
DSC291: Advanced Statistical Natural
Language Processing

Language Modeling
Self-supervised Learning

Zhiting Hu
Lecture 4, April 7, 2022

Outline
● Neural architectures

2

Outline

● Convolutional Networks (ConvNets)

● Recurrent Networks (RNNs)
! Long-range dependency, vanishing gradients
! LSTM
! RNNs in different forms

● Attention Mechanisms
! (Query, Key, Value)
! Attention on Text and Images

● Transformers: Multi-head Attention
! Transformer
! BERT

3

RNNs in Various Forms

4

Image
classification Image

captioning

Sentence sentiment analysis /
Video recognition

Machine Translation Named Entity Recognition

One to One One to Many Many to One Many to Many Many to Many

𝒙

𝒚

𝒙𝟎 𝒙𝟏 𝒙𝒕

𝒚

𝒙

𝒚𝟎 𝒚𝟏 𝒚𝒕 𝒚𝟎 𝒚𝟏 𝒚𝒕

𝒙𝟎 𝒙𝟏 𝒙𝒕

𝒚𝟎 𝒚𝟏 𝒚𝒕

𝒙𝟎 𝒙𝟏 𝒙𝒕

(Sequence-to-sequence) (Sequence tagging)

RNNs in Various Forms

● Bi-directional RNN
l Hidden state is the concatenation of both

forward and backward hidden states.
l Allows the hidden state to capture both past

and future information.

5

[Speech Recognition with Deep Recurrent Neural Networks, Alex Graves]

RNNs in Various Forms

● Bi-directional RNN
l Hidden state is the concatenation of both

forward and backward hidden states.
l Allows the hidden state to capture both past

and future information.

● Tree-structured RNN
l Hidden states condition on both an input vector

and the hidden states of arbitrarily many child
units.

l Standard LSTM = a special case of tree-LSTM
where each internal node has exactly one child.

6

[Speech Recognition with Deep Recurrent Neural Networks, Alex Graves]

Chain-structured
LSTM

Tree-structured
LSTM

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, Tai. et al.

RNNs in Various Forms

7

Pixel CNN Row LSTM Diagonal Bi-LSTM

!"#$%&'(%)*++%,-'.%*+/&'.%-01+234'van den Oord. et al. 20165

● RNN for 2-D sequences

RNNs in Various Forms
● RNN for Graph Structures
! Used in, e.g., image segmentation

8

Starting node

Current node

Neighboring nodes

[Semantic Object Parsing with Graph LSTM. Liang et al. 2016]

Outline

● Convolutional Networks (ConvNets)

● Recurrent Networks (RNNs)
! Long-range dependency, vanishing
! LSTM
! RNNs in different forms

● Attention Mechanisms
! (Query, Key, Value)
! Attention on Text and Images

● Transformers: Multi-head Attention
! Transformer
! BERT

9

Attention: Examples
● Chooses which features to pay attention to

10Image captioning [Show, attend and tell. Xu et al. 15]

Attention: Examples
● Chooses which features to pay attention to

11Figure courtesy: Olah & Carter, 2016
Machine Translation

https://distill.pub/2016/augmented-rnns/

Why Attention?

12Figure courtesy: keitakurita

http://mlexplained.com/author/admin/

Why Attention?
● Long-range dependencies
! Dealing with gradient vanishing problem

13Figure courtesy: keitakurita

http://mlexplained.com/author/admin/

Why Attention?
● Long-range dependencies
! Dealing with gradient vanishing problem

● Fine-grained representation instead of a single global representation
! Attending to smaller parts of data: patches in images, words in sentences

14Figure courtesy: Lilian Weng

Why Attention?
● Long-range dependencies
! Dealing with gradient vanishing problem

● Fine-grained representation instead of a single global representation
! Attending to smaller parts of data: patches in images, words in sentences

● Improved Interpretability

15Figure courtesy: Olah & Carter, 2016

https://distill.pub/2016/augmented-rnns/

Attention Computation

16

Encoder

Decoder

● Encode each token in the input
sentence into vectors

● When decoding, perform a linear
combination of these vectors,
weighted by “attention weights”
! 𝒂 = softmax(𝒂𝒍𝒊𝒈𝒏𝒎𝒆𝒏𝒕_𝒔𝒄𝒐𝒓𝒆𝒔)

Figure courtesy: MARTA R. COSTA-JUSSÀ

score=2.1 -0.1 0.3 -1.0

Attention Computation (cont’d)

17

● Combine together value by taking
the weighted sum

Encoder

Attention Computation (cont’d)

18

● Combine together value by taking
the weighted sum

● Query: decoder state
● Key: all encoder states
● Value: all encoder states

Encoder

Attention Variants
● Popular attention mechanisms with different alignment score functions

19Courtesy: Lilian Weng

• Query: decoder state 𝑠$
• Key: all encoder states ℎ%
• Value: all encoder states ℎ%

Alignment score = f(Query, Keys)

Attention on Images: Image Captioning

20

• Query: decoder state
• Key: visual feature maps
• Value: visual feature maps

[Show, attend and tell. Xu et al. 15]

Attention on Images: Image Captioning

21

Hard attention vs Soft attention

Attention on Images: Image Captioning

22

Hard attention vs Soft attention

Attention on Images: Image Paragraph Generation

● Generate a long paragraph to
describe an image

! Long-term visual and language
reasoning

! Contentful descriptions -- ground
sentences on visual features

23

!"#$ %#&'()* #$ '+,*- ./) '")** 0+$*0+11 %1+2*)$ /- +
.#*134 !"* 5+- /- '"* 1*.' #$ 6*+)#-7 + 01(*
0+$*0+11 &+%4 !"* 5+- "+$ +)*3 $"#)' +-3 6"#'*
%+-'$4 !"* 5+- #- '"* 5#331* #$ #- + 6"**1&"+#) +-3
"/13#-7 + 0+$*0+11 0+'4 !6/ 5*- +)* 0*-3#-7 3/6-
0*"#-3 + .*-&*4 !"*)* +)* 6/)3$ 0+-3 /- '"* .*-&*4

8 '*--#$ %1+2*) #$ +''*5%'#-7 '/ "#' '"* '*--#$ 0+11
6#'" "#$ 1*.' .//' "+-34 9* #$ "/13#-7 + '*--#$)+&,*'4
9* #$ 6*+)#-7 + 6"#'* $"#)' +-3 6"#'* $"/)'$4 9* "+$
"#$)#7"' +)5 *:'*-3*3 (%4 !"*)* #$ + &)/63 /.
%*/%1* 6+'&"#-7 '"* 7+5*4 8 5+- #$ $#''#-7 /- '"*
&"+#)4

