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Outline
● GANs (for text)

● 3 Paper presentations (15 x 3 mins)

Cao: ELECTRA: Pre-training Text Encoders as Discriminators Rather Than 
Generators
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Recap: Generative Adversarial Nets (GANs)

● Generative model 𝒙 = 𝐺! 𝒛 , 𝒛 ∼ 𝑝(𝒛)
! Maps noise variable 𝒛 to data space 𝒙
! Defines an implicit distribution over 𝒙: 𝑝!!(𝒙)

● Discriminator 𝐷" 𝒙
! Output the probability that 𝒙 came from the data rather than the generator
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Recap: Generative Adversarial Nets (GANs)
● Learning
! A minimax game between the generator and the discriminator
! Train 𝐷 to maximize the probability of assigning the correct label to both 

training examples and generated samples
! Train 𝐺 to fool the discriminator
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GAN plays the role of z1 as above. The space S0 is now implicit and we directly sample real image
x from data distribution pdata(x). The distribution in Eq.(1) is thus rewritten as:

p(x|z, y) =
⇢
pdata(x) y = 0
pg(x|z) y = 1,

(5)

where pg(x|z) = G(z) is the generative distribution. Note that pdata(x) is the empirical data
distribution which is free of parameters. The discriminator is defined in the same way as above, i.e.,
D(x) = p(y = 0|x). Then the objective of GAN is precisely defined in Eq.(2). To make this clearer,
we again transform the objective into its conventional form:

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = Ex⇠pdata(x) [log(1�D(x))] + Ex⇠G(z),z⇠p(z) [logD(x)]

= Ex⇠G(z),z⇠p(z) [logD(x)] .

(6)

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

minG LG = Ex⇠G(z),z⇠p(z) [log(1�D(x))] .

maxD LD = Ex⇠pdata(x) [logD(x)] + Ex⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = Ex⇠G(z),z⇠p(z) [logD(x)] .

Note that for learning the generator we are using the adapted objective, i.e., maximizing
Ex⇠G(z),z⇠p(z) [logD(x)], as is usually used in practice (Goodfellow et al., 2014), rather than
minimizing Ex⇠G(z),z⇠p(z) [log(1�D(x))].

KL Divergence Interpretation

Now we take a closer look into Eq.(2). Assume uniform prior distribution p(y) where p(y = 0) =
p(y = 1) = 0.5. For optimizing p(x|z, y), we have
Theorem 1. Let p✓(x|z, y) be the conditional distribution in Eq.(1) parameterized with ✓. Denote
p✓0(x|z) = Ep(y)[p✓0(x|z, y)] with fixed parameter ✓0. Denote q0(x|z, y) / q(1� y|x)p✓0(x|z).
Therefore,

Ep(z,y)

⇥
�r✓Ep✓(x|z,y) [log q(1� y|x)] |✓=✓0

⇤
=

r✓Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� JSD (p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0 ]
(7)

Proof.
Ep(z,y)

⇥
�Ep✓(x|z,y) [log q(1� y|x)]

⇤
=

Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� KL(p✓(x|z, y)kp✓0(x|z))] ,
(8)

where
Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] =

Ep(z)


p(y = 0)KL

✓
p✓(x|z, y = 0)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆
+

p(y = 1)KL
✓
p✓(x|z, y = 1)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆�
.

(9)

Taking derivatives w.r.t ✓ at ✓0 we get
r✓Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] |✓=✓0

= Ep(z)


1

2

Z

x
r✓p✓(x|z, y = 0)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2
+

1
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Z

x
r✓p✓(x|z, y = 1)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

�
|✓=✓0

= Ep(z) [r✓JSD(p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0 ] .

(10)

Taking derivatives of the both sides of Eq.(8) at w.r.t ✓ at ✓0 and plugging the last equation of Eq.(10),
we obtain our desired result.
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Recap: Wasserstein GAN (WGAN)
● If our data are on a low-dimensional manifold of a high dimensional 

space, the model’s manifold and the true data manifold can have a 
negligible intersection in practice 

● The loss function and gradients may not be continuous and well behaved 
● The Wasserstein Distance is well defined
! Earth Mover’s Distance
! Minimum transportation cost for making one pile 

of dirt in the shape of one probability distribution 
to the shape of the other distribution

5[Arjovsky et al., 2017] Slide adapted from bhiksha



Wasserstein GAN (WGAN)
● Objective
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𝑊 𝑝#$%$, 𝑝& =
1
𝐾

sup
||(||!)*

E+∼-"#$# 𝐷 𝑥 − E+∼-%[𝐷(𝑥)]

• ||𝐷||! ≤ 𝐾 : K- Lipschitz continuous
• Use gradient-clipping to ensure 𝐷 has the Lipschitz continuity



Progressive GAN
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Low resolution images

[Karras et al., 2018]



Progressive GAN
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Low resolution images

add in 
additional 

layers

[Karras et al., 2018]



