DSC291: Advanced Statistical Natural Language Processing

Text Generation

Zhiting Hu Lecture 15, May 17, 2022

UC San Diego HALICIOĞLU DATA SCIENCE INSTITUTE

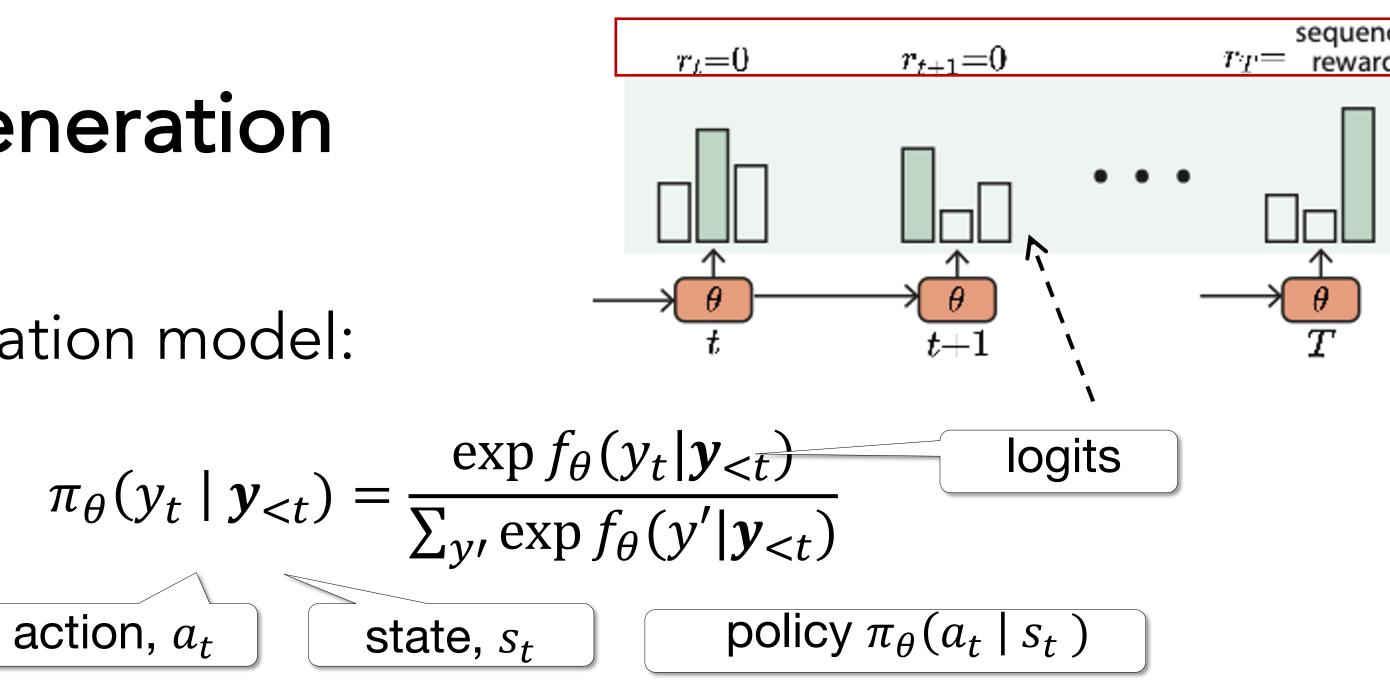
Recap: RL for Text Generation

• (Autoregressive) text generation model:

Sentence
$$\mathbf{y} = (y_0, \dots, y_T)$$
 $\pi_{\theta}(y_t$

In RL terms:

trajectory,
$$\tau$$



- Reward $r_t = r(s_t, a_t)$
 - Often **sparse**: $r_t = 0$ for t < T

ce	2	
ł	*	
	_	

Recap: RL for Text Generation: REINFORCE

Given a dataset of input output pairs,

learn a conditional distribution $p_{\theta}(\mathbf{y} \mid \mathbf{x})$ that minimizes

expected loss:

$$\mathcal{L}_{\mathrm{RL}}(\boldsymbol{\theta}) = \sum_{(\mathbf{x}, \mathbf{y}^*) \in \mathcal{D}} - \sum_{\mathbf{y} \in \mathcal{Y}} p_{\boldsymbol{\theta}}$$

Slide courtesy: Russ Salakhutdinov @ CMU 10707

$$\mathcal{D} \equiv \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)*})\}_{i=1}^{N}$$

$$(\mathbf{y} \mid x) \ r(\mathbf{y}, \mathbf{y}^*)$$

Sample from the *model* distribution

Recap: RL for Text Generation: REINFORCE

Given a dataset of input output pairs,

learn a conditional distribution $p_{\theta}(\mathbf{y} \mid \mathbf{x})$ that minimizes

expected loss:

$$\mathcal{L}_{\mathrm{RL}}(\boldsymbol{\theta}) = \sum_{(\mathbf{x}, \mathbf{y}^*) \in \mathcal{D}} - \sum_{\mathbf{y} \in \mathcal{Y}} p_{\boldsymbol{\theta}}(\mathbf{y} \mid x) \ r(\mathbf{y}, \mathbf{y}^*)$$

$$Sample \ from \ the model \ distribution$$

$$Multi-head \ Self-attention$$

$$No \ exposure \ bias$$

$$Training: \ \langle \mathsf{BOS} \rangle \ \hat{y}_1 \ \hat{y}_2$$

$$khutdinov @ \mathsf{CMU 10707}$$

$$Evaluation: \ \langle \mathsf{BOS} \rangle \ \hat{y}_1 \ \hat{y}_2$$

Slide courtesy: Russ Salal

$$\mathcal{D} \equiv \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)*})\}_{i=1}^{N}$$

