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Outline
e GANs (for text)

e 3 Paper presentations (15 x 3 mins)



Generative Adversarial Networks



Generative modeling

e In generative modeling, we'd like to train a network that models a
distribution, such as a distribution over images.

e One way to judge the quality of the model is to sample from it.
e This field has seen rapid progress:
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Generative modeling

e Modern approaches to generative modeling:

Variational Auto-encoder (Lecture #8)

Auto-regressive models (e.g., language model) (Lecture #3)
Generative adversarial networks (today)

O
O
O
o Flow-based models, diffusion models (not covered)
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Implicit Generative Models

@ Implicit generative models implicitly define a probability distribution

@ Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

@ The generator network computes a differentiable function G mapping
z to an x in data space

sample x = G(z)
T * a stochastic process to
simulate data x
T * |Intractable to evaluate
| likelihood
code vector l
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Implicit Generative Models

A 1-dimensional example:
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Implicit Generative Models

unit gaussian

generative

model
(neural net)

generated distribution

true data distribution

Courtesy: Grosse CSC321 Lecture 19

A

P(X)

image space

. |loss

image space

https://blog.openai.com/generative-models/



Implicit Generative Models

e The advantage of implicit generative models: if you have some criterion
for evaluating the quality of samples, then you can compute its gradient
with respect to the network parameters, and update the network’s
parameters to make the sample a little better

e The idea behind Generative Adversarial Networks (GANS): train two
different networks

o The generator network tries to produce realistic-looking samples

o The discriminator network tries to figure out whether an image came from the
training set or the generator network

e The generator network tries to fool the discriminator network
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Generative Adversarial Nets (GANSs)

e Generative model x = Gy(z), z ~ p(2)

o Maps noise variable z to data space x

o Defines an implicit distribution over x: pg, (x)

e Discriminator Dy (x)

o Output the probability that x came from the data rather than the generator

G

(generator)

1(Rea|)

D

(discriminator

e = O(fake)

1(rea|)

real image

— Discriminator training

— Generator training

fake image



Generative Adversarial Nets (GANSs)

e Learning
o A minimax game between the generator and the discriminator

o Train D to maximize the probability of assigning the correct label to both
training examples and generated samples

o Train G to fool the discriminator

maxp ,CD — EiBdiata(iB) [log D(CU)] + E:cNG(z),zrvp(z) [log(l o D(iB))]
ming EG — Eng(z)7z,\,p(z) [log(l — D(CL‘))] .

1 (Real)
e = O(fake)

1(rea|)

D

(discriminator

real image

g G ' — Discriminator training
PR | — Generator training
' ’ _ fake image 12




Generative Adversarial Nets (GANSs)

D(x)

i
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discriminator
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real-world
image
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Generative Adversarial Nets (GANSs)

Updating the discriminator: ~ D(x)

f

!

X

OR

real-world
image
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update the discriminator
weights using backprop

on the classification objective

generator

code vector
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Generative Adversarial Nets (GANSs)

Updating the generator:

Courtesy: Grosse CSC321 Lecture 19

backprop the derivatives,
but don’t modify the
discriminator weights

flip the sign
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of the derivatives

update the generator
weights using backprop
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Generative Adversarial Nets (GANS)

Alternating training of the generator and discriminator:
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Optimality of GANs
e Objectives:

maxp ED = Ewdiata(fB) [10g D(CL‘)] + IEjf:cmG(z),sz(z) [log(l — D(w))]
minG LG — EmNG(z),sz(z) [log(l — D(Cl?))] .

o Global optimality: p; = Pyata
e Proof:

Courtesy: Grosse CSC321 Lecture 19 17



Optimality of GANs

Proposition 1. For G fixed, the optimal discriminator D is

* . pdata(m)
6 = @) + 1, (@) &

[Goodfellow et al., 2014] 18



Optimality of GANs

Proposition 1. For G fixed, the optimal discriminator D is

* L Pdata ((B)
6 = @) + 1, (@) &

Proof. The training criterion for the discriminator D, given any generator (G, is to maximize the
quantity V (G, D)

V(G, D) =/pdata(a:) log(D(x))dx + /pz(z) log(1 — D(g(2)))dz

T z

~ [ pusa(@) g(D(@)) + py(a) og(1 — D(@))da 3)

For any (a,b) € R?\ {0,0}, the function y — alog(y) + blog(1 — y) achieves its maximum in
[0,1] at %4 - o

[Goodfellow et al., 2014] 19



Optimality of GANs
e The minimax game can now be reformulated as
C(G) = max V(G, D)

=Expua 108 D ()] + Eznp, [log(1 — DE(G(2)))]
=Ez~pue 108 D ()] + Eanp, [log(1l — D ()]

Pdata (T) ] [ Pg()
:]E:BN ata 10 —I_ ]EwN 10
Pd & Pdata(33) T+ pg(CE) ik 5 pdata(m) + Dy (m)

[Goodfellow et al., 2014]
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Optimality of GANs
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=Expua 108 D ()] + Eznp, [log(1 — DE(G(2)))]
=Ez~pue 108 D ()] + Eanp, [log(1l — D ()]

Pdata (T) ] [ Pg()
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Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if
Dg = Ddata- At that point, C'(G) achieves the value — log 4.

