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Outline

e Contrastive learning (a special self-supervised learning)
e Unsupervised Learning



Representation Learning
with Contrastive Learning



Contrastive learning

o Take a data example x, sample a “positive” sample x,,5 and “negative”
samples x4 in some way

e Then try fit a scoring model such that

score (x xpos) > score(X, Xpeg)

Credit: [CVPR 2021 Tutorial] Leave Those Nets Alone: Advances in Self-Supervised Learning 4



Contrastive learning

o Take a data example x, sample a “positive” sample x,,5 and “negative”
samples x4 in some way

"positive” sample: “negative” sample:
o Data of the same labels o Randomly sampled data
o Data of the same pseudo-labels o Hard negative sample mining
o Augmented/distorted version of x
o Data that captures the same target

from different views
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o Take a data example x, sample a “positive” sample x,,5 and “negative”
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Contrastive learning: Ex 1

Learning a similarity metric discriminatively

Sample a pair of images and compute their distance:

D, == H.I‘..I‘,H2

If positive sample: ‘V:‘j' E
: #1

L,‘ = D;'

If negative sample:

L; = max (0, € — D,-_))2

X  neg

[Chopra et al., 2005; Hadsell et al., 2006]
Credit: [CVPR 2021 Tutorial] Leave Those Nets Alone: Advances in Self-Supervised Learning



Common contrastive learning functions

e Contrastive loss (Chopra et al. 2005)

e Tripletloss (Schroff et al. 2015; FaceNet)

e Lifted structured loss (Song et al. 2015)

e Multi-class n-pair loss (Sohn 2016)

e Noise contrastive estimation (“NCE"; Gutmann & Hyvarinen 2010)

e InfoNCE (van den Oord, et al. 2018)

e Soft-nearest neighbors loss (Salakhutdinov & Hinton 2007,
Frosst et al. 2019)

[Courtesy: Weng & Kim, NeurlPS 2021 tutorial]



Contrastive learning: Ex 2

e SIMCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021)
o Predict a sentence from itself with only dropout noise

o One sentence gets two different versions of dropout augmentations

(a) Unsupervised SimCSE (b) Supervised SimCSE

Different hidden dropout masks
in two forward passes
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Figure 1: (a) Unsupervised SimCSE predicts the input sentence itself from in-batch negatives, with different hidden
dropout masks applied. (b) Supervised SImCSE leverages the NLI datasets and takes the entailment (premise-
hypothesis) pairs as positives, and contradiction pairs as well as other in-batch instances as negatives.



Contrastive learning: Ex 3 - InfoNCE
e The CPC model

o ;1 context representation from history
O Xeyx (O zpyp): future target

Predictions
\\ ’\'\ \.\. \\
Rt+1 Rt+2 Rt+3 Rt+4
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| X3 | Tg—2 | Ti-1 Tt Tt+1 Tt+2 Tt+3 Tt+4
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[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”] 10



InNfoONCE loss

e Define scoring function f;, > 0

e The InfoNCE (Noise-Contrastive Estimation) loss:

o @Given X = { one positive sample from p(x;4k| ct), N — 1 negative samples
from the negative sampling distribution p(x¢4) }

Lx = —E |log fe(Titk,Ct)

X Za:jeX fk(xﬁct)_

e InfoNCE is interesting because it's effectively maximizing the mutual
information between ¢; and x;,

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding’] 11



Mutual Information (Ml)

e How much is our uncertainty about x reduced by knowing ¢ ?

I(z;¢) = ) _p(x,c)log pz()(w’ 2) = > p(z,c)log Pizic)

z)p p()
=H(x)+ H(c) — H(x,c)
= H(x) — H(x|c)

= KL(p(x,¢c) || p(x)p(c))

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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Minimizing InfoNCE <=> Maximzing Ml

e InfoNCE loss
Lx=—E |log Ef"’(x”k’cf)
z;€X fk(.’L'J,Ct)
e The loss is optimized when p(Tiik|ce)

fk(mt—l—ka ct) X p(mt—I-k)

o Proof:
p(zilet) 11 p(1)

p(sample i is positive|X,c;) = —x
ijl p(z;lct) Hl;éj p(z1)

P(wz'|Ct)
— P(ﬂ%)
ZN p(zjlct) -

J=1 p(z;)

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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e How does this loss maximize the mutual information?

fe(Tiqk,cCt)
ij eX fk (x.77 Ct)

£N= —]% 10g

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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e How does this loss maximize the mutual information?

Use proportionality
condition

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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[van den Oord et al.,

How does this loss maximize the mutual information?