Progressive GAN
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Low resolution images

add in 
additional 

layers

High resolution images

[Karras et al., 2018]



BigGAN

10[Brock et al., 2018]



BigGAN
● GANs benefit dramatically from scaling

11[Brock et al., 2018]



BigGAN
● GANs benefit dramatically from scaling
● 2x – 4x more parameters
● 8x larger batch size
● Simple architecture changes that improve scalability 

12[Brock et al., 2018]
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BigGAN
● GANs benefit dramatically from scaling
● 2x – 4x more parameters
● 8x larger batch size
● Simple architecture changes that improve scalability 
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GANs for Text



Applications of GAN Objectives to Language 

● GANs for Language Generation (Yu et al. 2017) 

● GANs for MT (Yang et al. 2017, Wu et al. 2017, Gu et al., 2017)

● GANs for Dialogue Generation (Li et al. 2016) 
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Problem! Can’t Backprop through Sampling 
Problem! Can’t Backprop 

through Sampling

xreal

sample minibatch

sample latent vars.

z

xfake

convert w/ generator

y

predict w/ discriminator Discrete! 
Can’t backprop
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Solutions

● Policy gradient reinforcement learning methods (e.g. Yu et al. 2016) 

● Reparameterization trick for latent variables using Gumbel softmax (Gu et 
al. 2017) 
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Discriminators for Sequences
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● Decide whether a particular generated output is true or not 

● Classifier on sentences (e.g., Yu et al. 2017) or pairs of sentences (e.g.
Wu et al. 2017) 



GANs for Text are Hard! (Yang et al. 2017) GANs for Text are Hard! 
(Yang et al. 2017)

Type of Discriminator

Strength of Discriminator
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GANs for Text are Hard! (Yang et al. 2017) 
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GANs for Text are Hard! 
(Wu et al. 2017)

Learning Rate for Generator
Learning Rate for Discriminator



Stabilization Trick: Assigning Reward to Specific Actions 

Stabilization Trick: 
Assigning Reward to Specific Actions
• Getting a reward at the end of the sentence gives a 

credit assignment problem 

• Solution: assign reward for partial sequences (Yu et 
al. 2016, Li et al. 2017)

D(this)
D(this is)

D(this is a)
D(this is a fake)

D(this is a fake sentence)
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Stabilization Tricks: Performing Multiple Rollouts 
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Stabilization Tricks: 
Performing Multiple Rollouts

• Like other methods using discrete samples, instability 
is a problem 

• This can be helped somewhat by doing multiple 
rollouts (Yu et al. 2016)



Interesting Application: GAN for Data Cleaning (Yang et al. 
2017) 

● The discriminator tries to find “fake data” 

● What about the real data it marks as fake? This might be noisy data! 

● Selecting data in order of discriminator score does better than selecting 
data randomly. 
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Adversarial Feature Learning 
● Adversaries over Features vs. Over Outputs 
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Adversaries over Features 
vs. Over Outputs

• Generative adversarial networks

x h

• Adversarial feature learning

y

x h y

Adversary!

Adversary!

• Why adversaries over features? 
• Non-generative tasks 
• Continuous features easier than discrete outputs



Learning Domain-invariant Representations (Ganin et al. 2016) 

Learning Domain-invariant 
Representations (Ganin et al. 2016)

• Learn features that cannot be distinguished by domain

• Interesting application to synthetically generated or stale 
data (Kim et al. 2017)
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Recap



Advanced Statistical Natural Language Processing
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What is NLP?

Statistical machine 
learning (ML) methods

We’ll cover only a subset of 
advanced, latest methods



Recap: Components of a ML solution (roughly)
● Loss
● Experience
● Optimization solver
● Model architecture
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Optimization 
solver

Loss Model 
architecture

min6 ℒ 𝜃, ℰ

Experience



Machine learning solutions
(1) How can we make more efficient use of the data?

● Algorithms

! Supervised learning: MLE, maximum entropy principle

! Unsupervised learning: EM, variational inference, VAEs

! Self-supervised learning: successful instances, e.g., BERT, GPT-3, contrastive 

learning, applications to downstream tasks 

! Distant/weakly supervised learning: successful instances

! Data augmentation
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Machine learning solutions
(2) Can we incorporate other types of experiences in learning?

! Learning from rewards
§ Reinforcement learning: policy-based vs value-based, on-policy vs 

off-policy, extrinsic reward vs intrinsic reward, …

! Learning from auxiliary models, e.g., adversarial models: 
§ Generative adversarial learning (GANs and variants)

● Other ML topics not covered
! Meta learning

! Learning in dynamic environment
§ Online learning, lifelong/continual learning, …
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Data examples Rewards Auxiliary agentsRules/Constraints

Type-2 
diabetes is 90% 
more common 
than type-1 

Adversaries

And all combinations thereof…

Master classes

Knowledge graphs



NLP Tasks

● Language modeling

● Classification

● Sequence Labeling

● Parsing (structured prediction)

● Generation
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Questions?


