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Outline

e N-gram language models
e Neural language models
e Neural architectures (in general)



Motivations of Language Models
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Motivations of Language Models

L Geheratlon Title: United Methodists Agree to Historic Split

Subtitle: Those who oppose gay marriage will form their own denomination
Article: After two days of intense debate, the United Methodist Church

has agreed to a historic split - one that is expected to end in the

creation of a new denomination, one that will be "theologically and

socially conservative," according to The Washington Post. The majority of
delegates attending the church’s annual General Conference in May voted to
strengthen a ban on the ordination of LGBTQ clergy and to write new rules
that will "discipline" clergy who officiate at same-sex weddings. But

those who opposed these measures have a new plan: They say they will form a
separate denomination by 2020, calling their church the Christian Methodist
denomination.

The Post notes that the denomination, which claims 12.5 million members, was
in the early 20th century the "largest Protestant denomination in the U.S.,"
but that it has been shrinking in recent decades. The new split will be the
second in the church’s history. The first occurred in 1968, when roughly

10 percent of the denomination left to form the Evangelical United Brethren
Church. The Post notes that the proposed split '"comes at a critical time
for the church, which has been losing members for years,'" which has been
"pushed toward the brink of a schism over the role of LGBTQ people in the
church." Gay marriage is not the only issue that has divided the church. 1In
2016, the denomination was split over ordination of transgender clergy, with
the North Pacific regional conference voting to ban them from serving as
clergy, and the South Pacific regional conference voting to allow them.

Figure 3.14: The GPT-3 generated news article that humans had the greatest difficulty distinguishing from a human
written article (accuracy: 12%).



Motivations of Language Models

e Evaluation of language fluency
o Ex:

Successful speech recognition requires generating a word sequence
that is:

» Faithful to the acoustic input
» Fluent

If we're mapping acoustics a to word sequences w, then:

w™ = argmax Faithfulness(w; a) + Fluency (w)

w

Language models can provide a “fluency” score.

[Courtesy: UW CSE 447 by Noah Smith]



Motivations of Language Models

e Evaluation of language fluency
o Ex: Other tasks that have text (or speech) as output:

» translation from one language to another
conversational systems
document summarization

Image captioning

vvyyy

optical character recognition
» spelling and grammar correction

If we're mapping inputs ¢z to word sequences w, then:

w™ = argmax Faithfulness(w; ) + Fluency(w)

w

Language models can provide a “fluency” score.

[Courtesy: UW CSE 447 by Noah Smith]



Brown et al., 2020 "Language Models Are Few-Shot Learners”

Motivations of Language Models

e Few-shot prediction | |
(e.g.l G PT3) Prompts in Red. GPT3 responses in Blue

Q. How do you draw a bicycle?
A. You draw a bicycle with two circles connected by a line

Q. How do you draw a ball?
A. You draw a ball with one circle.

Q. How do you draw a house?
A. You draw a house with a trapezium on top of a square.

Q. How do you draw a rabbit?

A. You draw a rabbit with four circles: one large circle for the head, a
small one for the nose, a large circle for the body, and two tiny circles
for the feet.

Q. How do you draw a snail?

A. You draw a snail with six circles: one large circle for the shell, two
small circles for the antennae, one large circle for the head, one small
circle for the tail, and a small circle for the mouth.

[Nurecas.com]




Notations

» Vs a finite set of (discrete) symbols (words or characters);
V =V

» V* is the (infinite) set of sequences of symbols from V

[Courtesy: UW CSE 447 by Noah Smith]
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Notations

» Vs a finite set of (discrete) symbols (words or characters);
V=1V
» V* is the (infinite) set of sequences of symbols from V

» In language modeling, we imagine a sequence of random
variables X7, X9, ... that continues until some X,, takes the
value “()" (a special end-of-sequence symbol).

» VT is the (infinite) set of sequences of V symbols, with a
single (), which is at the end.