Lx = —E |log fe(Tevk,ct)
X ijeX fk(mﬁct)
p(-'IEt-}—le)t)
opt _ P(Tt+k
L' =—Blog | s > p(e;lce)
p(Tt4r) Z;€Xneg p(x;)

P(Tttk) Z pxglct

=Elog |1+
X p(Tiyrlce)

€ Xneg

“Representation Learning with Contrastive Predictive Coding”]

Take -ve inside log

16



¢ How does this loss maximize the mutual information?

_ fr(@ ey, ct)
= % llog ijeX fk(xj’ct)]

P(ﬂztiklc)t)

opt _ P\Tt+k

Ly = %IOg P(Tiyrlct) Z p(zjlct)
p(Tt4k) ;€ Xneg p(z;)

. P(Ti1k) p(zjlct)
=Elog |1+ >

P(Tt+klce) 2, € Xneg p(z;)

R~ %10g

This approximation becomes more
accurate as N increases, so it is
preferable to use large negative

samples

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



[van den Oord et al.,

¢ How does this loss maximize the mutual information?

L opt

Ly =

—§log

= gl*%log

—E
X

log

fe(Tiir,ct)
ij eX fk(x]? Ct)

p(Tiqk|ct)
P($t+k)

1+

1+

1+

p(zjlct)

(wt+k|ct) Z
P(Ti4k) ;€ Xneg p(T5)

SBH_k Z p $]|Ct)
$t+k|Ct ;€ Xneg
P(Tt+k) (N — ‘ | =1
P(Zi1k|ct) \
P(Zt+k) N — 1)] R
p($t+k|ct)

“Representation Learning with Contrastive Predictive Coding”]
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¢ How does this loss maximize the mutual information?

xZr C
Ln = —E |log fe(@tk, ct)
X ijEX fk(xj7 ct)
p(azt+k|c)t)
opt _ P(Te4k
E @10g p($t+klct) E p(m.|ct)

p(mt—*—k) mjeXneg p(iE:))
— Elog |1+ P{&t+h) y 2 %Ict

X P(Tirk|ct) Moo

~Elog |1+ UGS N—1)Ep(”"j|ct)]

p(Ti1klct) T j P(xj )

[ P($t+k) ]
=Elog |1+ N —1
X & p(xisk|ct) ( )

> Elog p(Titk) N]
X | P(T4kct)

= —I(zt+k, ct) + log(NV),
[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



e How does this loss maximize the mutual information?

fe(Tiir,ct)
Za}j eX fk(x.ﬁ Ct)

Ly=—F

E log

I(xt-f-k) Ct) > log(N) — ‘CN'

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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Key Takeaways: Contrastive learning

e Contrastive learning is a way of doing self-supervised learning
e Positive/negative samples
e Mutual information

p(z|c)

P(Z:¢) _ z,c)lo
; —;p( ©)log =

I(z;c) = > p(x,c)log -

=H(x)+ H(c) — H(x,c)
= H(x) + H(x|c)

= KL(p(x,c) || p(x)p(c))

o InfoNCE <& M|

21



Representation Learning
with Unsupervised Learning



Unsupervised Learning for Representations

e For text x, derive a latent representation z

o with no annotation

Topics
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computer 0.01

Seeking Life’s Bare (Genetic) Necessities
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survive! Last week at the genome meeling nopie, notes Siv Andersso) <TI0

here,” two genome researchers with radically
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SCIENCE » VOL. 272 * 24 MAY 1996

—

[Blei et al., 2003, Latent Dirichlet Allocation]

e Example 1: Topic models (e.g., Latent Dirichlet Analysis, LDA)

Each document is a mixture
of corpus-wide topics

Each topic is a distribution
over words
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Unsupervised Learning for Representations

e For text x, derive a latent representation z

o with no annotation

e Example 2: Variational Autoencoders (VAEs)

< linear

linear

RNNs work

[Bowman et al., 2016 Generating Sentences from a Continuous Space]

RNNs work <EOS>
H Decoding Decoding Decoding
:@-» LSTM LSTM LSTM
o Cell Cell Cell
<EOS> RNNs work

24




Unsupervised Learning for Representations

e For text x, derive a latent representation z
o with no annotation

e Example 2: Variational Autoencoders (VAEs)

14 %9

i want to talk to you .
“o want to be with you . ”
“o do n’t want to be with you .
1 do n’t want to be with you .

)

she did n’t want to be with him .

text interpolation with VAEs

[Bowman et al., 2016 Generating Sentences from a Continuous Space]

25



Unsupervised Learning

e Each instance has two parts:
o observed variables x

o latent (unobserved) variables z
o Ak.a., "incomplete” data

e Want to learn a model pg(x, z)

[Content adapted from CMU 10-708]
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...

