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Outline
e Probability

o Bayes' rule
o Exponential family
o KL divergence, cross entropy

e Functional derivatives (optional)
e Practice: MLE vs Maximum entropy



Probability



Why Probability?

e The world is a very uncertain place nicola

thecagse: |
o "What will the weather be like today?” weather |
“Will | like this movie?” man

e We often can't prove something is true, but we can still
ask how likely different outcomes are or ask for the most
likely explanations

R, Kk Korkok
e Predictions need to have associated confidence (w) 2o
o Confidence -> probability

momol
—ir

e Not all machine learning models are probabilistic
o ... but most of them have probabilistic interpretations

[CS60020, Bhattacharya; CSC2515, Wang] 4



Notations

e A random variable x represents outcomes or states of the world.

o We write p(x,) to mean Probability(x = x)

e Sample space: the space of all possible outcomes (may be discrete,

continuous, or mixed)

e p(x) is the probability mass (density) function
o Assigns a number to each point in sample space
o Non-negative, sums (integrates) to 1

o Intuitively: how often does x occur, how much do we believe in x.

[CSC2515, Wang]



Notations

e Joint distribution p(x, y)

o Conditional distribution p(y|x)

p(x,y)
p(x)

o pylx) =
o Expectation:

EIf ()] = ) f(x)p@)

or

E[f (x)] = f FOp(x)dx



Rules of Probability

e Sumrule

p(x) = E P(X, J/) (Marginalize out y)
y

p(x) = E EE P(X5 X550, Xy )

X2 X3 AN
e Product/chain rule

p(x,y)=p(y|x)p(x)
P(Xp5e0Xxy) = p(x;) p(x, | X))o Py | X5 Xy )

[CSC2515, Wang]



Bayes’ Rule
p(x|y)pr(y)

p(x)

e This gives us a way of “reversing” conditional probabilities

p(y|x) =

e We call p(y) the “prior”, and p(y|x) the “posterior”

e Ex: Bayes’ Rule in machine learning:
o D: data (evidence)
o 0: unknown quantities, such as model parameters, predictions

Likelihood: How likely is the
observed data under the

Posterior belief on the D (D | 9)[? (9) particular unknown quantities 6
unknown quantities —— P(G |D) — (D)
you see data D p Prior belief on the unknown

quantities Before you see data D
[10-601B @ CMU] 8



Independence

e Two random variables are said to be independent iff their joint
distribution factors

p(x,y) = p(X)p(y)

e Two random variables are conditionally independent given a third if they
are independent after conditioning on the third

p(x,y|z) = p(x|2)p(y|z)

[CSC2515, Wang] 9



Some common distributions - Gaussian distribution

e Gaussian distribution
(Multivariate)

_1/2 | T <ol
P(x|u,0)= 1 exp{— : (x - Mf} P(xlup)= |2”E| eXP{—E(X —w) 2 (x - M)}
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Some common distributions - Multinomial distribution

e Multinomial distribution
o Discrete random variable x that takes one of M values {1, ..., M}

O p(le) = T[i, Ziﬂizl

o Out of n independent trials, let k; be the number of times x = i was observed

o The probability of observing a vector of occurrences k = [ky, ..., ky] is given by the
multinomial distribution parametrized by 7

n! ks
p(kim,n) = p(ki,...,Kmlm, ..., Tm, 1) = klzkzz...kng“i

o E.g., describing a text document by the frequency of occurrence of every distinct
word
o Forn =1, a.k.a. categorical distribution
" plx=ilm) =m
* Ink=1[kq,...kyl: k;=1,andk; =0forallj#i — a.k.a.,one-hotrepresentation of i
[CSC2515, Wang] 11