[Courtesy: UW CSE 447 by Noah Smith]
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The Language Modeling Problem

e Input: training data x = (xq, %3, ..., Xy) iN Pt
o (assuming one instance x for simplicity of notations)

e Output:p: VT > R

e Think of p as a measure of plausibility

[Courtesy: UW CSE 447 by Noah Smith]
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Probabilistic Language Model

e We let p be a probability distribution, which means that

e Advantages:
o Interpretability

o We can apply the maximum likelihood principle to build a language model
from data

[Courtesy: UW CSE 447 by Noah Smith] 13



Decomposing using the Chain Rule

p(X1 = 71)
('p(X2=£U2|X1=CL’1) \
p(X — :E) = ' p(X3 — X3 | X1:2 — Cl31:2)

\ p(Xn =0 | X1n-1=z1n-1) /

N
= Hp(Xi =z; | X1:i-1 = T1:i-1)
i—1
Example: Predict each word based on the “history”

x = (I, like, this, movie, ...)

p(x) = - py(like | I) pg(this | I, like) -

[Courtesy: UW CSE 447 by Noah Smith] 14



Unigram Model: Empty History

= Hp(Xv; =z; | X1:4-1 = T1:-1)

N
assumptlon
Hp =:;0) = [ 6,
=1

Multinomial distribution

[Courtesy: UW CSE 447 by Noah Smith] 15



Unigram Model: Empty History

= Hp(Xv; =z; | X1:4-1 = T1:-1)

N
assumptlon
Hp =:;0) = [ 6,
=1

Maximum likelihood estimate: for every v € V,

0* Z’fil 1 {ZEZ — U}
v N
county (v)
N

Multinomial distribution

[Courtesy: UW CSE 447 by Noah Smith] 16



Example
The probability of

Presidents tell lies .
IS:

p(X1 = Presidents) - p(Xo = tell) - p(X3 = lies) - p(X4

|
=

>3
ot

In unigram model notation:

HPresidents ) Htell ' Hlies . ‘9 . ‘90
Using the maximum likelihood estimate for 8, we could calculate:
count, (Presidents) countg(tell)  county ()
N N N
[Courtesy: UW CSE 447 by Noah Smith]
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Unigram Models: Assessment

Pros: Cons:
» Easy to understand » Fixed, known vocabulary
> Cheap assumption

» “Bag of words” assumption
Is linguistically inaccurate

» p(the the the the) >
(maybe) p(l want ice cream)

» Good enough for
iInformation retrieval

[Courtesy: UW CSE 447 by Noah Smith] 18



n-gram Models

N
p(X =) = Hp(Xz‘ =z; | X1:-1 = T1:i-1)
i=1
N
= HP(Xi = @i | Xi—nt1:i-1 = Ti—nt1:-1; 0)
i=1

N
— H 95137;|58i—n+1:7;—1
1=1

[Courtesy: UW CSE 447 by Noah Smith]
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n-gram Models

N
p(X =) = Hp(Xz‘ =z; | X1:-1 = T1:i-1)
i=1
N
E T p(Xs = 2 | Xicngrio1 = Timng1:i-15 0)
i=1

N
— H 95137;|58z'—n+1:7;—1
1=1

(n — 1)th-order Markov assumption = n-gram model
» Unigram model is the n =1 case
» For a long time, trigram models (n = 3) were widely used

» 5-gram models (n = 5) were common in MT for a time
[Courtesy: UW CSE 447 by Noah Smith]
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n-gram Models

e Maximum likelihood estimate for the n-gram model’s probability of v
given a (n — 1)-length history h

Opin, = P(X; =v | Xiny1:i-1=h)
~ p(Xi =v, X nt14-1 =h)
P(Xi—nt1:i—1 = h)
_ countg(hv) / county(h)
B N / N
county (hv)
county(h)

[Courtesy: UW CSE 447 by Noah Smith] 21



Choosing n is a Balancing Act

If n is too small, your model can’t learn very much about language.

As n gets larger:
» The number of parameters grows with O(V").

» Most n-grams will never be observed, so you'll have lots of

zero probability n-grams. This is an example of data sparsity.

» Your model depends increasingly on the training data; you
need (lots) more data to learn to generalize well.

This is a beautiful illustration of the bias-variance tradeoff.