8 &/(%1* /. ;*0)+ +)* $'+-3#-7 -*:' '/ *+&" /'"*) /-
3#)' 7)/(-3 -*+))/&,$4 !"*)* +)* ')**$ 0*"#-3 '"*
;*0)+$4 !"*)* #$ + 1+)7* 1/7 /- '"* 7)/(-3 #- .)/-' /.
'"* ;*0)+4 !"*)* #$ + 1+)7*)/&, ./)5+'#/- '/ '"* 1*.'
/. '"* ;*0)+4 !"*)* #$ + $5+11 "#11 -*+) + $5+11 %/-3
+-3 + 6//3*- 1/74 !"*)* +)* 7)**- 1*+<*$ /- '"*
')**4

Attention on Images: Image Paragraph Generation

Sentence

Generator Sentence

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

Semantic Regions

͙

Attentive
Reasoning

Paragraph
description Corpus

Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training

scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.

Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence

plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph

generation, which depicts the true data distribution of the discriminators .

work of our RTT-GAN, then describe detailed model design
of the paragraph generator and the multi-level discrimina-
tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-
tor and discriminators to drive the model learning. Specifi-
cally, the sentence and topic-transition discriminators learn
a critic between real and generated samples, while the gen-
erator attempts to confuse the discriminators by generat-
ing realistic paragraphs that satisfy linguistic characteristics
(i.e., sentence plausibility and topic-transition coherence).
The generative neural architecture ensures the paragraph
captures adequate semantic content of the image, which we
describe in detail in the next sections. Formally, let G de-
note the paragraph generator, and let Ds and Dr denote the
sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences
s1:t−1 and local semantic regions V of the image, the gen-
erator G recurrently produces a single sentence st, where
each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =
Nt∏

i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ
within a true paragraph P̂ from the synthesized ones st. The
generator G tries to generate realistic visual paragraph by
minimizing against the discriminators’ chance of correctly
telling apart the sample source. As the original GAN [7]
that optimizes over binary probability distance suffers from
mode collapse and instable convergence, we follow the new
Wasserstein GAN [1] method that theoretically remedies
this by minimizing an approximated Wasserstein distance.
The objective of the adversarial framework is written as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[

Ds(ŝ)
]

− Es1:t∼pG(s1:t|V)

[

Ds(st)
]

+

E
P̂∼pdata(P̂)

[

Dr(P̂)
]

− Es1:t∼pG(s1:t|V)

[

Dr(s1:t)
]

,

(2)

where pdata(ŝ) and pdata(P̂) denote the true data distributions
of sentences and paragraphs, respectively, which are empir-
ically constructed from a paragraph description corpus. The
second line of the equation is the objective of the sentence
discriminator Ds that optimizes a critic between real/fake
sentences, while the third line is the objective of the topic-
transition discriminator Dr. Here pG(s1:t|V) indicates the
distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the
supervised setting, or image captioning dataset in the semi-
supervised setting, we also incorporate the traditional word
reconstruction loss for generator optimization, which is de-
fined as:

Lc(G) = −
T∑

t=1

Nt∑

i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised
examples with paragraph annotations, and semi-supervised
examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-
erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our
implementation. The optimization of the generator and dis-
criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-
formed in an alternating min-max manner. We describe the
training details in section 3.4.

The discrete nature of text samples hinders gradient
back-propagation from the discriminators to the genera-
tor [9]. We address this issue following SeqGAN [35]. The
state is the current produced words and sentences, and the
action is the next word to select. we apply Monte Carlo
search with a roll-out policy to sample the remaining words
until it sees an END token for each sentence and maximal
number of sentences. The roll-out policy is the same with
the generator, elaborated in Section 3.2. The discriminator
is trained by providing true paragraphs from the text corpus

3364

24[Recurrent Topic-Transition GAN for Visual Paragraph Generation. Liang et al. 2017]

Attention on Images: Image Paragraph Generation

Sentence

Generator Sentence

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

Semantic Regions

͙

Attentive
Reasoning

Paragraph
description Corpus

Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training

scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.

Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence

plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph

generation, which depicts the true data distribution of the discriminators .

work of our RTT-GAN, then describe detailed model design
of the paragraph generator and the multi-level discrimina-
tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-
tor and discriminators to drive the model learning. Specifi-
cally, the sentence and topic-transition discriminators learn
a critic between real and generated samples, while the gen-
erator attempts to confuse the discriminators by generat-
ing realistic paragraphs that satisfy linguistic characteristics
(i.e., sentence plausibility and topic-transition coherence).
The generative neural architecture ensures the paragraph
captures adequate semantic content of the image, which we
describe in detail in the next sections. Formally, let G de-
note the paragraph generator, and let Ds and Dr denote the
sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences
s1:t−1 and local semantic regions V of the image, the gen-
erator G recurrently produces a single sentence st, where
each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =
Nt∏

i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ
within a true paragraph P̂ from the synthesized ones st. The
generator G tries to generate realistic visual paragraph by
minimizing against the discriminators’ chance of correctly
telling apart the sample source. As the original GAN [7]
that optimizes over binary probability distance suffers from
mode collapse and instable convergence, we follow the new
Wasserstein GAN [1] method that theoretically remedies
this by minimizing an approximated Wasserstein distance.
The objective of the adversarial framework is written as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[

Ds(ŝ)
]

− Es1:t∼pG(s1:t|V)

[

Ds(st)
]

+

E
P̂∼pdata(P̂)

[

Dr(P̂)
]

− Es1:t∼pG(s1:t|V)

[

Dr(s1:t)
]

,

(2)

where pdata(ŝ) and pdata(P̂) denote the true data distributions
of sentences and paragraphs, respectively, which are empir-
ically constructed from a paragraph description corpus. The
second line of the equation is the objective of the sentence
discriminator Ds that optimizes a critic between real/fake
sentences, while the third line is the objective of the topic-
transition discriminator Dr. Here pG(s1:t|V) indicates the
distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the
supervised setting, or image captioning dataset in the semi-
supervised setting, we also incorporate the traditional word
reconstruction loss for generator optimization, which is de-
fined as:

Lc(G) = −
T∑

t=1

Nt∑

i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised
examples with paragraph annotations, and semi-supervised
examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-
erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our
implementation. The optimization of the generator and dis-
criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-
formed in an alternating min-max manner. We describe the
training details in section 3.4.

