu_{1: K}\right)}$
- The numerator can be computed for any choice of the latent variables
- The problem is the denominator (the marginal probability of the observations)
- This integral cannot easily be computed analytically
- We need some approximation..

Variational Inference

The main idea behind variational inference:

- Choose a family of distributions over the latent variables $z_{1: m}$ with its own set of variational parameters ν, i.e.

$$
q\left(z_{1: m} \mid \nu\right)
$$

- Then, we find the setting of the parameters that makes our approximation q closest to the posterior distribution.
- This is where optimization algorithms come in.
- Then we can use q with the fitted parameters in place of the posterior.
- E.g. to form predictions about future data, or to investigate the posterior distribution over the hidden variables, find modes, etc.

Variational Inference

- We want to minimize the KL divergence between our approximation $q(\mathbf{z} \mid \boldsymbol{x})$ and our posterior $p(\mathbf{z} \mid \boldsymbol{x})$

$$
\operatorname{KL}(q(\boldsymbol{z} \mid \boldsymbol{x}) \| p(\boldsymbol{z} \mid \boldsymbol{x}))
$$

- But we can't actually minimize this quantity w.r.t q because $p(\mathbf{z} \mid \boldsymbol{x})$ is unknown

Evidence Lower Bound (ELBO)

$$
\ell(\theta ; \boldsymbol{x})=\mathbb{E}_{q(\boldsymbol{z} \mid \boldsymbol{x})}\left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)}{q(\boldsymbol{z} \mid \boldsymbol{x})}\right]+\operatorname{KL}(q(\boldsymbol{z} \mid \boldsymbol{x}) \| p(\boldsymbol{z} \mid \boldsymbol{x}, \theta))
$$

- The ELBO is equal to the negative KL divergence up to a constant $\ell(\theta ; \boldsymbol{x})$
- We maximize the ELBO over q to find an "optimal approximation" to $p(z \mid x)$

Variational Inference

- Choose a family of distributions over the latent variables \mathbf{z} with its own set of variational parameters v, i.e. $q(\mathbf{z} \mid \boldsymbol{x}, \boldsymbol{v})$
- We maximize the ELBO over q to find an "optimal approximation" to $p(\mathbf{z} \mid \boldsymbol{x})$

$$
\begin{aligned}
& \operatorname{argmax}_{v} \mathbb{E}_{q(\mathbf{z} \mid x, v)}\left[\log \frac{p(\boldsymbol{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \boldsymbol{x}, \boldsymbol{v})}\right] \\
& =\operatorname{argmax}_{v} \mathbb{E}_{q(\mathbf{z} \mid \boldsymbol{x}, \boldsymbol{v})}[\log p(\boldsymbol{x}, \mathbf{z} \mid \theta)]-\mathbb{E}_{q(\mathbf{z} \mid \boldsymbol{x}, \boldsymbol{v})}[\log q(\mathbf{z} \mid \boldsymbol{x}, \boldsymbol{v})]
\end{aligned}
$$

Mean Field Variational Inference

- A popular family of variational approximations
- In this type of variational inference, we assume the variational distribution over the latent variables factorizes as

$$
q(\mathbf{z})=q\left(z_{1}, \ldots, z_{m}\right)=\prod_{j=1}^{m} q\left(z_{j}\right)
$$

- (where we omit variational parameters for ease of notation)
- We refer to $q\left(z_{j}\right)$, the variational approximation for a single latent variable, as a "local variational approximation"
- In the above expression, the variational approximation $q\left(z_{j}\right)$ over each latent variable z_{j} is independent

Mean Field Variational Inference

- Note that this is a fairly general setup; we can also partition the latent variables z_{1}, \ldots, z_{m} into R groups $z_{G_{1}}, \ldots, z_{G_{R}}$, and use the approximation:

$$
q\left(z_{1}, \ldots, z_{m}\right)=q\left(z_{G_{1}}, \ldots, z_{G_{R}}\right)=\prod_{r=1}^{R} q\left(z_{G_{r}}\right)
$$

- Often called "generalized mean field" versus (the above) "naïve mean field".