[Courtesy: UW CSE 447 by Noah Smith]
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Other “tricks”

e Smoothing

The game: prevent 0, = 0 for any v and h, while keeping
> .. p(x) =1 so that perplexity stays meaningful.

» Simple method: add A > 0 to every count (including counts
of zero) before normalizing (the textbook calls this “Lidstone”
smoothing)

e Dealing with Out-of-Vocabulary Terms

o Define a special OOV or “unknown” symbol unk. Transform some (or all) rare
words in the training data to unk.
o Build a language model at the character level.

o Some new methods use data-driven, deterministic tokenization schemes that
segment some words into smaller parts to reduce the effective vocabulary size

(Sennrich et al., 2016; Wu et al., 2016).

[Courtesy: UW CSE 447 by Noah Smith] 23



n-gram Models: Assessment

Pros: Cons:

» Easy to understand » Fixed, known vocabulary

» Cheap (with modern assumption
hardware; Lin and Dyer, » Markov assumption is
2010) linguistically inaccurate

» Fine in some applications » (But not as bad as
and when training data is unigram models!)
scarce » Data sparseness problem

[Courtesy: UW CSE 447 by Noah Smith] 24



Neural Language Models



Neural Language Models

Instead of a lookup for a word and fixed-length history (0,3,),
define a vector function:

p(X; | X145-1 =21.;—1) = NN(enc(x1.,—1);0)

where 0 do the work of encoding the history and transforming it
into a distribution over the next word.

[Courtesy: UW CSE 447 by Noah Smith]
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Neural Language Models

Instead of a lookup for a word and fixed-length history (0,3,),
define a vector function:

p(X; | X145-1 =21.;—1) = NN(enc(x1.,—1);0)

where 0 do the work of encoding the history and transforming it
into a distribution over the next word.

The transformation is described as a composed series of simple
transformations or “layers.”

[Courtesy: UW CSE 447 by Noah Smith] 27



Neural Network

Formally, it's a function NIN from 6 (learned parameters) and
inputs to outputs, all of which are real-valued vectors (or matrices,

or tensors, or collections of them).

Almost always, NN is differentiable with respect to @ and
nonlinear with respect to the data input.

» “Nonlinear” means there does not exist a matrix A such that
NN(v;0) = Av, for all v.

[Courtesy: UW CSE 447 by Noah Smith] 28



Neural Language Models

Instead of a lookup for a word and fixed-length history (0,3,),
define a vector function:

p(X; | X145-1 =21.;—1) = NN(enc(x1.,—1);0)

where 0 do the work of encoding the history and transforming it
into a distribution over the next word.

The transformation is described as a composed series of simple
transformations or “layers.”

o We first map word histories h to vectors/matrices
o We interpret the output as p(X; | X1.i-1 = h)

[Courtesy: UW CSE 447 by Noah Smith] 29



Two Key Components

e "Embedding” words as vectors

e Layering to increase capacity (i.e., the set of distributions that can be
represented).

30



“One Hot"” Vectors

Let e; € RY be the ith column of the identity matrix I.

[ 1 ] 0 0
0 1 0
€] = : ;€9 = : ..y ey =
0 0 0
| 0 | 0 1

e; is the “one hot" vector for the 7th word in V.

A neural language model starts by “looking up” each word by
multiplying its one hot vector by a matrix M; e/ M = m,, the

V xd

“embedding” of v.

M becomes part of the parameters (8).

31



Sequences of Word Vectors

Given a word sequence (v1,vs,..., V), we transform it into a
sequence of word vectors,

My, MMyy,y o vy Mgy

32



Adding Layers

e Neural networks are built by composing functions, a mix of

o Affine, v' = Wv + b (note that the dimensionality of v and v’ might be
different)

o Nonlinearity, e.qg.,
= rectified linear (“relu”) units v; = max(0, v;)

v Vi

et —e
evi 4+ e~ Vi

= elementwise hyperbolic tangent v; = tanh(v;) =

= softmax v; = exp{v;}/ X exp{v;}

o More complex components (composed of the above operations):
= Convolutional layers
= Recurrent NNs
= Attention