Recap: RL for Text Generation: REINFORCE

Given a dataset of input output pairs,

learn a conditional distribution $p_{\theta}(\mathbf{y} \mid \mathbf{x})$ that minimizes

expected loss:

$$\mathcal{L}_{\mathrm{RL}}(\boldsymbol{\theta}) = \sum_{(\mathbf{x}, \mathbf{y}^*) \in \mathcal{D}} - \sum_{\mathbf{y} \in \mathcal{Y}} p_{\boldsymbol{\theta}}(\mathbf{y} \mid x) \ r(\mathbf{y}, \mathbf{y}^*)$$
On-policy RL: generate text sample
On-policy exploration to max
Extremely low data efficiency: most samples
from $\pi_{\boldsymbol{\theta}}$ are gibberish with zero reward

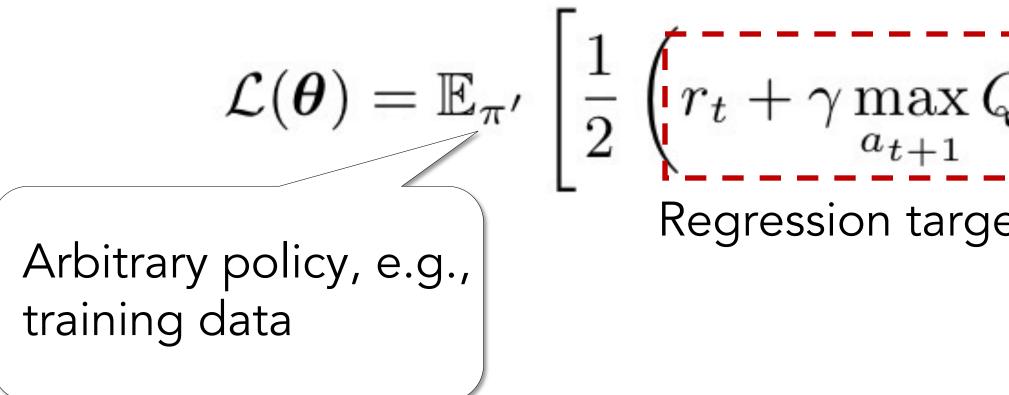
$$\mathcal{D} \equiv \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)*})\}_{i=1}^{N}$$

les from the current policy p_{θ} itself kimize the reward directly



Recap: RL for Text Generation

- Off-policy RL
 - e.g., *Q*-learning
 - Implicitly learns the policy π by approx
 - Bellman temporal consistency: $Q^*(s_t, a_t)$
 - Learns Q_{θ} with the regression objective



• After learning, induces the policy as $a_t = \operatorname{argmax}_a Q_{\theta^*}(s_t, a)$

