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Outline
● Contrastive learning (a special self-supervised learning)
● Unsupervised Learning
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Representation Learning
with Contrastive Learning



Contrastive learning
● Take a data example 𝑥, sample a “positive” sample 𝑥!"# and “negative” 

samples 𝑥$%& in some way
● Then try fit a scoring model such that
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𝑠𝑐𝑜𝑟𝑒 𝑥, 𝑥!"# > 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑥$%&)

Credit: [CVPR 2021 Tutorial] Leave Those Nets Alone: Advances in Self-Supervised Learning



Contrastive learning
● Take a data example 𝑥, sample a “positive” sample 𝑥!"# and “negative” 

samples 𝑥$%& in some way
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“positive” sample:
! Data of the same labels
! Data of the same pseudo-labels
! Augmented/distorted version of 𝑥
! Data that captures the same target 

from different views 

“negative” sample:
! Randomly sampled data
! Hard negative sample mining
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Contrastive learning: Ex 1
Learning a similarity metric discriminatively
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[Chopra et al., 2005; Hadsell et al., 2006]
Credit: [CVPR 2021 Tutorial] Leave Those Nets Alone: Advances in Self-Supervised Learning



Common contrastive learning functions

8[Courtesy: Weng & Kim, NeurIPS 2021 tutorial]



Contrastive learning: Ex 2
● SimCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021) 
! Predict a sentence from itself with only dropout noise
! One sentence gets two different versions of dropout augmentations
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Contrastive learning: Ex 3 - InfoNCE

10[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]

● The CPC model
! 𝑐!: context representation from history 
! 𝑥!"# (or 𝑧!"#): future target



InfoNCE loss
● Define scoring function 𝑓' > 0
● The InfoNCE (Noise-Contrastive Estimation) loss:
! Given 𝑋 = { one positive sample from 𝑝(𝑥!"#| 𝑐!), 𝑁 − 1 negative samples 

from the negative sampling distribution 𝑝(𝑥!"#) }

● InfoNCE is interesting because it’s effectively maximizing the mutual 
information between 𝑐( and 𝑥()'

11[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



Mutual Information (MI)
● How much is our uncertainty about 𝑥 reduced by knowing 𝑐 ?
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= 𝐻 𝑥 + 𝐻 𝑐 − 𝐻 𝑥, 𝑐

= 𝐻 𝑥 − 𝐻 𝑥|𝑐

= 𝐾𝐿 𝑝 𝑥, 𝑐 || 𝑝 𝑥 𝑝(𝑐)

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



Minimizing InfoNCE <=> Maximzing MI
● InfoNCE loss

● The loss is optimized when

! Proof: 

13[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]

𝑝 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑋, 𝑐()
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• How does this loss maximize the mutual information?

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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• How does this loss maximize the mutual information?

Use proportionality 
condition

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



• How does this loss maximize the mutual information?

Take -ve inside log

16[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



• How does this loss maximize the mutual information?

This approximation becomes more 
accurate as N increases, so it is 
preferable to use large negative 

samples

17[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



• How does this loss maximize the mutual information?

= 1

18[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



• How does this loss maximize the mutual information?

19[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



• How does this loss maximize the mutual information?

20[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



Key Takeaways: Contrastive learning
● Contrastive learning is a way of doing self-supervised learning
● Positive/negative samples
● Mutual information

! InfoNCE ó MI
21

= 𝐻 𝑥 + 𝐻 𝑐 − 𝐻 𝑥, 𝑐

= 𝐻 𝑥 + 𝐻 𝑥|𝑐

= 𝐾𝐿 𝑝 𝑥, 𝑐 || 𝑝 𝑥 𝑝(𝑐)
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Representation Learning
with Unsupervised Learning



Unsupervised Learning for Representations
● For text 𝒙, derive a latent representation 𝒛
! with no annotation 

● Example 1: Topic models (e.g., Latent Dirichlet Analysis, LDA)

23

• Each document is a mixture 
of corpus-wide topics

• Each topic is a distribution 
over words

[Blei et al., 2003, Latent Dirichlet Allocation]



Unsupervised Learning for Representations
● For text 𝒙, derive a latent representation 𝒛
! with no annotation 