33



Summary so far

e language models utilities

o Generation, evaluation of fluency, few-shot prediction (GPT3), ...

e N-gram language models

o Unigram LM
o N-gram LM

e Neural language models:
o Embedding: one-hot vectors -> embedding vectors

o Neural networks

34



Neural Architectures



Outline

e Convolutional Networks (ConvNets)

e Recurrent Networks (RNNs)

o Long-range dependency, vanishing gradients
o LSTM

o RNNs in different forms

e Attention Mechanisms
o (Query, Key, Value)
o Attention on Text and Images

e Transformers: Multi-head Attention
o Transformer

o BERT



Convolutional Networks (ConvNets)

e Biologically-inspired variants of MLPs [LeCun et al. NIPS 1989]

O Receptive field [Hubel & Wiesel 1962; Fukushima 1982]
= Visual cortex contains a complex arrangement of cells
= These cells are sensitive to small sub-regions of the visual field

o The sub-regions are tiled to cover the entire visual field

Exploit the strong spatially local correlation present in natural images Local Filters

37




Convolutional Networks (ConvNets)

e Sparse connectivity
e Shared weights

e Increasingly “global” receptive fields
o simple cells detect local features

o complex cells “pool” the outputs of simple cells within a retinotopic
neighborhood.

Feature maps m + 1 5

Feature maps m [

[ ]
<T<
O

Feature maps m — 1 [ O




Convolutional Networks (ConvNets)

e Hierarchical Representation Learning [Zeiler & Fergus 2013]

Figure courtesy: Yann LeCun

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Trainable
Classifier




Evolution of ConvNets

AlexNet, 8 layers VGG, 19 layers

| 3x3 conv, 64 | E——
=
| 11x11 conv, 96, /4, pool/2 | [ 3x3 conv, 64, pool/2_| i
y — v .-
3x3 conv, 128
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\ 4 [ 3x3 conv, 512 | EEDNERAES
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| fc, 1000 | [ 33conv,512 | B NI T
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Figure courtesy: Kaiming He | fc, 1000 | g
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Conv layers for Text

embeda

Ings, m,,
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Conv layers for Text

X (1)
- __ 1%
“
// \
- \
|
embeddings, m_
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Outline

e Convolutional Networks (ConvNets)

e Recurrent Networks (RNNs)

o Long-range dependency, vanishing
o LSTM
o RNNs in different forms

e Attention Mechanisms
o (Query, Key, Value)
o Attention on Text and Images

e Transformers: Multi-head Attention
o Transformer

o BERT



ConvNets v.s. Recurrent Networks (RNNs)

e

The output depends ONLY The hidden layers and the output
on the current input additionally depend on previous states
of the hidden layers

e Spatial Modeling vs. Sequential Modeling
e Fixed vs. variable number of computation steps.




RNNs in Various Forms

One to One One to Many Many to One Many to Many
¥ @y @0 © o 09 @)
DD DD 006706
€ @é@ ) &) @)
Image
classification Image
captioning

Sentence sentiment analysis /
Video recognition
Machine Translation

Many to Many

@@
(DD
QQ

Named Entity Recognition

(Sequence-to-sequence) (Sequence tagging)



Vanishing / Exploding Gradients in RNNs

ht — tanh(Whhht_l + thxt)

-

W—( )= tanh W—( )= tanh W—(_ )= tanh W—( )z tanh

_.ijck L:h—:’ijck L—_»h ——-i:jck Igh:;:il%‘ Igh“

2

o

Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficglt”
fPascanu et al., 2013 “On the difficulty of training recurrent neural networks”



Vanishing / Exploding Gradients in RNNs

ht — tanh(Whhht_l + thxt)

W—( )= tanh wW—QO _J+— tanh Y= (:'.__’ tanh W—’C /,—_’ tanh
h, S i‘%‘:" &__’ h, :\::. %‘3" L—_’ h, S %Ck l l—* h, S stack | h,
X4 X, X, x4

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

Bengio et al., 1994 “Learning long-term dependencies with gradient descent is dn‘ﬁcult
[Pascanu et aI 2013 “On the difficulty of training recurrent neural networks”