Mean Field Variational Inference

- Note that this is a fairly general setup; we can also partition the latent variables z_{1}, \ldots, z_{m} into R groups $z_{G_{1}}, \ldots, z_{G_{R}}$, and use the approximation:

$$
q\left(z_{1}, \ldots, z_{m}\right)=q\left(z_{G_{1}}, \ldots, z_{G_{R}}\right)=\prod_{r=1}^{R} q\left(z_{G_{r}}\right)
$$

- Often called "generalized mean field" versus (the above) "naïve mean field".
- Typically, this approximation does not contain the true posterior (because the latent variables are dependent).
- E.g.: in the (Bayesian) mixture of Gaussians model, all of the cluster assignments z_{i} for $i=1, \ldots, n$ are dependent on each other and on the cluster locations $\mu_{1: K}$ given data.

Optimizing the ELBO in Mean Field Variational Inference

 How do we optimize the ELBO in mean field variational inference?- Typically, we use coordinate ascent optimization.
- I.e. we optimize each latent variable's variational approximation $q\left(z_{j}\right)$ in turn while holding the others fixed.
- At each iteration we get an updated "local" variational approximation.
- And we iterate through each latent variable until convergence.

Optimizing the ELBO in Mean Field Variational Inference

- Recall that the ELBO is defined as:

$$
\mathcal{L}=\mathbb{E}_{q}[\log p(\boldsymbol{x}, \mathbf{z})]-\mathbb{E}_{q}[\log q(\mathbf{z})]
$$

- Note that we can decompose the entropy term of the ELBO (using the mean field variational approximation) as:

$$
\mathbb{E}_{q}\left[\log q\left(z_{1: m}\right)\right]=\sum_{j=1}^{m} \mathbb{E}_{q_{j}}\left[\log q\left(z_{j}\right)\right]
$$

- Therefore, under the mean field approximation, the ELBO can be written:

$$
\mathcal{L}=\mathbb{E}_{q_{j}} \mathbb{E}_{q_{-j}}[\log p(\boldsymbol{x}, \mathbf{z})]-\sum_{j=1}^{m} \mathbb{E}_{q_{j}}\left[\log q\left(z_{j}\right)\right]
$$

Optimizing the ELBO in Mean Field Variational Inference

- Therefore, under the mean field approximation, the ELBO can be written:

$$
\mathcal{L}=\mathbb{E}_{q_{j}} \mathbb{E}_{q_{-j}}[\log p(\boldsymbol{x}, \mathbf{z})]-\sum_{j=1}^{m} \mathbb{E}_{q_{j}}\left[\log q\left(z_{j}\right)\right]
$$

- Next, we want to derive the coordinate ascent update for a latent variable z_{j}, keeping all other latent variables fixed.
- i.e. we want the $\operatorname{argmax}_{q_{j}} \mathcal{L}$.
- Removing the parts that do not depend on $q\left(z_{j}\right)$, we can write:

$$
\mathcal{L}=\mathbb{E}_{q_{j}} \mathbb{E}_{q_{-j}}[\log p(\boldsymbol{x}, \mathbf{z})]-\mathbb{E}_{q_{j}}\left[\log q\left(z_{j}\right)\right]+\text { const. }
$$

Optimizing the ELBO in Mean Field Variational Inference

- To find this argmax, we take the derivative of \mathcal{L} w.r.t $q\left(z_{j}\right)$ and and set the derivative to zero:

$$
\frac{d \mathcal{L}}{d q\left(z_{j}\right)}=\mathbb{E}_{q_{j}} \mathbb{E}_{q_{-j}}[\log p(\boldsymbol{x}, \mathbf{z})]-\log q\left(z_{j}\right)-1=0
$$

- From this, we arrive at the coordinate ascent update:

$$
q^{*}\left(z_{j}\right) \propto \exp \left\{\mathbb{E}_{q_{-j}}[\log p(\boldsymbol{x}, \boldsymbol{z})]\right\}
$$

Optimizing the ELBO in Mean Field Variational Inference

- The coordinate ascent update:

$$
q^{*}\left(z_{j}\right) \propto \exp \left\{\mathbb{E}_{q_{-j}}[\log p(\boldsymbol{x}, \boldsymbol{z})]\right\}
$$

- The optimal solution for factor $q\left(z_{j}\right)$ is obtained simply by considering the log of the joint distribution over all observed and latent variables and then taking the expectation with respect to all of the other factors $q\left(z_{k}\right), k \neq j$, then taking exponential and normalizing
- Note that the only assumption we made so far is the mean-field factorization:

$$
q(\mathbf{z})=q\left(z_{1}, \ldots, z_{m}\right)=\prod_{j=1}^{m} q\left(z_{j}\right)
$$