[Goodfellow et al., 2014] 21



Optimality of GANs
e The minimax game can now be reformulated as
C(G) =maxV (G, D)
=Egrpi. 108 D& ()] + Eznp, [log(l — DG (G(2)))]
=Eanpi, 108 DG()] + Egnp, [log(1l — D (x))]

pdata(w) ] [ pg(iB) ]
=Egnrpy, |10 + Eznp, |loO
P [ = Pdata(m) E) pg(ic) “e e pdata(m) T Py (w)

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if
Dg = Ddata- At that point, C'(G) achieves the value — log 4.

Ddata + D
dataZ g) + KL (pg

C(G) = — log(4) + KL (pdm

Ddata + Pg
2

= —log(4) +2 - JSD (paaa |[pg) Jensen-Shannon Divergence
[Goodfellow et al., 2014] 22



A better loss function

@ We introduced the minimax cost function for the generator:
T = Eq[log(1 — D(G(2)))]

@ One problem with this is saturation.

@ Here, if the generated sample is really bad, the discriminator’s
prediction is close to 0, and the generator's cost is flat.
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A better loss function: non-saturating GAN

@ Original minimax cost: modifited
COoSs

Je = Eg[log(1 — D(G(2)))]

@ Modified generator cost:
minimax

J6 = Ez[—log D(G(2))] cos!

@ This fixes the saturation problem. b0 0z 04 06 08 Lo

>

D(G(2))

(how well it fooled
the discriminator)
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Wasserstein GAN (WGAN)

e If our data are on a low-dimensional manifold of a high dimensional
space, the model’s manifold and the true data manifold can have a
negligible intersection in practice

[Arjovsky et al., 2017]
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If our data are on a low-dimensional manifold of a high dimensional
space, the model’'s manifold and the true data manifold can have a

negligible intersection in practice
The loss function and gradients may not be continuous and well behaved

[Arjovsky et al., 2017]



Wasserstein GAN (WGAN)

e If our data are on a low-dimensional manifold of a high dimensional
space, the model’s manifold and the true data manifold can have a

negligible intersection in practice
e The loss function and gradients may not be continuous and well behaved

e The Wasserstein Distance is well defined
o Earth Mover's Distance
o Minimum transportation cost for making one pile
of dirt in the shape of one probability distribution
to the shape of the other distribution

=

£
el

[Arjovsky et al., 2017]



Wasserstein GAN (WGAN)

e Objective

1

W(pdata: pg) = K ||l§|l|lp<K Ex~pdata ID(x)] — Ex~pg |D(x)]
L_

* ||ID]l; < K : K- Lipschitz continuous
« Use gradient-clipping to ensure D has the Lipschitz continuity



WGAN vs Vanilla GAN

1.0 , . : : . , .
\ — Density of real
— Density of fake
—— GAN Discriminator

——  WGAN Critic
0.6 | 1

Vanishing gradients
in regular GAN

_04 1 1 1 1 1 1 1
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Progressive GAN

G Latent
4x4

Low resolution images

.3 | Reals

v

Training progresses

[Karras et al., 2018]



Progressive GAN

G Latent Latent

Low resolution images e ﬁ-ﬁ-
add in
additional
Iayers . | Reals l i Reals
v O

v

Training progresses
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Progressive GAN

G Latent Latent Latent

v
Low resolution images e ﬁ-;ﬁf;- =
add in
additional I 1024x1024 ]
Iayers . | Reals l i Reals e E' iReaIs
v D l 1024x1024 ]
High resolution images

v

Training progresses
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BigGAN

[Brock et al., 2018]



BigGAN

e GANSs benefit dramatically from scaling

[Brock et al., 2018]



BigGAN

e GANSs benefit dramatically from scaling

e 2Xx—4x more parameters

e 8x larger batch size

e Simple architecture changes that improve scalability

[Brock et al., 2018]
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BigGAN

e GANSs benefit dramatically from scaling

[Brock et al., 2018]
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GANSs for Text