Vanishing / Exploding Gradients in RNNs

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

ht — tanh(Whhht_l + thxt)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

= Grac.iient. glipping:.Scale |
gradient if its norm is too big
grad_norm = np.sum(grad *

if grad_norm > threshold:
grad *= (tk(2shold / arad_rorm)

grad)

Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficglt”
fPascanu et al., 2013 “On the difficulty of training recurrent neural networks”



Long-term Dependency Problem

(o) (hy) (R (R e (e
D~~~
) () () () G

| live in France and | know

Example courtesy: Manik Soni



Long-term Dependency Problem

(o) (hy) (R (R e (e
D~~~
) () () () G

| live in France and | know  French

Example courtesy: Manik Soni



Long-term Dependency Problem

(o) (hy) (R (R e (e
D~~~
) () () () G

| live in France and | know  French

| live in France, a beautiful country, and | know _ French

Example courtesy: Manik Soni



Long Short Term Memory (LSTM)

e LSTMs are designed to explicitly alleviate the long-term dependency
problem [Horchreiter & Schmidhuber (1997)]

Standard RNN i - \ >
A A
I J
@ &) ®

LSTM $ 3

®_




Long Short Term Memory (LSTM)

e Gate functions make decisions of reading, writing, and resetting
information

Forget gate: whether to erase cell (reset)
Input gate: whether to write to cell (write)

Output gate: how much to reveal cell (read)




Long Short Term Memory (LSTM)

o Forget gate: decides what must be removed from h;_4

ftl ft=0Wg- [he—q,x¢] + by)



Long Short Term Memory (LSTM)

o Forget gate: decides what must be removed from h;_4

ft=0Wg- [he—q,x¢] + by)

e Input gate: decides what new information to store in the cell

iy =0(W;-|h—q1,x¢] + by)

Ecg% C, = tanh(W¢ - [hy_q,x,] + b¢)




Long Short Term Memory (LSTM)

o Update cell state:

Co=fe*Coq+ ip*C

C
C_ t

®
fT | % forgetting unneeded things
s scaling the new candidate values by how

much we decided to update each state
value.

56



Long Short Term Memory (LSTM)

o Update cell state:

Co=fe*Coq+ ip*C

>
fT | % forgetting unneeded things
t ¢ ét

scaling the new candidate values by how
much we decided to update each state
value.

o Output gate: decides what to output from our cell state

"4 0 =0(Wy - [hi_1, %] + b,)
D ht — O * tanh(Ct)
04 (X)
(0 B sigmoid decides what parts of the cell

he—1

57

T > state we’re going to output



Backpropagation in LSTM

Uninterrupted gradient flow!

-+
= 2, s s - Gt SO G o Do e 1
Co- e 1 1 B 7 : Cy
~ f > f ~ f
> = P = |
w—0- Lo w—0O-{ Lo w—0- Lo
f Lg_l" 'Th f g tTh f L»g_l" mlm
T-»o @ —» ht—-—’ ——_’T»o—be—b ht——. ——'TL.O © — hl——o

e No multiplication with matrix W during backprop

e Multiplied by different values of forget gate -> less prone to
vanishing/exploding gradient

Source: CS231N Stanford



RNNs in Various Forms

One to One One to Many Many to One Many to Many
¥ @y @0 © o 09 @)
DD DD 006706
€ @é@ ) &) @)
Image
classification Image
captioning

Sentence sentiment analysis /
Video recognition
Machine Translation

Many to Many

@@
(DD
QQ

Named Entity Recognition

(Sequence-to-sequence) (Sequence tagging)
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RNNs in Various Forms

e Bi-directional RNN

e Hidden state is the concatenation of both
forward and backward hidden states. o

¢ Al |OWS the hldden S.tate to ca pture bOth paSt [Speech Recognition with Deep Recurrent Neural Networks, Alex Graves]
and future information.
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RNNs in Various Forms

e Y Ui Yit1 -« -
e Bi-directional RNN

GGG
e Hidden state is the concatenation of both

forward and backward hidden states. e

¢ Al |OWS the hlddeﬂ S.tate to ca pture bOth paSt [Speech Recognition with Deep Recurrent Neural Networks, Alex Graves]
and future information.

