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Outline
● Probability
! Bayes’ rule
! Exponential family
! KL divergence, cross entropy

● Functional derivatives (optional)
● Practice: MLE vs Maximum entropy
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Probability



Why Probability?
● The world is a very uncertain place 
! “What will the weather be like today?”
! “Will I like this movie?” 

● We often can’t prove something is true, but we can still 
ask how likely different outcomes are or ask for the most 
likely explanations

● Predictions need to have associated confidence
! Confidence -> probability

● Not all machine learning models are probabilistic
! … but most of them have probabilistic interpretations

4[CS60020, Bhattacharya; CSC2515, Wang]



Notations

● A random variable 𝒙 represents outcomes or states of the world.

! We write 𝑝(𝒙!) to mean Probability(𝒙 = 𝒙!)

● Sample space: the space of all possible outcomes (may be discrete, 

continuous, or mixed)

● 𝑝(𝒙) is the probability mass (density) function

! Assigns a number to each point in sample space

! Non-negative, sums (integrates) to 1

! Intuitively: how often does 𝒙 occur, how much do  we believe in 𝒙.

5[CSC2515, Wang]



Notations

● Joint distribution 𝑝 𝒙, 𝒚

● Conditional distribution 𝑝 𝒚|𝒙

! 𝑝 𝒚|𝒙 = " 𝒙,𝒚
" 𝒙

● Expectation:
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𝔼 𝑓(𝒙) ='
𝒙
𝑓(𝒙) 𝑝 𝒙

𝔼 𝑓(𝒙) = )
𝒙
𝑓 𝒙 𝑝 𝒙 𝑑𝑥

or



Rules of Probability
● Sum rule

● Product/chain rule

7[CSC2515, Wang]

(Marginalize out 𝑦)



Bayes’ Rule

● This gives us a way of “reversing” conditional probabilities
● We call 𝑝(𝒚) the “prior”, and 𝑝 𝒚|𝒙 the “posterior”
● Ex: Bayes’ Rule in machine learning:
! 𝒟: data (evidence)
! 𝜽: unknown quantities, such as model parameters, predictions
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𝑝 𝒚|𝒙 =
𝑝 𝒙|𝒚 𝑝(𝒚)

𝑝 𝒙
=

𝑝 𝒙|𝒚 𝑝(𝒚)
∑𝒚! 𝑝 𝒙|𝒚′ 𝒑(𝒚′)

𝑝 𝜽|𝒟 =
𝑝 𝒟|𝜽 𝑝(𝜽)

𝑝 𝒟
=

𝑝 𝒙|𝒚 𝑝(𝒚)
∑𝒚! 𝑝 𝒙|𝒚′ 𝒑(𝒚′)

Posterior belief on the 
unknown quantities
you see data 𝒟

Likelihood: How likely is the 
observed data under the 
particular unknown quantities 𝜽

Prior belief on the unknown 
quantities Before you see data 𝒟

[10-601B @ CMU]



Independence
● Two random variables are said to be independent iff their joint 

distribution factors

● Two random variables are conditionally independent given a third if they 
are independent after conditioning on the third
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𝑝 𝒙, 𝒚 = 𝑝 𝒙 𝑝(𝒚)

𝑝 𝒙, 𝒚|𝒛 = 𝑝 𝒙|𝒛 𝑝(𝒚|𝒛)

[CSC2515, Wang]



Some common distributions - Gaussian distribution
● Gaussian distribution
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(Multivariate)

[CSC2515, Wang]



Some common distributions - Multinomial distribution
● Multinomial distribution
! Discrete random variable 𝒙 that takes one of 𝑀 values {1, … ,𝑀}
! 𝑝(𝒙 = 𝑖) = 𝜋&,         ∑& 𝜋& = 1

! Out of 𝑛 independent trials, let 𝑘& be the number of times 𝒙 = 𝑖 was observed 
! The probability of observing a vector of occurrences 𝒌 = 𝑘', … , 𝑘( is given by the 

multinomial distribution parametrized by 𝝅

! E.g., describing a text document by the frequency of occurrence of every distinct 
word

! For 𝑛 = 1, a.k.a. categorical distribution
§ 𝑝 𝒙 = 𝑖 𝝅) = 𝜋!
§ In 𝒌 = 𝑘", … , 𝑘# : 𝑘! = 1, and 𝑘$ = 0 for all 𝑗 ≠ 𝑖 → 𝑎. 𝑘. 𝑎. , one-hot representation of 𝑖