- We haven't yet made any assumptions on the form of $q\left(z_{j}\right)$

Simple example:

- Consider a univariate Gaussian distribution $p(x)=\mathcal{N}\left(x \mid \mu, \tau^{-2}\right)$, given a dataset $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$:

$$
\begin{aligned}
p(\mathcal{D} \mid \mu, \tau) & =\left(\frac{\tau}{2 \pi}\right)^{N / 2} \exp \left\{-\frac{\tau}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\} \\
p(\mu \mid \tau) & =\mathcal{N}\left(\mu \mid \mu_{0},\left(\lambda_{0} \tau\right)^{-1}\right) \\
p(\tau) & =\operatorname{Gam}\left(\tau \mid a_{0}, b_{0}\right)
\end{aligned}
$$

- $\operatorname{Gam}\left(\tau \mid a_{0}, b_{0}\right)=\frac{1}{\Gamma(a)} b^{a} \lambda^{a-1} \exp (-b \lambda)$: gamma distribution
- For this simple problem the posterior distribution can be found exactly. But we use it as an example for tutorial anyway

$$
q^{*}\left(z_{j}\right) \propto \exp \left\{\mathbb{E}_{q_{-j}}[\log p(\boldsymbol{x}, \boldsymbol{z})]\right\}
$$

Simple example:

$$
p(\mathcal{D} \mid \mu, \tau)=\left(\frac{\tau}{2 \pi}\right)^{N / 2} \exp \left\{-\frac{\tau}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\} \quad \begin{aligned}
p(\mu \mid \tau) & =\mathcal{N}\left(\mu \mid \mu_{0},\left(\lambda_{0} \tau\right)^{-1}\right) \\
p(\tau) & =\operatorname{Gam}\left(\tau \mid a_{0}, b_{0}\right)
\end{aligned}
$$

- Introduce the factorized variational approximation: $q(\mu, \tau)=q_{\mu}(\mu) q_{\tau}(\tau)$
- Solution to q_{μ} :

$$
\begin{aligned}
\ln q_{\mu}^{\star}(\mu) & =\mathbb{E}_{\tau}[\ln p(\mathcal{D} \mid \mu, \tau)+\ln p(\mu \mid \tau)]+\text { const } \\
& =-\frac{\mathbb{E}[\tau]}{2}\left\{\lambda_{0}\left(\mu-\mu_{0}\right)^{2}+\sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\}+\text { const. }
\end{aligned}
$$

- We can see q_{μ}^{*} is a Gaussian $\mathcal{N}\left(x \mid \mu_{N}, \lambda_{N}^{-1}\right)$:

$$
\begin{aligned}
\mu_{N} & =\frac{\lambda_{0} \mu_{0}+N \bar{x}}{\lambda_{0}+N} \\
\lambda_{N} & =\left(\lambda_{0}+N\right) \mathbb{E}[\tau]
\end{aligned}
$$

$$
q^{*}\left(z_{j}\right) \propto \exp \left\{\mathbb{E}_{q_{-j}}[\log p(\boldsymbol{x}, \boldsymbol{z})]\right\}
$$

Simple example:

$$
p(\mathcal{D} \mid \mu, \tau)=\left(\frac{\tau}{2 \pi}\right)^{N / 2} \exp \left\{-\frac{\tau}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\} \quad \begin{aligned}
p(\mu \mid \tau) & =\mathcal{N}\left(\mu \mid \mu_{0},\left(\lambda_{0} \tau\right)^{-1}\right) \\
p(\tau) & =\operatorname{Gam}\left(\tau \mid a_{0}, b_{0}\right)
\end{aligned}
$$

- Introduce the factorized variational approximation: $q(\mu, \tau)=q_{\mu}(\mu) q_{\tau}(\tau)$
- Solution to $q_{\tau}: \ln q_{\tau}^{\star}(\tau)=\mathbb{E}_{\mu}[\ln p(\mathcal{D} \mid \mu, \tau)+\ln p(\mu \mid \tau)]+\ln p(\tau)+$ const

$$
\begin{aligned}
= & \left(a_{0}-1\right) \ln \tau-b_{0} \tau+\frac{N}{2} \ln \tau \\
& -\frac{\tau}{2} \mathbb{E}_{\mu}\left[\sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}+\lambda_{0}\left(\mu-\mu_{0}\right)^{2}\right]+\mathrm{const}
\end{aligned}
$$