● Example 2: Variational Autoencoders (VAEs)

24[Bowman et al., 2016 Generating Sentences from a Continuous Space]



Unsupervised Learning for Representations
● For text 𝒙, derive a latent representation 𝒛
! with no annotation 

● Example 2: Variational Autoencoders (VAEs)

25[Bowman et al., 2016 Generating Sentences from a Continuous Space]

input we looked out at the setting sun . i went to the kitchen . how are you doing ?
mean they were laughing at the same time . i went to the kitchen . what are you doing ?
samp. 1 ill see you in the early morning . i went to my apartment . “ are you sure ?
samp. 2 i looked up at the blue sky . i looked around the room . what are you doing ?
samp. 3 it was down on the dance floor . i turned back to the table . what are you doing ?

Table 7: Three sentences which were used as inputs to the vae, presented with greedy decodes from the
mean of the posterior distribution, and from three samples from that distribution.

“ i want to talk to you . ”
“i want to be with you . ”
“i do n’t want to be with you . ”
i do n’t want to be with you .
she did n’t want to be with him .

he was silent for a long moment .
he was silent for a moment .
it was quiet for a moment .
it was dark and cold .
there was a pause .
it was my turn .

Table 8: Paths between pairs of random points in
vae space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

ments). Here we see that the sentences are far less
typical, but for the most part are grammatical and
maintain a clear topic, indicating that the latent
variable is capturing a rich variety of global fea-
tures even for rare sentences.

6.2 Sampling from the posterior

In addition to generating unconditional samples,
we can also examine the sentences decoded from
the posterior vectors p(z|x) for various sentences
x. Because the model is regularized to produce dis-
tributions rather than deterministic codes, it does
not exactly memorize and round-trip the input. In-
stead, we can see what the model considers to be
similar sentences by examining the posterior sam-
ples in Table 7. The codes appear to capture in-
formation about the number of tokens and parts
of speech for each token, as well as topic informa-
tion. As the sentences get longer, the fidelity of
the round-tripped sentences decreases.

6.3 Homotopies

The use of a variational autoencoder allows us to
generate sentences using greedy decoding on con-
tinuous samples from the space of codes. Addi-
tionally, the volume-filling and smooth nature of
the code space allows us to examine for the first
time a concept of homotopy (linear interpolation)
between sentences. In this context, a homotopy be-
tween two codes ~z1 and ~z2 is the set of points on the
line between them, inclusive, ~z(t) = ~z1⇤(1�t)+~z2⇤t
for t 2 [0, 1]. Similarly, the homotopy between two

sentences decoded (greedily) from codes ~z1 and ~z2

is the set of sentences decoded from the codes on
the line. Examining these homotopies allows us to
get a sense of what neighborhoods in code space
look like – how the autoencoder organizes infor-
mation and what it regards as a continuous defor-
mation between two sentences.
While a standard non-variational rnnlm does

not have a way to perform these homotopies, a
vanilla sequence autoencoder can do so. As men-
tioned earlier in the paper, if we examine the ho-
motopies created by the sequence autoencoder in
Table 1, though, we can see that the transition be-
tween sentences is sharp, and results in ungram-
matical intermediate sentences. This gives evi-
dence for our intuition that the vae learns repre-
sentations that are smooth and “fill up” the space.
In Table 8 (and in additional tables in the ap-

pendix) we can see that the codes mostly contain
syntactic information, such as the number of words
and the parts of speech of tokens, and that all in-
termediate sentences are grammatical. Some topic
information also remains consistent in neighbor-
hoods along the path. Additionally, sentences with
similar syntax and topic but flipped sentiment va-
lence, e.g. “the pain was unbearable” vs. “the
thought made me smile”, can have similar embed-
dings, a phenomenon which has been observed with
single-word embeddings (for example the vectors
for “bad” and “good” are often very similar due to
their similar distributional characteristics).