11[CSC2515, Wang]



Exponential family
● A distribution

is an exponential family distribution

! 𝜽 ∈ 𝑅%: natural (canonical) parameter 

! 𝑇 𝒙 ∈ 𝑅%: sufficient statistics, features of data 𝒙

! 𝑍 𝜽 = ∑&,( ℎ 𝒙 exp 𝜽 ⋅ 𝑇 𝒙 : normalization factor

● Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,... 
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𝑝" 𝒙 = ℎ 𝒙 exp 𝜽 ⋅ 𝑇 𝒙 /𝑍(𝜽)



Example: Multivariate Gaussian Distribution 
● For a continuous vector random variable 𝒙 ∈ 𝑅#

● Exponential family representation
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Entropy
● Shannon entropy

! The average level of "information", "surprise", or "uncertainty" inherent to 
the variable 𝒙 's possible outcomes
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𝐻 𝑝 = −7
𝒙
𝑝 𝒙 log 𝑝 𝒙



KL Divergence
● Kullback-Leibler (KL) divergence: measures the closeness of two 

distributions 𝑝(𝒙) and 𝑞(𝒙)

! a.k.a. Relative entropy
! KL >= 0  (Jensen’s inequality)
! Intuitively:
§ If 𝑞 is high and 𝑝 is high, then we are happy (i.e. low KL divergence) 
§ If 𝑞 is high and 𝑝 is low then we pay a price (i.e. high KL divergence).
§ If 𝑞 is low then we don’t care (i.e. also low KL divergence, regardless of 𝑝) 

! not a true “distance”: 
§ not commutative (symmetric) KL p||q ! = KL(q||p)
§ doesn’t satisfy triangle inequality
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KL 𝑞 𝒙 || 𝑝(𝒙) =7
𝒙

𝑞 𝒙 log
𝑞(𝒙)
𝑝(𝒙)



KL Divergence
● Kullback-Leibler (KL) divergence: measures the closeness of two 

distributions 𝑝(𝒙) and 𝑞(𝒙)

! a.k.a. Relative entropy

● Maximum likelihood estimation (MLE) is minimizing the KL divergence 
between the empirical data distribution and the model distribution
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KL 𝑞 𝒙 || 𝑝(𝒙) =7
𝒙

𝑞 𝒙 log
𝑞(𝒙)
𝑝(𝒙)

KL >𝑝(𝒙) || 𝑝"(𝒙) = −𝔼 %& 𝒙 log 𝑝" 𝒙 + 𝐻( >𝑝(𝒙))

Cross entropy



Key Takeaways
● Probability 𝑝(𝒙)

● Bayes’ rule
! prior, posterior

● Exponential family:
! Gaussian, multinomial, categorical, …

● KL Divergence

! relation to Cross-entropy
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KL 𝑞 𝒙 || 𝑝(𝒙) =7
𝒙

𝑞 𝒙 log
𝑞(𝒙)
𝑝(𝒙)

𝑝 𝒚|𝒙 =
𝑝 𝒙|𝒚 𝑝(𝒚)

𝑝 𝒙
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Functional Derivatives (optional)



Functional derivative
●

● Functional 𝐹(𝑦): an operator that takes a function 𝑦(𝑥) and returns an 
output value 𝐹

● Functional derivative (aka, variational derivative): relates a change in a 
Functional 𝐹 𝑦 to a change in the function 𝑦
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∇' −ℍ 𝑞 = log 𝑞 + 1



Functional derivative
● Recall the conventional derivative ()(*
! Taylor expansion

● Functional derivative
! How much a functional 𝐹[𝑦] changes when we make a small change 𝜀𝜂(𝑥) to 

the function 𝑦(𝑥)

! A function 𝑦(𝑥) that maximizes (or minimizes) a functional 𝐹[𝑦] must satisfy 
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= 0 for all 𝑥



Functional derivative

● Consider a functional that is defined by an integral over a function 
𝐺 𝑦, 𝑥

● Consider variations in the function 𝑦(𝑥), 
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𝐹[𝑦] = K𝐺 𝑦, 𝑥 𝑑𝑥

𝐹 𝑦 + 𝜖𝜂 𝑥 = 𝐹 𝑦 𝑥 + 𝜖K
𝜕𝐺
𝜕𝑦

𝜂(𝑥)𝑑𝑥 + 𝑂(𝜖+)