: ) (D), @

) Ve L e = = A A ,
et T SR R TR &) & & . &
1 =

i

Fig. 1.2 Isolated Word Problem

LCoocepr: a xiogle word
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...
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Each document is a mixture
of corpus-wide topics

Each topic is a distribution
over words
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...

3
%

Clustering

29



Latent (unobserved) variables

e A variable can be unobserved (latent) because:
o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process
= e.g., speech recognition models, mixture models, ...
o a real-world object (and/or phenomena), but difficult or impossible to measure
= e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
o a real-world object (and/or phenomena), but sometimes wasn’t measured,
because of faulty sensors, etc.
e Discrete latent variables can be used to partition/cluster data into sub-
groups
e Continuous latent variables (factors) can be used for dimensionality
reduction (e.g., factor analysis, etc.)

30



Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(x,|1,2) = Zk TN (x| 14, 2,)
A\

mixture proportion  mixture component

e This model can be used for unsupervised clustering.

o This model has been used to discover new kinds of stars in astronomical data,
etc.

31



Example: Gaussian Mixture Models (GMMs) @

o Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ ()" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1

1
(27[)'"/2’2,(’1/2 exp{_%('xn - 1) 2 (x, ‘,Uk)}

p(x,|zy =1, p,%) =

Parameters to be learned:

o The likelihood of a sample: .
mixture component

mixture proportion

1,2 =Y p(z* =1|7)p(x,| " =1, 41,%) —
= Zzn Hk ((”k)zg N(x, :,ukazk)zic ): Zk TN (x| 1y, 2,)

p(x,

32



Example: Gaussian Mixture Models (GMMs)
ﬂaz)zzk7?kN(x9!ﬂkﬂzk)

o Consider a mixture of K Gaussian components: P(X,
e Recall MLE for completely observed data

o Data log-likelihood: , (0; D) = long(Zn,x ) = long(Z |\ m)p(x, |z, 14,0)

_Zlognﬂ-k +ZlogHN(xn,,uk,o-)
o MLE: _Zzzklogﬂk Zzzn 52 L (x,-1) +C

Ty e = argmax ¢ (0; D),

My 4 e = argmax ¢ (0;D) = s = Z ;
Oy e = argmax ¢ (0;D) '

e What if we do not know z,,? 2



Why is Learning Harder?

e Complete log likelihood: if both x and z can be observed, then

?.(0;x,z) =logp(x,z|0) = logp(z|6,) + log p(x|z,6,)
o Decomposes into a sum of factors, the parameter for each factor can be
estimated separately

e But given that z is not observed, £.(8; x, z) is a random quantity, cannot
be maximized directly

e Incomplete (or marginal) log likelihood: with z unobserved, our objective
becomes the log of a marginal probability:

2(0; x) = log p(x]6) = log 22 D (x, z|6)

o All parameters become coupled together

o In other models when z is complex (continuous) variables (as we'll see later),

marginalization over z is intractable.
34



Expectation Maximization (EM)
e For any distribution g(z|x), define expected complete log likelihood:

Bqlc(6i%,2)] = ) a(zlx) log p(x, 2|6)

o A deterministic function of
o Inherit the factorizability of ¢.(6; x, 2)

e Use this as the surrogate objective
e Does maximizing this surrogate yield a maximizer of the likelihood?

35



Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eq[£c(63%,2)] = ) a(zlx) log p(x,216)
e Jensen’s mequallty
¢ (0;x)=log p(x|0)

=log)" p(x,2|6)

— -logY.¢(z | px.210)

/ 4(Z|X)

@ZQ(Z | X) log Z19) Evidence Lower Bound (ELBO)
f/(Z | X)

=Y g(z| x)log p(x,z|0) - g(z| X)logg(z | X)

= Ey[£.(6;%,2)] + H(q) y



Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eql2c(0;%,2)] = ) q(zlx) logp(x, 216)
e Jensen's inequality ‘
¢ (0;x)=1log p(x |0)

=log)" p(x,2|6)

_ px,z|0)
e -log Y (210 2T S

[
p(x,z|6)
@;q(ZIX)log P

(x,2|6)
q(z|x)

e Indeed we have
p
f(@, x) = IEq(le) llog

+KL(q(zlx) || p(zlx, 0))



Lower Bound and Free Energy

e Forfixed data x, define a functional called the (variational) free energy:

F(q,0) = —E4[£.(0;x,2)] — H(q) = £(0; x)

e The EM algorithm is coordinate-decent on F
o At each step t:
1 — argmin F (q, Ht)

q

arg m@in F (th , Ht)