The discrete nature of text samples hinders gradient
back-propagation from the discriminators to the genera-
tor [9]. We address this issue following SeqGAN [35]. The
state is the current produced words and sentences, and the
action is the next word to select. we apply Monte Carlo
search with a roll-out policy to sample the remaining words
until it sees an END token for each sentence and maximal
number of sentences. The roll-out policy is the same with
the generator, elaborated in Section 3.2. The discriminator
is trained by providing true paragraphs from the text corpus

3364

512

Visual Features
512 :ܲݐࢎ

C

4096

Visual attention

െͳܵݐࢎ : 1024

ݐࢌ
4096 :ݒ

1024 :ܵݐࢎ

Paragraph RNN
(512)

Sentence RNN
(1024)

Word RNN
(512)

Visual Attentive
weights

ǡିଵ௪ݐࢎ : 512

ǡ௪ݐࢎ : 512

C

512

Language attention

Language Attentive
weights

X

X

௧ǡࢌ : 512

+

݅ ൌ ͳǡǥ ǡ ௧ܰ

(a) Sentence generation

(b) Word generation

ܶ

C Concatenation

Weighted summationX

Average+

Sentence embedding

Local Phrases

� people playing baseball
� a man wearing white shirt and pants
� man holding a baseball bat
� person wearing a helmet in the field
� a man bending over

Local
Phrases

Continue or stop?

softmax

embedding

Figure 3. Illustration of our paragraph generator. Given visual features and local phrases of semantic regions, the paragraph generator is

performed for most T steps to sequentially generate each sentence. At t-th step, the paragraph states hP
t is first updated with the embedding

of preceding sentences by paragraph RNN. Then, the visual attention takes features of semantic regions, current paragraph states hP
t and

previous hidden states hS
t−1 as input to manifest a visual context vector fvt . fvt is then fed into sentence RNN to obtain the encoded topic

vector hS
t and determine whether to generate next sentence. The word RNN with language attention then generates each word.

and synthetic ones from the generator. The generator is up-
dated by employing a policy gradient based on the expected
reward received from the discriminator and the reconstruc-
tion loss for fully-supervised and semi-supervised settings,
defined in Eq. 4. To reduce the variance of the action values,
we run the roll-out policy starting from current state till the
end of the paragraph for five times to get a batch of output
samples. The signals that come from the word prediction
for labeled sentences (defined in Eq. 3)) can be regarded as
the intermediate reward. The gradients are passed back to
the intermediate action value via Monte Carlo search [35].

3.2. Paragraph Generator

Figure 3 shows the architecture of the generator G,
which recurrently retains different levels of context states
with a hierarchy constructed by a paragraph RNN, a sen-
tence RNN, and a word RNN, and two attention modules.
First, the paragraph RNN encodes the current paragraph
state based on all preceding sentences. Second, the spa-
tial visual attention module selectively focuses on semantic
regions with the guidance of current paragraph state to pro-
duce the visual representation of the sentence. The sentence
RNN is thus able to encode a topic vector for the new sen-
tence. Third, the language attention module learns to incor-
porate linguistic knowledge embedded in local phrases of
focused semantic regions to facilitate word generation by
the word RNN.

Region Representation. Given an input image, we
adopt the dense captioning model [13, 16] to detect seman-
tic regions of the image and generate their local phrases.
Each region Rj (j ∈ 1, . . . ,M) has a visual feature vec-
tor vj and a local text phrase (i.e., region captioning) srj =
{wr

j,i} consisting of Nj words. In practice, we use the top

M = 50 regions.
Paragraph RNN. The paragraph RNN keeps track of

the paragraph state by summarizing preceding sentences.
At each t-th step (t = 1, . . . , T), the paragraph RNN takes
the embedding of generated sentence in previous step as in-
put, and in turn produces the paragraph hidden state hP

t .
The sentence embedding is obtained by simply averaging
over the embedding vectors of the words in the sentence.
This strategy enables our model to support the manipula-
tion of the first sentence to initialize the paragraph RNN
and generate personalized follow-up descriptions.

Sentence RNN with Spatial Visual Attention. The
visual attentive sentence RNN controls the topic of the next
sentence st by selectively focusing on relevant regions of
the image. Specifically, given the paragraph states hP

t from
the paragraph RNN and previous hidden states hS

t−1 of the
sentence RNN, we apply an attention mechanism on the vi-
sual features V = {v1, . . . ,vM} of all semantic regions,
and construct a visual context vector fvt that represents the
next sentence at t-th step:

f
v
t = attv(V,hP

t ,h
S
t−1)

=
M
∑

j=1

α(vj ,β(hP
t ,h

S
t−1))

∑M
j′=1 α(vj′ ,β(hP

t ,h
S
t−1))

vj

:=
M
∑

j=1

ajvj ,

(5)

where β(hP
t ,h

S
t−1) is a linear layer that transforms the con-

catenation of hP
t and hS

t−1 into a compact vector with the
same dimension as vj ; the function α(·) is to compute the
weight of each region and is implemented with a single lin-
ear layer. For notational simplicity, we use aj to denote the

3365

Semantic region
detection & captioning

25

Attention on Images: Image Paragraph Generation

Sentence

Generator Sentence

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

Semantic Regions

͙

Attentive
Reasoning

Paragraph
description Corpus

Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training

scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.

Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence

plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph

generation, which depicts the true data distribution of the discriminators .

work of our RTT-GAN, then describe detailed model design
of the paragraph generator and the multi-level discrimina-
tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-
tor and discriminators to drive the model learning. Specifi-
cally, the sentence and topic-transition discriminators learn
a critic between real and generated samples, while the gen-
erator attempts to confuse the discriminators by generat-
ing realistic paragraphs that satisfy linguistic characteristics
(i.e., sentence plausibility and topic-transition coherence).
The generative neural architecture ensures the paragraph
captures adequate semantic content of the image, which we
describe in detail in the next sections. Formally, let G de-
note the paragraph generator, and let Ds and Dr denote the
sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences
s1:t−1 and local semantic regions V of the image, the gen-
erator G recurrently produces a single sentence st, where
each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =
Nt∏

i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ
within a true paragraph P̂ from the synthesized ones st. The
generator G tries to generate realistic visual paragraph by
minimizing against the discriminators’ chance of correctly
telling apart the sample source. As the original GAN [7]
that optimizes over binary probability distance suffers from
mode collapse and instable convergence, we follow the new
Wasserstein GAN [1] method that theoretically remedies
this by minimizing an approximated Wasserstein distance.
The objective of the adversarial framework is written as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[

Ds(ŝ)
]

− Es1:t∼pG(s1:t|V)

[

Ds(st)
]

+

E
P̂∼pdata(P̂)

[

Dr(P̂)
]

− Es1:t∼pG(s1:t|V)

[

Dr(s1:t)
]

,

(2)

where pdata(ŝ) and pdata(P̂) denote the true data distributions
of sentences and paragraphs, respectively, which are empir-
ically constructed from a paragraph description corpus. The
second line of the equation is the objective of the sentence
discriminator Ds that optimizes a critic between real/fake
sentences, while the third line is the objective of the topic-
transition discriminator Dr. Here pG(s1:t|V) indicates the
distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the
supervised setting, or image captioning dataset in the semi-
supervised setting, we also incorporate the traditional word
reconstruction loss for generator optimization, which is de-
fined as:

Lc(G) = −
T∑

t=1

Nt∑

i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised
examples with paragraph annotations, and semi-supervised
examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-
erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our
implementation. The optimization of the generator and dis-
criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-
formed in an alternating min-max manner. We describe the
training details in section 3.4.

The discrete nature of text samples hinders gradient
back-propagation from the discriminators to the genera-
tor [9]. We address this issue following SeqGAN [35]. The
state is the current produced words and sentences, and the
action is the next word to select. we apply Monte Carlo
search with a roll-out policy to sample the remaining words
until it sees an END token for each sentence and maximal
number of sentences. The roll-out policy is the same with
the generator, elaborated in Section 3.2. The discriminator
is trained by providing true paragraphs from the text corpus

3364

Semantic region
detection & captioning

Attention on both visual
regions and text
phrases

26

Attention on Images: Image Paragraph Generation

Sentence

Generator Sentence

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

Semantic Regions

͙

Attentive
Reasoning

Paragraph
description Corpus

Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training

scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.

Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence

plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph

generation, which depicts the true data distribution of the discriminators .

work of our RTT-GAN, then describe detailed model design
of the paragraph generator and the multi-level discrimina-
tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-
tor and discriminators to drive the model learning. Specifi-
cally, the sentence and topic-transition discriminators learn
a critic between real and generated samples, while the gen-
erator attempts to confuse the discriminators by generat-
ing realistic paragraphs that satisfy linguistic characteristics
(i.e., sentence plausibility and topic-transition coherence).
The generative neural architecture ensures the paragraph
captures adequate semantic content of the image, which we
describe in detail in the next sections. Formally, let G de-
note the paragraph generator, and let Ds and Dr denote the
sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences
s1:t−1 and local semantic regions V of the image, the gen-
erator G recurrently produces a single sentence st, where
each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =
Nt∏

i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ
within a true paragraph P̂ from the synthesized ones st. The
generator G tries to generate realistic visual paragraph by
minimizing against the discriminators’ chance of correctly
telling apart the sample source. As the original GAN [7]
that optimizes over binary probability distance suffers from
mode collapse and instable convergence, we follow the new
Wasserstein GAN [1] method that theoretically remedies
this by minimizing an approximated Wasserstein distance.
The objective of the adversarial framework is written as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[

Ds(ŝ)
]

− Es1:t∼pG(s1:t|V)

[

Ds(st)
]

+

E
P̂∼pdata(P̂)

[

Dr(P̂)
]

− Es1:t∼pG(s1:t|V)

[

Dr(s1:t)
]

,

(2)

where pdata(ŝ) and pdata(P̂) denote the true data distributions
of sentences and paragraphs, respectively, which are empir-
ically constructed from a paragraph description corpus. The
second line of the equation is the objective of the sentence
discriminator Ds that optimizes a critic between real/fake
sentences, while the third line is the objective of the topic-
transition discriminator Dr. Here pG(s1:t|V) indicates the
distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the
supervised setting, or image captioning dataset in the semi-
supervised setting, we also incorporate the traditional word
reconstruction loss for generator optimization, which is de-
fined as:

Lc(G) = −
T∑

t=1

Nt∑

i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised
examples with paragraph annotations, and semi-supervised
examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-
erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our
implementation. The optimization of the generator and dis-
criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-
formed in an alternating min-max manner. We describe the
training details in section 3.4.

The discrete nature of text samples hinders gradient
back-propagation from the discriminators to the genera-
tor [9]. We address this issue following SeqGAN [35]. The
state is the current produced words and sentences, and the
action is the next word to select. we apply Monte Carlo
search with a roll-out policy to sample the remaining words
until it sees an END token for each sentence and maximal
number of sentences. The roll-out policy is the same with
the generator, elaborated in Section 3.2. The discriminator
is trained by providing true paragraphs from the text corpus

3364

Semantic region
detection & captioning

Attention on both visual
regions and text
phrases

Hierarchical text
generation

27

Attention on Images: Image Paragraph Generation

Sentence

Generator Sentence

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

Semantic Regions

͙

Attentive
Reasoning

Paragraph
description Corpus

Figure 2. Our RTT-GAN alternatively optimizes a structured paragraph generator and two discriminators following an adversarial training

scheme. The generator recurrently produces each sentence by reasoning about local semantic regions and preceding paragraph state.

Each synthesized sentence is then fed into a sentence discriminator and a recurrent topic-transition discriminator for assessing sentence

plausibility and topic coherence, respectively. A paragraph description corpus is adopted to provide linguistic knowledge about paragraph

generation, which depicts the true data distribution of the discriminators .

work of our RTT-GAN, then describe detailed model design
of the paragraph generator and the multi-level discrimina-
tors, respectively.

3.1. Adversarial Objective

We construct an adversarial game between the genera-
tor and discriminators to drive the model learning. Specifi-
cally, the sentence and topic-transition discriminators learn
a critic between real and generated samples, while the gen-
erator attempts to confuse the discriminators by generat-
ing realistic paragraphs that satisfy linguistic characteristics
(i.e., sentence plausibility and topic-transition coherence).
The generative neural architecture ensures the paragraph
captures adequate semantic content of the image, which we
describe in detail in the next sections. Formally, let G de-
note the paragraph generator, and let Ds and Dr denote the
sentence and topic-transition discriminators, respectively.