- We can see q_{τ}^{*} is a gamma distribution $\operatorname{Gam}\left(\tau \mid a_{N}, b_{N}\right)$:

$$
\begin{aligned}
a_{N} & =a_{0}+\frac{N}{2} \\
b_{N} & =b_{0}+\frac{1}{2} \mathbb{E}_{\mu}\left[\sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}+\lambda_{0}\left(\mu-\mu_{0}\right)^{2}\right]
\end{aligned}
$$

Quick Recap

- We often cannot compute posteriors, and so we need to approximate them, using variational methods.
- In variational Bayes, we'd like to find an approximation within some family that minimizes the KL divergence to the posterior, but we can't directly minimize this
- Therefore, we defined the ELBO, which we can maximize, and this is equivalent to minimizing the KL divergence.

Quick Recap

- We defined a family of approximations called "mean field" approximations, in which there are no dependencies between latent variables

$$
q(\mathbf{z})=q\left(z_{1}, \ldots, z_{m}\right)=\prod_{j=1}^{m} q\left(z_{j}\right)
$$

- We optimize the ELBO with coordinate ascent updates to iteratively optimize each local variational approximation under mean field assumptions

$$
q^{*}\left(z_{j}\right) \propto \exp \left\{\mathbb{E}_{q_{-j}}[\log p(\boldsymbol{x}, \mathbf{z})]\right\}
$$

Key Takeaways

- KL Divergence

$$
\operatorname{KL}(q(\boldsymbol{x}) \| p(\boldsymbol{x}))=\sum_{\boldsymbol{x}} q(\boldsymbol{x}) \log \frac{q(\boldsymbol{x})}{p(\boldsymbol{x})}
$$

- The key equation of EM and VI
Evidence Lower Bound (ELBO)

$$
\ell(\theta ; \boldsymbol{x})=\mathbb{E}_{q(\boldsymbol{z} \mid \boldsymbol{x})}\left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z} \mid \theta)}{q(\boldsymbol{z} \mid \boldsymbol{x})}\right]
$$

- Free energy $F(q, \theta)$
- EM: E-step and M-step optimizing ELBO w.r.t q and θ
- Mean-field VI: optimizing ELBO w.r.t factorized q components

Stochastic VI; Black-box VI

VI with coordinate ascent

Example: Bayesian mixture of Gaussians

- Treat the mean μ_{k} and cluster proportion π as latent variables

$$
\begin{aligned}
& \mu_{k} \sim \mathcal{N}\left(0, \tau^{2}\right) \text { for } k=1, \ldots, K \\
& \pi \sim \operatorname{Dirichlet}(\boldsymbol{\alpha})
\end{aligned}
$$

- For each data $i=1, \ldots, n$

$$
\begin{aligned}
& z_{i} \sim \operatorname{Cat}(\pi) . \\
& x_{i} \sim \mathcal{N}\left(\mu_{z_{i}}, \sigma^{2}\right) .
\end{aligned}
$$

- We have
- observed variables $x_{1: n}$
- latent variables $\mu_{1: k}, \pi$ and $z_{1: n}$
- Hyper-parameters $\left\{\tau^{2}, \sigma^{2}\right\}$

VI with coordinate ascent

Example: Bayesian mixture of Gaussians
Assume mean-field $q\left(\mu_{1: K}, \pi, z_{1: n}\right)=\prod_{k} q\left(\mu_{k}\right) q(\pi) \prod_{i} q\left(z_{i}\right)$

- Initialize the global variational distributions $q\left(\mu_{k}\right)$ and $q(\pi)$
- Repeat:
- For each data example $i \in\{1,2, \ldots, D\}$
- Update the local variational distribution $q\left(z_{i}\right)$
- End for
- Update the global variational distributions $q\left(\mu_{k}\right)$ and $q(\pi)$
- Until ELBO converges
- What if we have millions of data examples? This could be very slow.