Exponential family

e A distribution
pe(x) = h(x) exp{@ -T(x)}/Z(0)

is an exponential family distribution

o 0 € R%: natural (canonical) parameter

o T(x) € R: sufficient statistics, features of data x

o Z(0) = Yy yh(x)exp{@ - T(x)}: normalization factor

e Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

12



Example: Multivariate Gaussian Distribution

e For a continuous vector random variable x € Rk

. (zn)"’l"’lz“ eXp{_;(x_” ”@g

R { | (_1 T) N 1Mo}mentparameter
_Wexp—gtrf, xx Hux X—s U 2 - og\Zl

p(x

e Exponential family representation

[ 1 1
0= |1y 5 vec (Z_l)] = [0, vec (03)], 8, =X 'pand 0, = —52_1

T(x) = :-a:;vec (zz")]

1 1 1
A(0) = 5#23—1# +log [Bf = = tr (626167 ) — 5 log (—265)

h(z) = (2m) /2
13



Entropy
e Shannon entropy H(p) = —2 p(x)log p(x)

o The average level of "information", "surprise", or "uncertainty" inherent to
the variable x 's possible outcomes

15



KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two
distributions p(x) and q(x)

KL(g() [ () = Z a(x) log-

o a.k.a. Relative entropy
o KL>=0 (Jensen’s inequality)
o Intuitively:
= |f g is high and p is high, then we are happy (i.e. low KL divergence)
= |f q is high and p is low then we pay a price (i.e. high KL divergence).
= |f g is low then we don't care (i.e. also low KL divergence, regardless of p)
o not a true “distance”:
= not commutative (symmetric) KL(p||q) ! = KL(q||p)
= doesn't satisfy triangle inequality

p(x)

16



KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two
distributions p(x) and q(x)

a0
KL(q() || p(x)) = 2 () log 2

o a.k.a. Relative entropy

e Maximum likelihood estimation (MLE) is minimizing the KL divergence
between the empirical data distribution and the model distribution

KL(B () || po(x)) = —Ep) | log pe(x) ] + H(B(x))
Cross entropy

17



Key Takeaways
e Probability p(x)

p(x|y)r(y)
p(x)

e Bayes' rule p(y|x) =

o prior, posterior

e Exponential family:
o Gaussian, multinomial, categorical, ...

KL(q() [|p(x) = ) q(x) log

e KL Divergence

o relation to Cross-entropy

q(x)
p(x)

18



Functional Derivatives (optional)



Functional derivative
e V,—H(q)=logg+1

e Functional F(y): an operator that takes a function y(x) and returns an
output value F

e Functional derivative (aka, variational derivative): relates a change in a
Functional F(y) to a change in the function y

20



Functional derivative

o Recall the conventional derivative —

o Taylor expansion
y(z+e) =y(z) + e+ O(€)

e Functional derivative

o How much a functional F[y] changes when we make a small change en(x) to
the function y(x)
OF

Fly(z) +en(z)] = Fly(z)] + ¢ / 5y ()

o A function y(x) that maximizes (or minimizes) a functional F[y] must satisfy

SF
6y(x)

n(z)dz + O(€?)

= 0 for all x

21



Functional derivative

Fly(a) + en(@)] = Fly(a)) + < [ 50sn(a) do -+ O(e)

e Consider a functional that is defined by an integral over a function
G(y,x)
Fly] = | G(y,x)dx

e Consider variations in the function y(x),

aG
Fly + en(0)] = Fly(o] + € f 75 100dx + 0(e?)

22



Functional derivative

Fly(z) + en(@)] = Fly(x)] + e / oF

6y(x)

n(z) dz + O(€?)

e Consider a functional that is defined by an integral over a function
G(y,x)
Fly] = | G(y,x)dx

o Ex.1, —H(q) = J q(x) log q(x) dx
G = q(x)log q(x)
e Consider variations in the function y(x),

Fly + en(o)] = Fly(o)] + e f 2 G0dx + 0(€2)

