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Outline
e GANs (for text)

e 3 Paper presentations (15 x 3 mins)



Recap: Generative Adversarial Nets (GANSs)

e Generative model x = Gy(z), z ~ p(2)

o Maps noise variable z to data space x

o Detfines an implicit distribution over x: p;, (x)

e Discriminator Dy (x)

o Output the probability that x came from the data rather than the generator
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Recap: Generative Adversarial Nets (GANSs)

e Learning

o A minimax game between the generator and the discriminator

o Train D to maximize the probability of assigning the correct label to both
training examples and generated samples

o Train G to fool the discriminator

maxp ,CD — EZBdiata(iB) [log D(CU)] + E:cNG(z),zfvp(z) [log(l o D(:B))]
ming EG — EmNg(z)7sz(z) [log(l — D(CL’))] .



Recap: Wasserstein GAN (WGAN)

e If our data are on a low-dimensional manifold of a high dimensional
space, the model’s manifold and the true data manifold can have a

negligible intersection in practice
e The loss function and gradients may not be continuous and well behaved

e The Wasserstein Distance is well defined
o Earth Mover's Distance
o Minimum transportation cost for making one pile
of dirt in the shape of one probability distribution
to the shape of the other distribution

=

£
el

[Arjovsky et al., 2017]



Wasserstein GAN (WGAN)

e Objective

1

W(pdata: pg) = K ||l§|l|lp<K Ex~pdata ID(x)] — Ex~pg |D(x)]
L_

* ||ID]l; < K : K- Lipschitz continuous
« Use gradient-clipping to ensure D has the Lipschitz continuity



Progressive GAN
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Progressive GAN
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BigGAN

[Brock et al., 2018]



BigGAN

e GANSs benefit dramatically from scaling
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BigGAN

e GANSs benefit dramatically from scaling
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GANSs for Text



Applications of GAN Objectives to Language

e GANSs for Language Generation (Yu et al. 2017)
e GANSs for MT (Yang et al. 2017, Wu et al. 2017, Gu et al., 2017)

e GANSs for Dialogue Generation (Li et al. 2016)
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Problem! Can’t Backprop through Sampling

sample minibatch
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Solutions

e Policy gradient reinforcement learning methods (e.g. Yu et al. 2016)

e Reparameterization trick for latent variables using Gumbel softmax (Gu et
al. 2017)
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Discriminators for Sequences

e Decide whether a particular generated output is true or not

e Classifier on sentences (e.g., Yu et al. 2017) or pairs of sentences (e.qg.
Wu et al. 2017)
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GANs for Text are Hard! (Yang et al. 2017)

Type of Discriminator

£10) U e NG e Y 5O — .......... ......... . . ]
l Strength of Discriminator
25 : : : : 35 T : . , T T T T
@ 20 1) RS SISO —o. TS VNI DRSSPI RENII SRS SO
(an]
15} 25}
A—A BiLSTM _ | | S
10| @@ LSTM L2200
*—& CNN : :
5 1 1 1 ! I I 15+
0 2 4 6 8 10 12 1

Test step

N i 1 | | |
0 2 4 6 8 10 12 14 16 18
Test step



GANs for Text are Hard! (Yang et al. 2017)
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Stabilization Trick: Assigning Reward to Specific Actions

* (Getting a reward at the end of the sentence gives a
credit assignment problem

e Solution: assign reward for partial sequences (Yu et
al. 2016, Li et al. 2017)

D(this)
D(this is)
D(this is a)
D(this is a fake)
D(this is a fake sentence)
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Stabilization Tricks: Performing Multiple Rollouts

e Like other methods using discrete samples, instability
IS a problem

e This can be helped somewhat by doing multiple
rollouts (Yu et al. 2016)
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Interesting Application: GAN for Data Cleaning (Yang et al.
2017)

e The discriminator tries to find “fake data”
e What about the real data it marks as fake? This might be noisy datal!

e Selecting data in order of discriminator score does better than selecting
data randomly.
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Adversarial Feature Learning
e Adversaries over Features vs. Over Outputs

e (Generative adversarial networks

X > h >y

-~
Adversary!
* Adversarial feature learning

X > h >y
™ Adversary!

 Why adversaries over features?

* Non-generative tasks

e Continuous features easier than discrete outputs
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Learning Domain-invariant Representations (Ganin et al. 2016)

e Learn features that cannot be distinguished by domain
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* Interesting application to synthetically generated or stale
data (Kim et al. 2017)
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Advanced Statistical Natural Language Processing

What is NLP?

Statistical machine
learning (ML) methods

WEe'll cover only a subset of
advanced, latest methods
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Recap: Components of a ML solution (roughly)

e Loss

o Experience

e Optimization solver
e Model architecture

S8, (g € ~ o
R REY
Optimization Model Experience
solver architecture
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Machine learning solutions

(1) How can we make more efficient use of the data?

e Algorithms

o Supervised learning: MLE, maximum entropy principle
o Unsupervised learning: EM, variational inference, VAEs

o Self-supervised learning: successful instances, e.g., BERT, GPT-3, contrastive

learning, applications to downstream tasks

o Distant/weakly supervised learning: successful instances

o Data augmentation
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Machine learning solutions

(2) Can we incorporate other types of experiences in learning?

o Learning from rewards

= Reinforcement learning: policy-based vs value-based, on-policy vs
off-policy, extrinsic reward vs intrinsic reward, ...

o Learning from auxiliary models, e.g., adversarial models:

= (Generative adversarial learning (GANs and variants)

e Other ML topics not covered
o Meta learning

o Learning in dynamic environment

= Online learning, lifelong/continual learning, ...
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NLP Tasks

Language modeling
Classification

Sequence Labeling

Parsing (structured prediction)

Generation
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