Stochastic VI

Example: Bayesian mixture of Gaussians
Assume mean-field $q\left(\mu_{1: K}, \pi, z_{1: n}\right)=\prod_{k} q\left(\mu_{k}\right) q(\pi) \prod_{i} q\left(z_{i}\right)$

- Initialize the global variational distributions $q\left(\mu_{k}\right)$ and $q(\pi)$
- Repeat:
- Sample a data example $i \in\{1,2, \ldots, D\}$
- Update the local variational distribution $q\left(z_{i}\right)$
- Update the global variational distributions $q\left(\mu_{k}\right)$ and $q(\pi)$ with natural gradient ascent
- Until ELBO converges
- (Setting natural gradient $=0$ gives the traditional mean-field update)

Black-box Variational Inference (BBVI)

- We have derived variational inference specific for Bayesian Gaussian (mixture) models
- There are innumerable models
- Can we have a solution that does not entail model-specific work?

Black-box Variational Inference (BBVI)

- Easily use variational inference with any model
- Perform inference with massive data
- No mathematical work beyond specifying the model

Black-box Variational Inference (BBVI)

- Sample from $q($.
- Form noisy gradients (without model-specific computation)
- Use stochastic optimization

Black-box Variational Inference (BBVI)

- Probabilistic model: \boldsymbol{x}-- observed variables, \boldsymbol{z}-- latent variables
- Variational distribution $q_{\lambda}(\boldsymbol{z} \mid \boldsymbol{x})$ with parameters λ, e.g.,
- Gaussian mixture distribution:
- "A Gaussian mixture model is a universal approximator of densities, in the sense that any smooth density can be approximated with any specific nonzero amount of error by a Gaussian mixture model with enough components." (Deep Learning book, pp.65)
- Deep neural networks
- ELBO:

$$
\mathcal{L}(\lambda)=\mathbb{E}_{q(\mathbf{z} \mid \lambda)}[\log p(\boldsymbol{x}, \mathbf{z})]-\mathbb{E}_{q(\mathbf{z} \mid \lambda)}[\log q(\mathbf{z} \mid \lambda)]
$$

- Want to compute the gradient w.r.t variational parameters λ

The General Problem: Computing Gradients of Expectations

- When the objective function \mathcal{L} is defined as an expectation of a (differentiable) test function $f_{\lambda}(\mathbf{z})$ w.r.t. a probability distribution $q_{\lambda}(\mathbf{z})$

$$
\mathcal{L}=\mathbb{E}_{q_{\lambda}(z)}\left[f_{\lambda}(z)\right]
$$

- Computing exact gradients w.r.t. the parameters λ is often unfeasible
- Need stochastic gradient estimates
- The score function estimator (a.k.a log-derivative trick, REINFORCE)
- The reparameterization trick (a.k.a the pathwise gradient estimator)

Computing Gradients of Expectations w/ score function

- Loss: $\mathcal{L}=\mathbb{E}_{q_{\lambda}(z)}\left[f_{\lambda}(\mathbf{z})\right]$
- Log-derivative trick: $\nabla_{\lambda} q_{\lambda}=q_{\lambda} \nabla_{\lambda} \log q_{\lambda}$
- Gradient w.r.t. λ :

$$
\nabla_{\lambda} \mathcal{L}=\mathbb{E}_{q_{\lambda}(\mathbf{z})}\left[f_{\lambda}(\mathbf{z}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{z})+\nabla_{\lambda} f_{\lambda}(\mathbf{z})\right]
$$

- score function: the gradient of the log of a probability distribution
- Compute noisy unbiased gradients with Monte Carlo samples from q_{λ}

$$
\nabla_{\lambda} \mathcal{L} \approx \frac{1}{S} \sum_{s=1}^{s} f_{\lambda}\left(\mathbf{z}_{s}\right) \nabla_{\lambda} \log q_{\lambda}\left(\mathbf{z}_{s}\right)+\nabla_{\lambda} f_{\lambda}\left(\mathbf{z}_{s}\right) \quad \text { where } z_{s} \sim q_{\lambda}(\mathbf{z})
$$

- Pros: generally applicable to any distribution $q(z \mid \lambda)$
- Cons: empirically has high variance \rightarrow slow convergence
- To reduce variance: Rao-Blackwellization, control variates, importance sampling, ...