3! Y2 Y3 Y

! 4
e Tree-structured RNN A A A
. . . T N S
e Hidden states condition on both an input vector t ' ¥ '
and the hidden states of arbitrarily many child "
units.
e Standard LSTM = a special case of tree-LSTM I )
where each internal node has exactly one child. 5 y4/ X e
N e e R
o
T4 5 rg

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, Tai. et al.
61



RNNs in Various Forms

e RNN for 2-D sequences

Pixel CNN Row LSTM

O OO OO0 88’

00000 o.‘g‘p/o/o.
ONON NONGO ONON HNONO

oo Mo 0 O ofo O
| |
J[®|Q © O 9 ® 00O
O | O ON OIONONO
O®® OO0 O® ® OO

OO OO0O0 ONORONONG

Diagonal Bi-LSTM

sosc

¢80 OO
O 0 oo O

|
O®OOO
O 0OiI0 OO
OO0 @® OO0
OO0 00O

[Pixel Recurrent Neural Networks, van den Oord. et al. 2016]



RNNSs in Various Forms
e RNN for Graph Structures

o Used in, e.g., image segmentation O

Structure-evolving
LSTM

@® Current node

- Neighboring nodes
® Starting node

z 2 ol =
skit W scarf W r-shoe W e B ram pants [l Ishoe = - & hat W face dress W obet B bag EM har [] nul

[Semantic Object Parsing with Graph LSTM. Liang et al. 2016] 63



Outline

e Convolutional Networks (ConvNets)

e Recurrent Networks (RNNs)

o Long-range dependency, vanishing
o LSTM
o RNNs in different forms

e Attention Mechanisms
o (Query, Key, Value)
o Attention on Text and Images

e Transformers: Multi-head Attention
o Transformer

o BERT



Attention: Examples

e Chooses which features to pay attention to

A stop sign is on a road with a
mountain in the background.

A I|ttle girl sitting on a bed with A group of Eeogle sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Image captioning [Show, attend and tell. Xu et al. 15] .



Attention: Examples

e Chooses which features to pay attention to

E accord sur la zone économique européenne a
B —| BmMH—| BmMH—| BrMH—| Br—| BrF—| BrF—| B}
! % \
1

A — A —_— A — A —_— A —_— A — A —_—
| | | | | | |

the agreement on the European Economic Area

Machine Translation
Figure courtesy: Olah & Carter, 2016

66


https://distill.pub/2016/augmented-rnns/

Why Attention?

Figure courtesy:


http://mlexplained.com/author/admin/

Why Attention?

e Long-range dependencies
o Dealing with gradient vanishing problem

68

Figure courtesy: keitakurita



http://mlexplained.com/author/admin/

Why Attention?

e Long-range dependencies
o Dealing with gradient vanishing problem

e Fine-grained representation instead of a single global representation
o Attending to smaller parts of data: patches in images, words in sentences

Encoder She — is > eating—> a > green — apple

Context vector (length: 5)

———(10.1,-0.2,08,15,-03] )=

Decoder W o> E P M =N F O ER

Figure courtesy: Lilian Weng



Why Attention?

e Long-range dependencies
o Dealing with gradient vanishing problem

e Fine-grained representation instead of a single global representation
o Attending to smaller parts of data: patches in images, words in sentences

e Improved Interpretability

I’ accord sur la zone économique européenne a
I I I I I I [ I
BFH—| BpmM—|BI—| B B B—| BpF—| B}
| | |
\
|
A |e—=| A || A|e—| A |e—| A |e—| A |e—| A |—
I I I I | I 1
the agreement on the European Economic Area

Figure courtesy:
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https://distill.pub/2016/augmented-rnns/

Attention Computation

: . Encoder Key Vectors
e ENncode each token in the input

sentence into vectors

o« When decoding, perform a linear
combination of these vectors,
weighted by “attention weights”

o a = softmax(alignment_scores)

al=0.5 a2=0.3 a3=0.1 a4=0.1

71

Figure courtesy: MARTAR. COSTA-JUSSPeCOder



Attention Computation (cont’d)