At each time step t, conditioned on preceding sentences
s1:t−1 and local semantic regions V of the image, the gen-
erator G recurrently produces a single sentence st, where
each sentence st = {wt,i} consists of a sequence of Nt

words wt,i (i = 1, . . . ,Nt):

PG(st|s1:t−1,V) =
Nt∏

i=1

PG(wt,i|wt,1:i−1, s1:t−1,V). (1)

The discriminators learn to differentiate real sentences ŝ
within a true paragraph P̂ from the synthesized ones st. The
generator G tries to generate realistic visual paragraph by
minimizing against the discriminators’ chance of correctly
telling apart the sample source. As the original GAN [7]
that optimizes over binary probability distance suffers from
mode collapse and instable convergence, we follow the new
Wasserstein GAN [1] method that theoretically remedies
this by minimizing an approximated Wasserstein distance.
The objective of the adversarial framework is written as:

min
G

max
Ds,Dr

L(G,Ds, Dr) =

Eŝ∼pdata(ŝ)

[

Ds(ŝ)
]

− Es1:t∼pG(s1:t|V)

[

Ds(st)
]

+

E
P̂∼pdata(P̂)

[

Dr(P̂)
]

− Es1:t∼pG(s1:t|V)

[

Dr(s1:t)
]

,

(2)

where pdata(ŝ) and pdata(P̂) denote the true data distributions
of sentences and paragraphs, respectively, which are empir-
ically constructed from a paragraph description corpus. The
second line of the equation is the objective of the sentence
discriminator Ds that optimizes a critic between real/fake
sentences, while the third line is the objective of the topic-
transition discriminator Dr. Here pG(s1:t|V) indicates the
distribution of generated sentences by the generator G.

To leverage existing image-paragraph pair dataset in the
supervised setting, or image captioning dataset in the semi-
supervised setting, we also incorporate the traditional word
reconstruction loss for generator optimization, which is de-
fined as:

Lc(G) = −
T∑

t=1

Nt∑

i=1

logPG(wt,i|wt,1:i−1, s1:t−1,V). (3)

Note that the reconstruction loss is only used for supervised
examples with paragraph annotations, and semi-supervised
examples with single-sentence caption (where we set T =
1). Combining Eqs.(2)-(3), the joint objective for the gen-
erator G is thus:

G∗ = argmin
G

max
Ds,Dr

λL(G,Ds, Dr) + Lc(G), (4)

where λ is the balancing parameter fixed to 0.001 in our
implementation. The optimization of the generator and dis-
criminators (i.e., Eq.(4) and Eq.(2), respectively) is per-
formed in an alternating min-max manner. We describe the
training details in section 3.4.

The discrete nature of text samples hinders gradient
back-propagation from the discriminators to the genera-
tor [9]. We address this issue following SeqGAN [35]. The
state is the current produced words and sentences, and the
action is the next word to select. we apply Monte Carlo
search with a roll-out policy to sample the remaining words
until it sees an END token for each sentence and maximal
number of sentences. The roll-out policy is the same with
the generator, elaborated in Section 3.2. The discriminator
is trained by providing true paragraphs from the text corpus

3364

Semantic region
detection & captioning

Attention on both visual
regions and text
phrases

Hierarchical text
generation

Multi-level
adversarial learning

28

Attention on Images: Image Paragraph Generation
Table 2. Ablation studies on the effectiveness of key components

in the region-based attention mechanism of our RTT-GAN.

Method METEOR CIDEr

RTT-GAN (Fully- w/o phrase att) 16.08 15.13

RTT-GAN (Fully- w/o att) 15.63 14.47

RTT-GAN (Fully- 10 regions) 14.13 13.26

RTT-GAN (Fully- 20 regions) 16.92 16.15

RTT-GAN (Fully-) 17.12 16.87

The adversarial framework is trained following the
Wasserstein GAN (WGAN) [1] in which we alternate be-
tween the optimization of {Ds, Dr} with Eq.(2) and the op-
timization of G with Eq.(4). In particular, we perform one
gradient descent step on G every time after 5 gradient steps
on {Ds, Dr}. We use minibatch SGD and apply the RM-
Sprop solver [28] with the initial learning rate set to 0.0001.
For stable training, we apply batch normalization [12] and
set the batch size to 1 (i.e., “instance normalization”). In or-
der to make the parameters of Ds and Dr lie in a compact
space, we clamp the weights to a fixed box [−0.01, 0.01]
after each gradient update. In the semi-supervised setting
where only single-sentence captioning for images and stan-
dalone paragraph corpus are available, we set the maximal
number of sentences in the generated paragraph to 6 for all
images. In the fully-supervised setting, the groundtruth sen-
tence number in each visual paragraph is used to train the
sentence-RNN for learning how many sentences are needed.
We train the models to converge for 40 epochs. The imple-
mentations are based on the public Torch7 platform on a
single NVIDIA GeForce GTX 1080.

4. Experiments

4.1. Experimental Settings

To generate a paragraph for an image, we run the para-
graph generator forward until the STOP sentence state is
predicted or after Smax = 6 sentences, whichever comes
first. The word RNN is recurrently forwarded to sam-
ple the most likely word at each time step, and stops af-
ter choosing the STOP token or after Nmax = 30 words.
We use beam search with beam size 2 for generating para-
graph descriptions. Training details are presented in Sec-
tion 3.4, and all models are implemented in Torch plat-
form. In terms of the fully-supervised setting, to make a fair
comparison with the state-of-the-art methods [14, 16], the
experiments are conducted on the public image paragraph
dataset [16], where 14,575 image-paragraph pairs are used
for training, 2,487 for validation and 2,489 for testing. In
terms of semi-supervised setting, our RTT-GAN is trained
with the single sentence annotations provided in MSCOCO
image captioning dataset [2] which contains 123,000 im-
ages. The image-paragraph validation set is used for vali-
dating the semi-supervised paragraph generation. The para-

2) a bicycle parked on the sidewalk

3) man wearing a black shirt

4) a woman wearing a yellow shirt

5) a red and black bike

1) people riding a bike

6) a woman wearing a shirt

Paragraph: A group of people are riding bikes. There are two people
riding bikes parked on the sidewalk. He is wearing a black shirt and
jeans. A woman is wearing a short sleeve yellow shirt and shorts.
There are many other people on the red and black bikes. A woman
wearing a shirt is riding a bicycle.