Computing Gradients of Expectations w/ reparametrization trick

- Loss: $\mathcal{L}=\mathbb{E}_{q_{\lambda}(\mathbf{z})}\left[f_{\lambda}(\mathbf{z})\right]$
- Assume that we can express the distribution $q_{\lambda}(\mathbf{z})$ with a transformation

$$
\begin{aligned}
& \epsilon \sim s(\epsilon) \quad \Leftrightarrow \quad z \sim q(z \mid \lambda), ~ \\
& z=t(\epsilon \lambda)
\end{aligned} \quad \Leftrightarrow \quad z \sim q
$$

- E.g.,

$$
\begin{aligned}
& \epsilon \sim \operatorname{Normal}(0,1) \\
& z=\epsilon \sigma+\mu
\end{aligned} \Leftrightarrow \quad z \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

- Reparameterization gradient

$$
\begin{aligned}
\mathcal{L} & =\mathbb{E}_{\boldsymbol{\epsilon} \sim s(\boldsymbol{\epsilon})}\left[f_{\lambda}(\mathbf{z}(\boldsymbol{\epsilon}, \lambda))\right] \\
\nabla_{\lambda} \mathcal{L} & =\mathbb{E}_{\boldsymbol{\epsilon} \sim s(\boldsymbol{\epsilon})}\left[\nabla_{\boldsymbol{z}} f_{\lambda}(\mathbf{z}) \nabla_{\lambda} t(\epsilon, \lambda)\right]
\end{aligned}
$$

- Pros: empirically, lower variance of the gradient estimate
- Cons: Not all distributions can be reparameterized

Reparameterization trick

- Reparametrizing Gaussian distribution

$$
\begin{aligned}
& \epsilon \sim \operatorname{Normal}(0,1) \\
& z=\epsilon \sigma+\mu
\end{aligned} \Leftrightarrow \quad z \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

Reparameterization trick

- Reparametrizing Gaussian distribution

$$
\begin{aligned}
& \epsilon \sim \operatorname{Normal}(0,1) \\
& z=\epsilon \sigma+\mu
\end{aligned} \Leftrightarrow \quad z \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

- Other reparameterizable distributions:
- Tractable inverse CDF F^{-1} :

$$
\begin{aligned}
& \epsilon \sim \operatorname{Uniform}(\epsilon) \quad \Leftrightarrow \quad z \sim q(z) \\
& z=F^{-1}(\epsilon)
\end{aligned}
$$

- Exponential, Cauchy, Logistic, Rayleigh, Pareto, Weibull, Reciprocal, Gompertz, Gumbel, Erlang
- Location-scale:
- Laplace, Elliptical, Student's t, Logistic, Uniform, Triangular, Gaussian
- Composition:
- Log-Normal (exponentiated normal) Gamma (sum of exponentials) Dirichlet (sum of Gammas) Beta, Chi-Squared, F

Computing Gradients of Expectations: Summary

- Loss: $\mathcal{L}=\mathbb{E}_{q_{\lambda}(z)}\left[f_{\lambda}(\mathbf{z})\right]$
- Score gradient

$$
\nabla_{\lambda} \mathcal{L}=\mathbb{E}_{q_{\lambda}(\mathbf{z})}\left[f_{\lambda}(\mathbf{z}) \nabla_{\lambda} \log q_{\lambda}(\mathbf{z})+\nabla_{\lambda} f_{\lambda}(\mathbf{z})\right]
$$

- Pros: generally applicable to any distribution $q(z \mid \lambda)$
- Cons: empirically has high variance \rightarrow slow convergence
- Reparameterization gradient

$$
\nabla_{\lambda} \mathcal{L}=\mathbb{E}_{\epsilon \sim s(\epsilon)}\left[\nabla_{\boldsymbol{z}} f_{\lambda}(\mathbf{z}) \nabla_{\lambda} t(\epsilon, \lambda)\right]
$$

- Pros: empirically, lower variance of the gradient estimate
- Cons: Not all distributions can be reparameterized

Recall: Black-box Variational Inference (BBVI)

- Probabilistic model: \boldsymbol{x}-- observed variables, \boldsymbol{z}-- latent variables
- Variational distribution $q_{\lambda}(\boldsymbol{z} \mid \boldsymbol{x})$ with parameters λ, e.g.,
- Gaussian mixture distribution:
- "A Gaussian mixture model is a universal approximator of densities, in the sense that any smooth density can be approximated with any specific nonzero amount of error by a Gaussian mixture model with enough components." (Deep Learning book, pp.65)
- Deep neural networks

$$
\mathcal{L}(\lambda) \triangleq \mathrm{E}_{q_{\lambda}(z)}[\log p(x, z)-\log q(z)]
$$