7 Conclusion

This paper introduces the use of a variational
autoencoder for natural language sentences. We
present novel techniques that allow us to train
our model successfully, and find that it can e↵ec-
tively impute missing words. We analyze the la-
tent space learned by our model, and find that it
is able to generate coherent and diverse sentences
through purely continuous sampling and provides
interpretable homotopies that smoothly interpo-
late between sentences.
We hope in future work to investigate factoriza-

tion of the latent variable into separate style and
content components, to generate sentences condi-
tioned on extrinsic features, to learn sentence em-
beddings in a semi-supervised fashion for language

text interpolation with VAEs



Unsupervised Learning
● Each instance has two parts:
! observed variables 𝒙
! latent (unobserved) variables 𝒛
! A.k.a., “incomplete” data

● Want to learn a model 𝑝* 𝒙, 𝒛

26[Content adapted from CMU 10-708]



Latent (unobserved) variables
● A variable can be unobserved (latent) because: 
! imaginary quantity: meant to provide some simplified and abstractive view of 

the data generation process 
§ e.g., speech recognition models, mixture models, ...

27
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• Each document is a mixture 
of corpus-wide topics

• Each topic is a distribution 
over words



Latent (unobserved) variables
● A variable can be unobserved (latent) because: 
! imaginary quantity: meant to provide some simplified and abstractive view of 

the data generation process 
§ e.g., speech recognition models, mixture models, ...

29

Clustering



Latent (unobserved) variables
● A variable can be unobserved (latent) because: 
! imaginary quantity: meant to provide some simplified and abstractive view of 

the data generation process 
§ e.g., speech recognition models, mixture models, ...

! a real-world object (and/or phenomena), but difficult or impossible to measure 
§ e.g., the temperature of a star, causes of a disease, evolutionary ancestors ... 

! a real-world object (and/or phenomena), but sometimes wasn’t measured, 
because of faulty sensors, etc.

● Discrete latent variables can be used to partition/cluster data into sub-
groups 

● Continuous latent variables (factors) can be used for dimensionality 
reduction (e.g., factor analysis, etc.) 

30



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:

● This model can be used for unsupervised clustering. 
! This model has been used to discover new kinds of stars in astronomical data, 

etc.  

31



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:

32

Parameters to be learned:



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
● Recall MLE for completely observed data
! Data log-likelihood:

! MLE:

● What if we do not know 𝑧$? 33



Why is Learning Harder? 
● Complete log likelihood: if both 𝒙 and 𝒛 can be observed, then

! Decomposes into a sum of factors, the parameter for each factor can be 
estimated separately

● But given that 𝒛 is not observed, ℓ+ 𝜃; 𝒙, 𝒛 is a random quantity, cannot 
be maximized directly

● Incomplete (or marginal) log likelihood: with 𝒛 unobserved, our objective 
becomes the log of a marginal probability: 

! All parameters become coupled together
! In other models when 𝒛 is complex (continuous) variables (as we’ll see later), 

marginalization over z is intractable.
34

ℓ+ 𝜃; 𝒙, 𝒛 = log 𝑝 𝒙, 𝒛 𝜃 = log 𝑝 𝒛 𝜃, + log 𝑝(𝒙|𝒛, 𝜃-)

ℓ 𝜃; 𝒙 = log 𝑝 𝒙 𝜃 = logD
,
𝑝(𝒙, 𝒛|𝜃)



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

! A deterministic function of 𝜃
! Inherit the factorizability of ℓ! 𝜃; 𝒙, 𝒛

● Use this as the surrogate objective
● Does maximizing this surrogate yield a maximizer of the likelihood? 

35

𝔼. ℓ+ 𝜃; 𝒙, 𝒛 =D
,
𝑞 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

● Jensen’s inequality

36

𝔼. ℓ+ 𝜃; 𝒙, 𝒛 =D
,
𝑞 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)

≥

= 𝔼. ℓ+ 𝜃; 𝒙, 𝒛 + 𝐻 𝑞

Evidence Lower Bound (ELBO)



Expectation Maximization (EM)
● For any distribution 𝑞(𝒛|𝒙), define expected complete log likelihood: 

● Jensen’s inequality

● Indeed we have

37

≥

ℓ 𝜃; 𝒙 = 𝔼.(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

𝔼. ℓ+ 𝜃; 𝒙, 𝒛 =D
,
𝑞 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)



Lower Bound and Free Energy

● For fixed data 𝒙, define a functional called the (variational) free energy: 

● The EM algorithm is coordinate-decent on 𝐹
! At each step 𝑡:

§ E-step:

§ M-step: 

38

𝐹 𝑞, 𝜃 = −𝔼. ℓ/ 𝜃; 𝒙, 𝒛 − 𝐻 𝑞 ≥ ℓ(𝜃; 𝒙)



E-step: minimization of 𝐹 𝑞, 𝜃 w.r.t 𝑞
● Claim:

! This is the posterior distribution over the latent variables given the data and 
the current parameters. 