23



Practice: Maximum likelihood vs Maxi
Entropy



Supervised Maximum Likelihood

e Model to be learned pg(x)

e Observe full data D = { x* }
o i.i.d: independent, identically distributed

e Maximum Likelihood Estimation (MLE)
o The most classical learning algorithm

min — By _p | logpe(x") |

e MLE is closely connected to the Maximum Entropy (MaxEnt) principle

25



Recap: Exponential Family

e A distribution
pe(x) = h(x) exp{@ -T(x)} /Z(0)

is an exponential family distribution

o 0 € R%: natural (canonical) parameter

o T(x) € R: sufficient statistics, features of data x

o Z(0) = Yy yh(x)exp{@ - T(x)}: normalization factor

e Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

26



Maximum Likelihood for Exponential Family

m(x) : the number of times x is observed in D

Zm ) log p( | 6)

=) m(x) (Z 0;Ti(x) — log Z(H)>
=Y " m(x) Z 0:;T;(x) — Nlog Z(6)

e Take gradient and setto O

= 1Y p(@ | OTi(@)= m](v""):ri(m) S:

4 R

At MLE, the expectations of
the sufficient statistics under

the model must match
empirical feature average

/

27



Maximum Entropy (MaxEnt)

e Given D, to estimate p(x)

e We can approach the problem from an entirely different point of view.
Begin with some fixed feature expectations:

Ex p(xX)T;(x) = Ex m]E/x) T;(x) = «a;

e There may exist many distributions which satisfy them. Which one should
we select?
o MaxEnt principle: the most uncertain or flexible one, i.e., the one with

rr.waX|.mum entropy o max H(p Zp ) log p(a
e This yields a new optimization problem: | »

o This is a variational definition of a distribution!
S. L. Zp

> plw) =




Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L = — > p()logp(x) — Z 0 (Z p(x)Ti(x) — ai) — <Zp(iv) = 1)

29



Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L = —Y p(x) logp(w ZQ (Zp —ozz-) — (Zp(w) N

oL
8p(w)—1+logp ZHT
p () = e Lexp {Z Gifi(w)}
Z(0) =et 1t = Zexp {Z Hifi(a:)} (since Zp*(:c) = 1)

p(x|0) =

30
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Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L:—Zp( log p(x ZQ (Zp —Oéi) —,u(Zp(m)—l)

O.u px)

8;?([;)_1+10gp ZHT / \

e So feature constraints

() = el ox 0, f, + MaxEnt =
pw) =t p{zi: f(w)} exponential family.
Z(0) =et 1t = Zexp {Z Qifi(a:)} (since Zp*(a:) =1

e Problem is strictly
convex w.r.t. p(x), so

solution is unique.

p(x|0) =

31



Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max %r)‘ L= —Zp( log p(x 29 (Zp _az’> — (Zp(fv) = 1)
eXp{ZHT } \

e So feature constraints
+ MaxEnt =

p(z | 0) =

plug p(x|@) back into L, and since )., m}sx) T;(x) == a;: exponential family.
- .- : e Problem is strictly
max L(0) =) m(x) > 6,T;(x) — Nlog Z(6) convex w.r.t. p(x), so
¢ z i solution is unique.
e Recovers precisely the MLE problem of exponential family K /

(Homework) 32



Constraints from Data

e We have seen a case of convex duality:

o In one case, we assume exponential family and show that Maximum
Likelihood implies model expectations must match empirical expectations.

o In the other case, we assume model expectations must match empirical
feature counts and show that MaxEnt implies exponential family distribution.

33



A more general MaxEnt problem

min KL(p(x)||h(z))

S @) log oy = ~H() — Y pl@) log (@)

S.t. Zp(a:)Tz(a:) = ;4




Summary

e Maximum entropy is dual to maximum likelihood of exponential family
distributions

e This provides an alternative view of the problem of fitting a model into
data:

o The data instances in the training set are treated as constraints, and the
learning problem is treated as a constrained optimization problem.

o We'll revisit this optimization-theoretic view of learning repeatedly in the
future!

max H(p Z p(x)logp(x

35



Key Takeaways

e Probability
o Bayes' rule
o Exponential family

o KL divergence

e Functional derivative (optional, but very useful)

e Convex duality between MLE and MaxEnt (optional)
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