- ELBO:

$$
\mathcal{L}(\lambda)=\mathbb{E}_{q(\mathbf{z} \mid \lambda)}[\log p(\boldsymbol{x}, \mathbf{z})]-\mathbb{E}_{q(\mathbf{z} \mid \lambda)}[\log q(\mathbf{z} \mid \lambda)]
$$

- Want to compute the gradient w.r.t variational parameters λ

BBVI with the score gradient

- ELBO:

$$
\mathcal{L}(\lambda)=\mathbb{E}_{q(\mathbf{z} \mid \lambda)}[\log p(\boldsymbol{x}, \mathbf{z})]-\mathbb{E}_{q(\mathbf{z} \mid \boldsymbol{\lambda})}[\log q(\mathbf{z} \mid \lambda)]
$$

- Gradient w.r.t. λ (using the log-derivative trick)

$$
\nabla_{\lambda} \mathcal{L}=\mathrm{E}_{q}\left[\nabla_{\lambda} \log q(z \mid \lambda)(\log p(x, z)-\log q(z \mid \lambda))\right]
$$

- Compute noisy unbiased gradients of the ELBO with Monte Carlo samples from the variational distribution

$$
\nabla_{\lambda} \mathcal{L} \approx \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} \log q\left(z_{s} \mid \lambda\right)\left(\log p\left(x, z_{s}\right)-\log q\left(z_{s} \mid \lambda\right)\right)
$$

$$
\text { where } z_{s} \sim q(z \mid \lambda) .
$$

BBVI with the reparameterization gradient

- ELBO:

$$
\mathcal{L}(\lambda)=\mathbb{E}_{q(\mathbf{z} \mid \lambda)}[\log p(\boldsymbol{x}, \mathbf{z})]-\mathbb{E}_{q(\mathbf{z} \mid \lambda)}[\log q(\mathbf{z} \mid \lambda)]
$$

- Gradient w.r.t. λ

$$
\begin{aligned}
& \epsilon \sim s(\epsilon) \\
& z=t(\epsilon, \lambda) \quad \Leftrightarrow \quad z \sim q(z \mid \lambda) \\
\nabla_{\lambda} \mathcal{L}= & \mathrm{E}_{\epsilon \sim s(\epsilon)}\left[\nabla_{z}[\log p(x, z)-\log q(z)] \nabla_{\lambda} t(\epsilon, \lambda)\right]
\end{aligned}
$$

Variational Autoencoders (VAEs)

Variational Auto-Encoders (VAEs)

VAEs are a combination of the following ideas:

- Variational Inference
- ELBO
- Variational distribution parametrized as neural networks
- Reparameterization trick

Variational Auto-Encoders (VAEs)

- Model $p_{\theta}(\boldsymbol{x}, \mathbf{z})=p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z}) p(\mathbf{z})$
- $p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z})$: a.k.a., generative model, generator, (probabilistic) decoder, ...
- $p(z)$: prior, e.g., Gaussian
- Assume variational distribution $q_{\phi}(\mathbf{z} \mid \boldsymbol{x})$
- E.g., a Gaussian distribution parameterized as deep neural networks
- a.k.a, recognition model, inference network, (probabilistic) encoder, ...
- ELBO:

Variational Auto-Encoders (VAEs)

- ELBO:

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi} ; \boldsymbol{x}) & =\mathrm{E}_{q_{\boldsymbol{\phi}}(\mathbf{Z} \mid \boldsymbol{x})}\left[\log p_{\theta}(\boldsymbol{x}, \mathbf{z})\right]-\mathrm{H}\left(q_{\phi}(\mathbf{z} \mid \boldsymbol{x})\right) \\
& =\mathrm{E}_{q_{\boldsymbol{\phi}}(\mathbf{Z} \mid \boldsymbol{x})}\left[\log p_{\theta}(\boldsymbol{x} \mid \mathbf{z})\right]-\operatorname{KL}\left(q_{\phi}(\mathbf{z} \mid \boldsymbol{x}) \| p(\mathbf{z})\right)
\end{aligned}
$$

- Reparameterization:
- $[\boldsymbol{\mu} ; \boldsymbol{\sigma}]=f_{\phi}(\boldsymbol{x})$ (a neural network)
- $\mathbf{z}=\mu+\sigma \odot \epsilon, \quad \epsilon \sim N(\mathbf{0}, \mathbf{1})$

Example: VAEs for images

Example: VAEs for images

$$
\text { Input Data } \quad \check{x}
$$

Example: VAEs for images

Example: VAEs for images

Generating samples:

- Use decoder network. Now sample z from prior!