Encoder Value Vectors

e Combine together value by taking

the weighted sum

|
|
|

‘-——--

» oo - - -
* —— -



Attention Computation (cont’d)

Encoder Value Vectors |

e Combine together value by taking

the weighted sum

|
l
1

‘-——--
* A==

e Query: decoder state
e Key: all encoder states s v .
e Value: all encoder states o NS LT



Attention Variants

e Popular attention mechanisms with different alignment score functions

Alignment score = f(Query, Keys)

Query: decoder state s;
Key: all encoder states h;

Value: all encoder states h;

Courtesy: Lilian Weng

Name

Content-base
attention

Additive(*)

Location-Base

General

Dot-Product

Scaled Dot-
Product(?)

Alignment score function

score(s;, h;) = cosinels;, h;]

score(s;, h;) = v, tanh(W,[s; ;)

a,; = softmax(W,s;)

Note: This simplifies the softmax alignment to only depend on the target
position.

score(s;, k;) = s/ W, h;

where W, is a trainable weight matrix in the attention layer.

score(s;, h;) = s h;

sTh;

v

Note: very similar to the dot-product attention except for a scaling factor;
where n is the dimension of the source hidden state.

score(s;, h;) =

Citation

Graves2014

Bahdanau2015

Luong2015

Luong2015

Luong2015
Vaswani2017




Attention on Images — Image Captioning

A
bird

flying
over

14x14 Feature Map

=

a
body
of
water
L. Input 2. Convolutional 3, RNN with attention 4. Word by

Image  Feature Extraction over the image word
generation

* Query: decoder state
« Key: visual feature maps

» Value: visual feature maps
[Show, attend and tell. Xu et al. 15]



Attention on Images — Image Captioning

Hard attention vs Soft attention

Aflylng over a body of water. /{4 ard

(&)
—h
II\)

| =
o -
. conv-512 O S
| conv-512 | . - ,-»5
L ‘ ' maxpool | s £
N > P adl ) =
N B =
\( 14x14x512 = . ”

196 x 512 (L x D)
annotations ‘ ' N

‘ - \S“oft

Ly =Y p(s|a)logp(y | s,a)

S N
A variational lower bound of 2y =<
maximum likelihood

Sample regions of attention

=0, 0@ @

L.=) logp(y | z)
< {0.0.0.0)

pi 203 a0 6|, | @O O Q@@ >

Computes the expected attention
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Attention on Images — Image Captioning

Hard attention vs Soft attention




Attention on Images — Image Paragraph Generation

e Generate a long paragraph to
describe an image

o Long-term visual and language
reasoning

o Contentful descriptions -- ground
sentences on visual features

- - -

N

This picture is taken for three baseball players on a
field. The man on the left is wearing a blue
baseball cap. The man has a red shirt and white
£y pants. The man in the middle is in a wheelchair and

S Mg

\

holding a baseball bat. Two men are bending down
behind a fence. There are words band on the fence.

[ P ————

- -
S ———————————— -

A tennis player is attempting to hit the tennis ball
with his left foot hand. He is holding a tennis racket.
He is wearing a white shirt and white shorts. He has
his right arm extended up. There is a crowd of
people watching the game. A man is sitting on the
o chair.

o e e
[ ————

___________________________________________________________________
-

~

- N
B A couple of zebra are standing next to each other on *

By dirt ground near rocks. There are trees behind the
zebras. There is a large log on the ground in front of
the zebra. There is a large rock formation to the left
" of the zebra. There is a small hill near a small pond
and a wooden log. There are green leaves on the
tree.

o —
L P ———_
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Attention on Images — Image Paragraph Generation

Semantic Regions

Attentive /

Reasomng

[ Generator

Sentence

-7
Rl

Sentence {

AW

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

[Recurrent Topic-Transition GAN for Visual Paragraph Generation. Liang et al. 2017]

Paragraph
description Corpus

|
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Attention on Images — Image Paragraph Generation

Semantic Regions

i o I - S

S,

Semantic region
detection & captioning

* people playing baseball
* a man wearing white shirt and pants

Local
Phrases

e person wearing a helmet in the field
* aman bending over



Attention on Images — Image Paragraph Generation

Sentence ..
Sentence
%/ Discriminator %
Sentence [ v Paragraph
A , o description Corpus
/4 Topic-Transition [f
Discriminator
Sentence |
Semantic region ‘
detection & captioning !