Figure 4. Visualization of our region-based attention mechanism.

For each sentence generation, RTT-GAN selectively focuses on se-

mantic regions of interest in the spatial visual attention, and atten-

tively leverage the word embeddings of their local phrases to en-

hance the word prediction. In the top row, we illustrate the regions

with highest attention confidences during the spatial visual atten-

tion and its corresponding words (highlighted in red) with highest

attention confidences during the language attention in each step.

graph generation performance is also evaluated on 2,489
paragraph testing samples. For both fully-supervised and
semi-supervised settings, we use the word vocabulary of
image-paragraph dataset as [16] does and the 14,575 para-
graph descriptions on public image paragraph dataset [16]
are adopted as the standalone paragraph corpus for train-
ing discriminators. We report six widely used automatic
evaluation metrics, BLEU-1, BLEU-2, BLEU-3, BLEU-4,
METEOR, and CIDEr. The model checkpoint selection is
based on the best combined METEOR and CIDEr score on
the validation set. Table 1 reports the performance of all
baselines and our models.

4.2. Comparison with the State-of-the-arts

We obtain the results of all four baselines from [16].
Specifically, Sentence-Concat samples and concatenates
five sentence captions from the model trained on MS COCO
captions, in which the first sentence uses beam search and
the rest are samples. Image-Flat [14] directly decodes an
image into a paragraph token by token. Template pre-
dicts the text via a handful of manually specified tem-
plates. And Region-Hierarchical [16] uses a hierarchical
recurrent neural network to decompose the paragraphs into
the corresponding sentences. Same with all baselines, we
adopt VGG-16 net [27] to encode the visual representa-
tion of an image. Note that our RTT-GAN and Region-

Hierarchical [16] use the same dense captioning model [13]
to extract semantic regions. Human shows the results by
collecting an additional paragraph for 500 randomly chosen
images as [16]. As expected, humans produce superior de-
scriptions over any automatic method and the large gaps on
CIDEr and METEOR verify that CIDEr and METEOR met-
rics align better with human judgment than BLEU scores.

Fully-supervised Setting. We can see that our RTT-

GAN (Fully-) model significantly outperforms all base-

3367

29

Outline

● Convolutional Networks (ConvNets)

● Recurrent Networks (RNNs)
! Long-range dependency, vanishing gradients
! LSTM
! RNNs in different forms

● Attention Mechanisms
! (Query, Key, Value)
! Attention on Text and Images

● Transformers: Multi-head Attention

30

Transformers – Multi-head (Self-)Attention
● State-of-the-art Results by Transformers

! [Vaswani et al., 2017] Attention Is All You Need
§ Machine Translation

! [Devlin et al., 2018] BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding
§ Pre-trained Text Representation

! [Radford et al., 2019] Language Models are Unsupervised Multitask Learners
§ Language Models

31

Multi-head Attention

32

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention
Image source: Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head Attention

33

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention Multi-head Attention
Image source: Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head Attention

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

34

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention Multi-head Attention
Image source: Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head Attention in Encoders and Decoders

35

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Encoder Decoder

Transformer

Multi-head Attention in Encoders and Decoders

36Image source: Bgg

Transformer

Key Takeaways: Neural Architectures
● Convolutional Networks (ConvNets)

● Recurrent Networks (RNNs)
! LSTM designed for long-range dependency, vanishing gradients
! RNNs not only for sequence data, but also 2D sequences, trees, graphs

● Attention Mechanisms
! Three core elements: (Query, Key, Value)
! Many variants based on alignment score functions
! Attention on text and images

● Transformers: Multi-head Attention

37

Key Takeaways: Neural Language Models

●

● Two key components:
! “Embedding” words as vectors
! Layering to increase capacity (i.e., the set of distributions that can be

represented)

● Training: maximum likelihood estimation

! Next word prediction

38

Neural Language Models

Instead of a lookup for a word and fixed-length history (✓v|h),
define a vector function:

p(Xi | X1:i�1 = x1:i�1) = NN(enc(x1:i�1);✓)

where ✓ do the work of encoding the history and transforming it
into a distribution over the next word.
The transformation is described as a composed series of simple
transformations or “layers.”

58 / 149

min% ℒ&'(= −log 𝑝%(𝒙∗) = −.
*+,

-
𝑝% 𝑥*∗ 𝒙,:*/,∗)

39

Representation Learning
with Self-supervised Learning

Self-Supervised Learning
● Given an observed data instance 𝒕
● One could derive various supervision signals based on the structure of the

data
● By applying a “split” function that artificially partition 𝒕 into two parts
! 𝒙, 𝒚 = 𝑠𝑝𝑙𝑖𝑡 𝒕
! sometimes split in a stochastic way

● Treat 𝒙 as the input and 𝒚 as the output
● Train a model 𝑝%(𝒚|𝒙)

40

Self-Supervised Learning: Examples

41[Courtesy: Lecun “Self-supervised Learning”]

Self-Supervised Learning: Examples

42[Courtesy: Lecun “Self-supervised Learning”]

Self-Supervised Learning: Motivation (I)

43[Courtesy: Lecun “Self-supervised Learning”]

Self-Supervised Learning: Motivation (I)
● Successfully learning to predict everything from everything else would

result in the accumulation of lots of background knowledge about how
the world works

● The model is forced to learn what we really care about, e.g. a semantic
representation, in order to solve the prediction problem

44

[Courtesy: Lecun “Self-supervised Learning”]
[Courtesy: Zisserman “Self-supervised Learning”]

Self-Supervised Learning: Motivation (II)
● The machine predicts any part of its input from any observed part
! A lot of supervision signals in each data instance

● Untapped/availability of vast numbers of unlabeled text/images/videos..
! Facebook: one billion images uploaded per day
! 300 hours of video are uploaded to YouTube every minute

45[Courtesy: Zisserman “Self-supervised Learning”]

Self-Supervised Learning from Text
Examples:
● Language models
● Learning text representations

47

Language Models: Training
● Given data example 𝒚∗

● Minimizes negative log-likelihood of the data

! Next word prediction
! Inference: teacher-forcing decoding
§ For every step 𝑡, feed in the previous ground-truth tokens 𝑦!:#$!∗ to decode next step

min% ℒ&'(= −log 𝑝%(𝒚∗) = −.
0+,

1
𝑝% 𝑦0∗ 𝒚,:0/,∗)