Data manifold for 2-d z
66660000000000000000 44242222000000000002 4222222235500000002 q4222222335550000 532
 494922223333355 5 5 5 5

Example: VAEs for images

Generating samples:

- Use decoder network. Now sample z from prior!

Example: VAEs for text

- Latent code interpolation and sentences generation from VAEs [Bowman et al., 2015].

```
" i want to talk to you . "
    "i want to be with you.
    "i do n't want to be with you.
    i do n't want to be with you .
    she did n't want to be with him .
```


Variational Auto-Encoders (VAEs)

```
Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section 2.3 can be used. We use settings \(M=100\) and \(L=1\) in experiments.
    \(\boldsymbol{\theta}, \phi \leftarrow\) Initialize parameters
    repeat
        \(\mathbf{X}^{M} \leftarrow\) Random minibatch of \(M\) datapoints (drawn from full dataset)
        \(\boldsymbol{\epsilon} \leftarrow\) Random samples from noise distribution \(p(\boldsymbol{\epsilon})\)
        \(\mathbf{g} \leftarrow \nabla_{\boldsymbol{\theta}, \boldsymbol{\phi}} \widetilde{\mathcal{L}}^{M}\left(\boldsymbol{\theta}, \phi ; \mathbf{X}^{M}, \boldsymbol{\epsilon}\right)\) (Gradients of minibatch estimator (8))
        \(\boldsymbol{\theta}, \phi \leftarrow\) Update parameters using gradients \(\mathbf{g}\) (e.g. SGD or Adagrad [DHS10])
    until convergence of parameters \((\boldsymbol{\theta}, \phi)\)
    return \(\theta, \phi\)
```

[Kingma \& Welling, 2014]

Note: Amortized Variational Inference

- Variational distribution as an inference model $q_{\phi}(\mathbf{z} \mid \boldsymbol{x})$ with parameters $\boldsymbol{\phi}$ (which was traditionally factored over samples)
- Amortize the cost of inference by learning a single datadependent inference model
- The trained inference model can be used for quick inference on new data

Variational Auto-encoders: Summary

- A combination of the following ideas:
- Variational Inference: ELBO
- Variational distribution parametrized as neural networks
- Reparameterization trick

$$
\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi} ; \boldsymbol{x})=\left[\log p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z})\right]-\operatorname{KL}\left(q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{x}) \| p(\mathbf{z})\right)
$$

- Pros:

(Razavi et al., 2019)
- Principled approach to generative models
- Allows inference of $q(z \mid x)$, can be useful feature representation for other tasks
- Cons:
- Samples blurrier and lower quality compared to GANs
- Tend to collapse on text data

Key Takeaways

- Stochastic VI
- Computing Gradients of Expectations $\mathcal{L}=\mathbb{E}_{q_{\lambda}(z)}\left[f_{\lambda}(\mathbf{z})\right]$
- Score gradient

$$
\nabla_{\lambda} \mathcal{L}=\mathbb{E}_{q_{\lambda}(\mathbf{z})}\left[f_{\lambda}(\mathbf{z}) \nabla_{\lambda} \log q_{\theta}(\mathbf{z})+\nabla_{\lambda} f_{\lambda}(\mathbf{z})\right]
$$

- Reparameterization gradient

$$
\nabla_{\lambda} \mathcal{L}=\mathbb{E}_{\epsilon \sim s(\epsilon)}\left[\nabla_{\boldsymbol{z}} f_{\lambda}(\mathbf{z}) \nabla_{\lambda} t(\epsilon, \lambda)+\nabla_{\lambda} f_{\lambda}(\mathbf{z})\right]
$$

- Black-box VI
- Variational autoencoders (VAEs)

Questions?