● Proof (easy): recall

! 𝐹 𝑞, 𝜃" is minimized when KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃" = 0, which is achieved only 
when 𝑞 𝒛 𝒙 = 𝑝 𝒛 𝒙, 𝜃(

39

𝑞89: = argmin. 𝐹 𝑞, 𝜃8 = 𝑝(𝒛|𝒙, 𝜃8)

ℓ 𝜃(; 𝒙 = 𝔼.(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃(

𝑞 𝒛 𝒙
+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃(

Independent of 𝑞 −𝐹 𝑞, 𝜃( ≥ 0



M-step: minimization of 𝐹 𝑞, 𝜃 w.r.t 𝜽
● Note that the free energy breaks into two terms:

! The first term is the expected complete log likelihood and the second term, 
which does not depend on q, is the entropy.

● Thus, in the M-step, maximizing with respect to 𝜃 for fixed 𝑞 we only 
need to consider the first term: 

! Under optimal 𝑞"#$, this is equivalent to solving a standard MLE of fully 
observed model 𝑝 𝒙, 𝒛 𝜃 , with z replaced by its expectation w.r.t 𝑝(𝒛|𝒙, 𝜃!)

40

𝐹 𝑞, 𝜃 = −𝔼. ℓ/ 𝜃; 𝒙, 𝒛 − 𝐻 𝑞 ≥ ℓ(𝜃; 𝒙)

𝜃()4 = argmax* 𝔼. ℓ+ 𝜃; 𝒙, 𝒛 = argmax*D
,
𝑞()4 𝒛 𝒙 log 𝑝(𝒙, 𝒛|𝜃)



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:

41



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components
● The expected complete log likelihood

● E-step: computing the posterior of 𝑧$ given the current estimate of the 
parameters (i.e., 𝜋 , 𝜇, Σ) 

42

𝑝(𝑧$# = 1, 𝑥, 𝜇 ! , Σ(!))

𝑝(𝑥, 𝜇 ! , Σ(!))



Example: Gaussian Mixture Models (GMMs)
● M-step: computing the parameters given the current estimate of 𝑧$

43



Example: Gaussian Mixture Models (GMMs)
● Start: “guess” the centroid 𝜇' and covariance Σ' of each of the K clusters 
● Loop:

44



Summary: EM Algorithm
● A way of maximizing likelihood function for latent variable models. Finds MLE 

of parameters when the original (hard) problem can be broken up into two 
(easy) pieces 
! Estimate some “missing” or “unobserved” data from observed data and current 

parameters. 
! Using this “complete” data, find the maximum likelihood parameter estimates. 

● Alternate between filling in the latent variables using the best guess (posterior) 
and updating the parameters based on this guess: 

! E-step:

! M-step: 

45



Each EM iteration guarantees to improve the likelihood 

46

ℓ 𝜃; 𝒙 = 𝔼.(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

+ KL 𝑞 𝒛 𝒙 || 𝑝 𝒛 𝒙, 𝜃

E-step M-step

[PRML, Chap 9.4]



EM Variants 
● Sparse EM 
! Do not re-compute exactly the posterior probability on each data point under all 

models, because it is almost zero. 
! Instead keep an “active list” which you update every once in a while. 

● Generalized (Incomplete) EM: 
! It might be hard to find the ML parameters in the M-step, even given the 

completed data. We can still make progress by doing an M-step that improves 
the likelihood a bit (e.g. gradient step). 

47



Key Takeaways

● Unsupervised learning
! Maximum likelihood estimation (MLE) with latent variables
! EM algorithm for MLE
§ Expected complete log likelihood
§ Evidence lower bound (ELBO)
§ Coordinate ascent: E-step, M-step

48



Questions?