Language Models: GPT3
● A Transformer-based LM with 125M to 175B parameters
● Trained on massive text data

[Table from https://lambdalabs.com/blog/demystifying-gpt-3/]
Brown et al., 2020 "Language Models Are Few-Shot Learners”

Language Models: GPT3
● Generation

Brown et al., 2020 "Language Models Are Few-Shot Learners”

Language Models: GPT3
● Few-shot prediction

[Nurecas.com]

Language Models: GPT3
● Weakness

[Credit: Nabla]

Self-Supervised Learning from Text
Examples:
● Language models
● Learning text representations

55

Word Embedding

● A pre-trained matrix,
each row is an
embedding vector of a
word

56[Courtesy: Vaswani, et al., 2017]

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Word Embedding

● A pre-trained matrix,
each row is an
embedding vector of a
word

57[Image source: Vaswani, et al., 2017]

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Word Embedding

58

● Distributional semantics:
! Words that are used and occur in the same contexts tend to purport similar

meanings

● Learning word embedding using local context:
! Word embedding algorithms are designed to “guess” a word at position 𝑖

given words at positions in {𝑖 − 𝑤,… , 𝑖 − 1} ∪ {𝑖 + 1,… , 𝑖 + 𝑤}

Word2vec: Skip-Gram Model

59

● (Mikolov et al., 2013a,b)

Skip-Gram Model

p(C = c | X = v) =
1

Zv
exp c>c vv

I Two di↵erent vectors for each element of V: one when it is
“v” (v) and one when it is “c” (c).

I This should remind you of a neural network; SGD on the
likelihood function is the conventional approach to estimating
the vectors.

I Normalization term Zv is expensive, so approximations are
required for e�ciency.

I Can expand this to be over the whole sentence or document,
or otherwise choose which words “count” as context.

55 / 86

[Courtesy: UW CSE 447 by Noah Smith]

Word Embedding Evaluation

60

Word Vector Evaluations

Several popular methods for intrinsic evaluations:

I Do (cosine) similarities of pairs of words’ vectors correlate
with judgments of similarity by humans?

I TOEFL-like synonym tests, e.g., rug
?! {sofa, ottoman,

carpet, hallway}
I Syntactic analogies, e.g., “walking is to walked as eating is to

what?” Solved via:

max
v2V

cos (vv,�vwalking + vwalked + veating)

Note: The above line contains corrections relative to the
video, and the textbook.

59 / 86

[Courtesy: UW CSE 447 by Noah Smith]

● Extrinsic evaluation:

Word Embedding Evaluation

61[Courtesy: UW CSE 447 by Noah Smith]

Extrinsic Evaluations

1. Use large unannotated corpus to get your word vectors
(sometimes called pretraining).

2. Use them in a text classifier (or some other NLP system).
Two options:
I Plug in word vectors as “frozen” features, and estimate the

other parameters of your model.
I Treat them as parameters of the text classifier; pretraining

gives initial values, but they get updated, or “finetuned”
during supervised learning.

3. Does that system’s performance improve?

61 / 86

Word Embedding

● Problem: word embeddings are applied in a context free manner

62Courtesy: Devlin 2019

open a bank account on the river bank

[0.3, 0.2, -0.8, …]

Word Embedding

● Problem: word embeddings are applied in a context free manner

● Solution: Train contextual representations on text corpus

63

open a bank account

[0.9, -0.2, 1.6, …]

on the river bank

[-1.9, -0.4, 0.1, …]

Courtesy: Devlin 2019

open a bank account on the river bank

[0.3, 0.2, -0.8, …]

Contextual Representations

● ELMo: Deep Contextual Word Embeddings!"#$%"&""'()*+,-)./"01"
23-4)(5.0(! %678

64Courtesy: Devlin 2019

Train Separate Left-to-Right and
Right-to-Left LMs

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

Apply as “Pre-trained
Embeddings”

LSTM

open

<s>

LSTM

a

open

LSTM

bank

a

open a bank

Existing Model Architecture

Contextual Representations

● Improving Language Understanding by Generative Pre-Training!"
9:+(#$! %67;

65Courtesy: Devlin 2019

Transformer

<s>

open

open

a

a

bank

Transformer Transformer

Fine-tune on
Classification Task

POSITIVE

Transformer

<s> open a

Transformer Transformer

Train Deep (12-layer)
Transformer LM

Problem with Previous Methods

● Problem<"=3(5>35+"?0@+A-"0(A/">-+"A+1."B0(.+C."or ,)54."B0(.+C.!"D>."
A3(5>35+">(@+,-.3(@)(5")-"D)@),+B.)0(3AE

66courtesy: Devlin 2019

BERT
● BERT: A bidirectional model to extract contextual word embedding

BERT: Pre-training Procedure
● Dataset:
! Wikipedia (2.5B words) + a collection of free ebooks (800M words)

68

BERT: Pre-training Procedure
● Dataset:
! Wikipedia (2.5B words) + a collection of free ebooks (800M words)

● Training procedure
! masked language model (masked LM)
§ Masks some percent of words from the input and has to reconstruct those words

from context

69

BERT: Pre-training Procedure
● Masked LM

70

BERT: Pre-training Procedure

● Masked LM
● 15% masking:
! Too little masking: Too expensive to train (few supervision signals per example)
! Too much masking: Not enough context

● Problem: Mask token never seen at fine-tuning

● Solution: don’t replace with [MASK] 100% of the time. Instead:
● 80% of the time, replace with [MASK]
! went to the store → went to the [MASK]

● 10% of the time, replace random word
! went to the store → went to the running

● 10% of the time, keep same
! went to the store → went to the store

BERT: Pre-training Procedure
● Dataset:
! Wikipedia (2.5B words) + a collection of free ebooks (800M words)

● Training procedure
! masked language model (masked LM)
§ Masks some percent of words from the input and has to reconstruct those words

from context
! Two-sentence task
§ To understand relationships between sentences
§ Concatenate two sentences A and B and predict whether B actually comes after A

in the original text

72

BERT: Pre-training Procedure

● Two sentence
task

73

BERT: Downstream Fine-tuning
● Use BERT for sentence classification

74

BERT: Downstream Fine-tuning

75

BERT Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAI SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.9 90.4 36.0 73.3 84.9 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 88.1 91.3 45.4 80.0 82.3 56.0 75.2
BERTBASE 84.6/83.4 71.2 90.1 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 91.1 94.9 60.5 86.5 89.3 70.1 81.9

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the
number of training examples. The “Average” column is slightly different than the official GLUE score, since
we exclude the problematic WNLI set. OpenAI GPT = (L=12, H=768, A=12); BERTBASE = (L=12, H=768,
A=12); BERTLARGE = (L=24, H=1024, A=16). BERT and OpenAI GPT are single-model, single task. All
results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.
com/language-unsupervised/.