Attention on both visual

regions and text
phrases
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Attention on Images — Image Paragraph Generation

Semantic region
detection & captioning

Sentence

Sentence {

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

Hierarchical text

$ generation

Attention on both visual

regions and text
phrases

Paragraph
description Corpus

|
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Attention on Images — Image Paragraph Generation

Sentence }.

Sentence

Discriminator ]%

Topic-Transition
Discriminator

Sentence {

Sentence |

Paragraph
description Corpus | !

S _ _ '.‘ _ _ Multi-level
emantic region '\ Hierarchical text adversarial learning

detection & captioning $ generation

Attention on both visual
regions and text
phrases
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Attention on Images — Image Paragraph Generation

_w 1) people riding a bike

__—72 a bicycle parked on the sidewalk

AR % & 3) man wearing a black shirt

5) a red and black bike
6) a woman wearing a shirt

-
g
-
SR L
b
S
-
-

)
)
)
4) a woman wearing a yellow shirt
)
)

Paragraph: A group of people are riding bikes. There are two people
riding bikes parked on the sidewalk. He is wearing a black shirt and
Jjeans. A woman Is wearing a short sleeve yellow shirt and shorts.
There are many other people on the red and black bikes. A woman
wearing a shirt is riding a bicycle.

l
I
I
I
I
I
I
I
I
i

~_----'

\



Outline

e Convolutional Networks (ConvNets)

e Recurrent Networks (RNNs)
o Long-range dependency, vanishing
o LSTM
o RNNs in different forms

e Attention Mechanisms
o (Query, Key, Value)
o Attention on Text and Images

e Transformers: Multi-head Attention



Transformers — Multi-head (Self-)Attention

e State-of-the-art Results by Transformers

o [Vaswani et al., 2017] Attention Is All You Need
» Machine Translation

o [Devlin et al., 2018] BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding

= Pre-trained Text Representation

o [Radford et al., 2019] Language Models are Unsupervised Multitask Learners
= Language Models



Multi-head Attention

| MatMul |
A

I SoftMax |
| Mask (opt.) I

)
[ Scale ]

I MatMul I

t 1
Q K V

Scaled Dot-Product Attention

Image source: Vaswani, et al., 2017



http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head Attention

\
MatMul \
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I
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Image source: Vaswani, et al., 2017
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Multi-head Attention
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Multi-head Attention in Encoders and Decoders

Add & Norm

Feed
Forward

—

f_>| Add & Norm |

Multi-Head

Attention

t

——— |

Output
Transformer
( (Ao Mo
Feed
Forward
Encoder N m— Decoder
s | ~\ Add & Norm
—>{Add 8 Norm J Multi-Head
Feed Attention
Forward 7 7 Nx
) —
Nix Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At LN
— J —' )
Positional Positional
Encodi ¥ & -
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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Multi-head Attention in Encoders and Decoders

s * encoder self attention
Transformer i

Softmax 1. Multi-head Attention

‘__G%E 2. Query:Key:VaIue

(e Nom ) |
Feed
Forward
PRiEss) | = « decoder self attention
Feed Attention
Forward T 7 ,—} N x
| i 1. Masked Multi-head Attention
Nx Add & Norm ) —
Nt Hoad i 2. Query=Key=Value
Attention Attention
AT A AT
& J \_ ——,
Positional & 4 Positional
Encoding N Encodi .
_ s T encoder-decoder attention
Embedding Embedding
i Tuts omI " 1. Multi-head Attention
" (shifteg right) 2. Encoder Self attention:Key:VaIue

3. Decoder Self attention:QueI‘y

Figure 1: The Transformer - model architecture.

Image source! Bgg "