Functional derivative

● Consider a functional that is defined by an integral over a function 
𝐺 𝑦, 𝑥

! Ex.1, −ℍ 𝑞 = ∫ 𝑞(𝑥) log 𝑞(𝑥) 𝑑𝑥
§ 𝐺 = 𝑞 𝑥 log 𝑞(𝑥)

● Consider variations in the function 𝑦(𝑥),
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𝐹[𝑦] = K𝐺 𝑦, 𝑥 𝑑𝑥

𝐹 𝑦 + 𝜖𝜂 𝑥 = 𝐹 𝑦 𝑥 + 𝜖K
𝜕𝐺
𝜕𝑦

𝜂(𝑥)𝑑𝑥 + 𝑂(𝜖+)
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Practice: Maximum likelihood vs Maximum 
Entropy



Supervised Maximum Likelihood 
● Model to be learned 𝑝" 𝒙
● Observe full data 𝒟 = 𝒙∗
! i.i.d: independent, identically distributed 

● Maximum Likelihood Estimation (MLE)
! The most classical learning algorithm 

● MLE is closely connected to the Maximum Entropy (MaxEnt) principle
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min
"
− 𝔼*∗∼𝒟

1
log 𝑝"(𝒙∗)



Recap: Exponential Family
● A distribution

is an exponential family distribution

! 𝜽 ∈ 𝑅%: natural (canonical) parameter 

! 𝑇 𝒙 ∈ 𝑅%: sufficient statistics, features of data 𝒙

! 𝑍 𝜽 = ∑&,( ℎ 𝒙 exp 𝜽 ⋅ 𝑇 𝒙 : normalization factor

● Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,... 
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𝑝" 𝒙 = ℎ 𝒙 exp 𝜽 ⋅ 𝑇 𝒙 /𝑍(𝜽)



Maximum Likelihood for Exponential Family
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● Take gradient and set to 0 

𝑚 𝒙 : the number of times 𝒙 is observed in D

At MLE, the expectations of 
the sufficient statistics under 
the model must match 
empirical feature average



Maximum Entropy (MaxEnt)
● Given 𝒟, to estimate 𝑝 𝒙
● We can approach the problem from an entirely different point of view. 

Begin with some fixed feature expectations:

● There may exist many distributions which satisfy them. Which one should 
we select?
! MaxEnt principle: the most uncertain or flexible one, i.e., the one with 

maximum entropy
● This yields a new optimization problem:
! This is a variational definition of a distribution!
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7
𝒙
𝑝 𝒙 𝑇8 𝒙 =7

𝒙

𝑚(𝒙)
𝑁

𝑇8 𝒙 ≔ 𝛼8



Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:
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max
),*

min
"(,)



Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:
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max
),*

min
"(,)



Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:
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● So feature constraints 
+ MaxEnt Þ
exponential family.

● Problem is strictly 
convex w.r.t. 𝑝(𝒙), so 
solution is unique.

max
),*

min
"(,)



Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:

plug 𝑝(𝑥|𝜽) back into 𝐿, and since ∑𝒙
.(𝒙)
/
𝑇& 𝒙 ≔ 𝛼&:

● Recovers precisely the MLE problem of exponential family
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● So feature constraints 
+ MaxEnt Þ
exponential family.

● Problem is strictly 
convex w.r.t. 𝑝(𝒙), so 
solution is unique.

max
),*

min
"(,)

max
"

𝐿 𝜽

(Homework)



Constraints from Data
● We have seen a case of convex duality:

! In one case, we assume exponential family and show that Maximum 
Likelihood implies model expectations must match empirical expectations.

! In the other case, we assume model expectations must match empirical 
feature counts and show that MaxEnt implies exponential family distribution.
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A more general MaxEnt problem
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Summary
● Maximum entropy is dual to maximum likelihood of exponential family 

distributions
● This provides an alternative view of the problem of fitting a model into 

data:
! The data instances in the training set are treated as constraints, and the 

learning problem is treated as a constrained optimization problem.
! We’ll revisit this optimization-theoretic view of learning repeatedly in the 

future!
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Key Takeaways

● Probability

! Bayes’ rule

! Exponential family

! KL divergence

● Functional derivative (optional, but very useful)

● Convex duality between MLE and MaxEnt (optional)

36



Questions?