RTE Recognizing Textual Entailment is a bi-
nary entailment task similar to MNLI, but with
much less training data (Bentivogli et al., 2009).6

WNLI Winograd NLI is a small natural lan-
guage inference dataset deriving from (Levesque
et al., 2011). The GLUE webpage notes that there
are issues with the construction of this dataset, 7

and every trained system that’s been submitted
to GLUE has has performed worse than the 65.1
baseline accuracy of predicting the majority class.
We therefore exclude this set out of fairness to
OpenAI GPT. For our GLUE submission, we al-
ways predicted the majority class.

4.1.1 GLUE Results

To fine-tune on GLUE, we represent the input se-
quence or sequence pair as described in Section 3,
and use the final hidden vector C 2 RH corre-
sponding to the first input token ([CLS]) as the
aggregate representation. This is demonstrated vi-
sually in Figure 3 (a) and (b). The only new pa-
rameters introduced during fine-tuning is a classi-
fication layer W 2 RK⇥H , where K is the num-
ber of labels. We compute a standard classification
loss with C and W , i.e., log(softmax(CW

T)).
We use a batch size of 32 and 3 epochs over

the data for all GLUE tasks. For each task, we ran
fine-tunings with learning rates of 5e-5, 4e-5, 3e-5,
and 2e-5 and selected the one that performed best
on the Dev set. Additionally, for BERTLARGE we
found that fine-tuning was sometimes unstable on

6Note that we only report single-task fine-tuning results in
this paper. Multitask fine-tuning approach could potentially
push the results even further. For example, we did observe
substantial improvements on RTE from multi-task training
with MNLI.

7https://gluebenchmark.com/faq

small data sets (i.e., some runs would produce de-
generate results), so we ran several random restarts
and selected the model that performed best on the
Dev set. With random restarts, we use the same
pre-trained checkpoint but perform different fine-
tuning data shuffling and classifier layer initializa-
tion. We note that the GLUE data set distribution
does not include the Test labels, and we only made
a single GLUE evaluation server submission for
each BERTBASE and BERTLARGE.

Results are presented in Table 1. Both
BERTBASE and BERTLARGE outperform all exist-
ing systems on all tasks by a substantial margin,
obtaining 4.4% and 6.7% respective average accu-
racy improvement over the state-of-the-art. Note
that BERTBASE and OpenAI GPT are nearly iden-
tical in terms of model architecture outside of
the attention masking. For the largest and most
widely reported GLUE task, MNLI, BERT ob-
tains a 4.7% absolute accuracy improvement over
the state-of-the-art. On the official GLUE leader-
board,8 BERTLARGE obtains a score of 80.4, com-
pared to the top leaderboard system, OpenAI GPT,
which obtains 72.8 as of the date of writing.

It is interesting to observe that BERTLARGE sig-
nificantly outperforms BERTBASE across all tasks,
even those with very little training data. The effect
of BERT model size is explored more thoroughly
in Section 5.2.

4.2 SQuAD v1.1

The Standford Question Answering Dataset
(SQuAD) is a collection of 100k crowdsourced
question/answer pairs (Rajpurkar et al., 2016).
Given a question and a paragraph from Wikipedia

8https://gluebenchmark.com/leaderboard

76

• Huge improvements over SOTA on 12 NLP task

Analysis

77

● BERT Rediscovers the Classical
NLP Pipeline. Tenney et al., 2019

Self-supervised learning for other modalities: quick overview

78

● SSL on images
● SSL on videos

SSL from Images, EX (I): relative positioning

79[Courtesy: Zisserman “Self-supervised Learning”]

SSL from Images, EX (I): relative positioning

80[Courtesy: Zisserman “Self-supervised Learning”]

SSL from Images, EX (I): relative positioning

81[Courtesy: Zisserman “Self-supervised Learning”]

SSL from Images, EX (I): relative positioning

82[Courtesy: Zisserman “Self-supervised Learning”]

SSL from Images, EX (I): relative positioning

83[Courtesy: Zisserman “Self-supervised Learning”]

SSL from Images, EX (II): colorization

84[Courtesy: Zisserman “Self-supervised Learning”] Colorful Image Colorization, Zhang et al., ECCV 2016

SSL from Images, EX (II): colorization

85[Courtesy: Zisserman “Self-supervised Learning”] Colorful Image Colorization, Zhang et al., ECCV 2016

SSL from Images, EX (III): exemplar networks
● Exemplar Networks (Dosovitskiy et al., 2014)
● Perturb/distort image patches, e.g. by cropping and affine transformations
● Train to classify these exemplars as same class

86[Courtesy: Zisserman “Self-supervised Learning”]

SSL from Videos
Three example tasks:
● Video sequence order
! Sequential Verification: Is this a valid sequence?

87[Courtesy: Zisserman “Self-supervised Learning”] Wei et al., 2018 Arrow of Time

SSL from Videos
Three example tasks:
● Video sequence order
! Sequential Verification: Is this a valid sequence?

● Video direction
! Predict if video playing forwards or backwards

88[Courtesy: Zisserman “Self-supervised Learning”] Wei et al., 2018 Arrow of Time

SSL from Videos
Three example tasks:
● Video sequence order
! Sequential Verification: Is this a valid sequence?

● Video direction
! Predict if video playing forwards or backwards

● Video tracking
! Given a color video, colorize all frames of a gray scale version using a reference

frame

89[Courtesy: Zisserman “Self-supervised Learning”] Vondric et al., 2018

Key Takeaways
● Self supervision learning
! Predicting any part of the observations given any available information
! The prediction task forces models to learn semantic representations
! Massive/unlimited data supervisions

● SSL for text:
! Language models: next word prediction
! Word embedding: skip-gram
! BERT text representations: masked language model (MLM)

● SSL for images/videos:
! Various ways of defining the prediction task

90

Questions?