= E-step: @

= M-step: (975“‘ 1

38



E-step: minimization of F(q,0) w.r.t q

e Claim: .

q**' = argmin, F(q,6%) = p(z|x,0%)

o This is the posterior distribution over the latent variables given the data and
the current parameters.

e Proof (easy): recall

,z|6°
f(et; X) = [Eq(z|x) [logpgzzzl.lx) ) + KL(CI(le) | p(z]x, et))

Independent of g —F(q,0% >0

o F(q,0% is minimized when KL(q(z|x) || p(z|x,6%)) = 0, which is achieved only
when q(z|x) = p(z|x,6")
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M-step: minimization of F(q,6) w.r.t 6
e Note that the free energy breaks into two terms:

F(q,0) = —E4[£.(0;x,2)] — H(q) = £(6; x)

o The first term is the expected complete log likelihood and the second term,
which does not depend on g, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed g we only
need to consider the first term:

6! = argmaxg E,[£.(0; x,z)] = argmaxg 2 qtt1(z|x) log p(x, z|0)
Z

o Under optimal ¢**1, this is equivalent to solving a standard MLE of fully
observed model p(x, z|9), with z replaced by its expectation w.r.t p(z|x, 6")
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Example: Gaussian Mixture Models (GMMs) @

o Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ ()" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1
(Zﬂ)m/lek’

p(x, |25 =1, u,%) = expli(x, - 1) S (x, - 1)}

o The likelihood of a sample: .
mixture component

mixture proportion

1,2 =Y p(z* =1|7)p(x,| " =1, 41,%) —
= Zzn Hk ((”k)zg N(x, :,ukazk)zic ): Zk TN (x| 1y, 2,)

p(x,
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Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components
e The expected complete log likelihood

E, [£c(0;7, 2)] —ZE logp (2, | )] +ZE logp (wy | 2n, 1, 2)]
—ZZE IOgﬂk——ZZE ( —Mk)Tzﬁl(xn—uk)+10g|2k|+0>

e E-step: computing the posterior of z,, given the current estimate of the

parameters (i.e., T, u, X)

AON G, 050 7
Zﬂ(t)N(xn9|/’l(t) Zl(t))\ p(x,,u(t),Z(t))

p(z, =1]x,u",2) =
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Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

7, =argmax(l (0)), = 52-(1.(0))=0,Vk, st an =1

o = 2Bl B )

OF
i —argmax(®)), = ) = 2en”

Z Z'k(t) Fact:
non dlogA™|
k(t) t+1) (t+1)\T oA"Y
* Tn (xn o ‘U )('xn o lu )
z“k = arg max<l(9)>’ = Zg‘m) - Zn Zkrk(t) : Ox’ Ax =xx"
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Example: Gaussian Mixture Models (GMMs)

e Start: “guess” the centroid u; and covariance X of each of the K clusters

e Loop:
e L=1 . " L=4
2|0 R A S

!‘ :gO ° . ) [

o O # | S
» 2 ¢ &

(a) (c) (d) (e)
L=6 L=8 L=10 L=12
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Summary: EM Algorithm

e A way of maximizing likelihood function for latent variable models. Finds MLE
of parameters when the original (hard) problem can be broken up into two
(easy) pieces

o Estimate some “missing” or “unobserved” data from observed data and current
parameters.

o Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best guess (posterior)
and updating the parameters based on this guess:

o E-step: T arg mqinF (q,@t)

© M-step: gi+l — argm@inF (qt+1,9t)
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Each EM iteration guarantees to improve the likelihood

+ KL(q(z|x) || p(z|x, 6))

KL(gip)—I— T _l_ _[ - -

E(q’ aneW) lnp(x|0neW)

p(x,z|0)
£(0:x) = E lo
( ) q(z|x) [ 8 q(zlx)
¥ ¥ KL(q|lp) =0 ¥ = ¥
KL(q||p)
y - R
L(q,0) Inp(X|6) £(q,0°%) In p(X[6°'9)
E-step

[PRML, Chap 9.4]

M-step
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EM Variants
e Sparse EM

o Do not re-compute exactly the posterior probability on each data point under all
models, because it is almost zero.

o Instead keep an "active list” which you update every once in a while.

e Generalized (Incomplete) EM:

o It might be hard to find the ML parameters in the M-step, even given the
completed data. We can still make progress by doing an M-step that improves
the likelihood a bit (e.g. gradient step).
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Key Takeaways

e Unsupervised learning

o Maximum likelihood estimation (MLE) with latent variables
o EM algorithm for MLE

= Expected complete log likelihood

= Evidence lower bound (ELBO)

= Coordinate ascent: E-step, M-step
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