Off-policy RL

(Static) Training Data

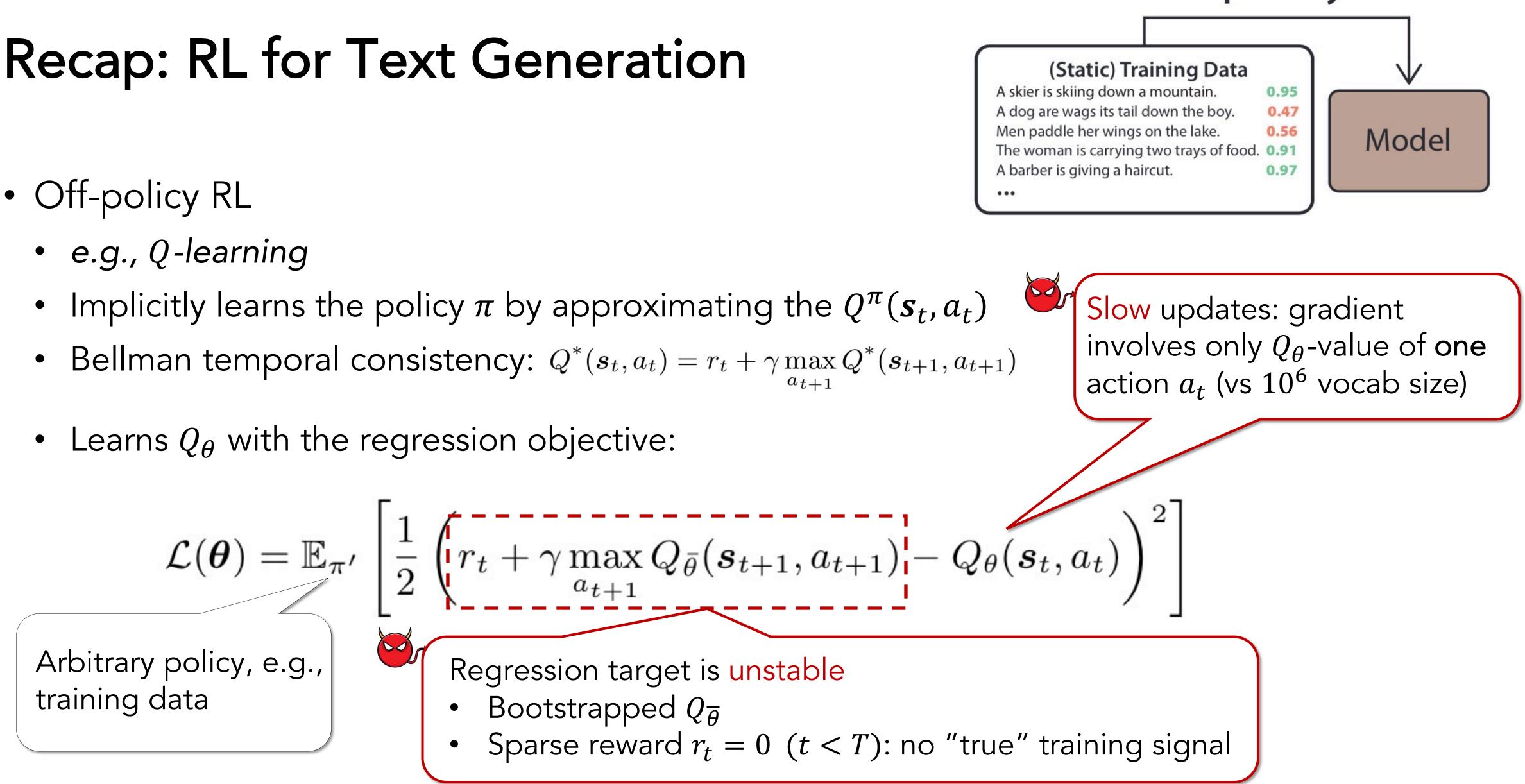
A skier is skiing down a mountain. 0.95 A dog are wags its tail down the boy. 0.47 Men paddle her wings on the lake. 0.56 The woman is carrying two trays of food. 0.91 A barber is giving a haircut. 0.97 ...

Model

kimating the
$$Q^{\pi}(\boldsymbol{s}_{t}, a_{t})$$

 $\boldsymbol{s}_{t}) = r_{t} + \gamma \max_{a_{t+1}} Q^{*}(\boldsymbol{s}_{t+1}, a_{t+1})$
 $\boldsymbol{e}:$ target Q-network
 $Q_{ar{ heta}}(\boldsymbol{s}_{t+1}, a_{t+1}) - Q_{ heta}(\boldsymbol{s}_{t}, a_{t}) \Big)^{2}$
 $q_{ar{ heta}}(\boldsymbol{s}_{t+1}, a_{t+1}) - Q_{ heta}(\boldsymbol{s}_{t}, a_{t}) \Big)^{2}$

- Off-policy RL



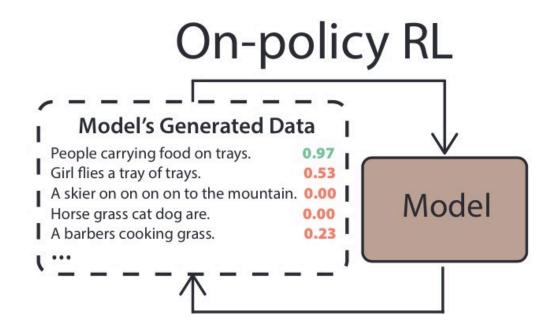
• After learning, induces the policy as $a_t = \operatorname{argmax}_a Q_{\theta^*}(s_t, a)$

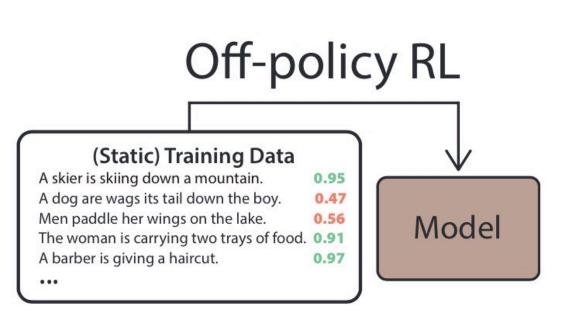
Off-policy RL

Recap: RL for Text Generation

- On-policy RL, e.g., Policy Gradient (PG)
 - Exploration to maximize reward directly Extremely low data efficiency

• Off-policy RL, e.g., Q-learning Unstable training due to bootstrapping & sparse reward Slow updates due to large action space Sensitive to training data quality; lacks on-policy exploration





New RL for Text Generation: Soft Q-Learning (SQL) (Hard) *Q*-learning SQL

logits

Goal

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right]$$

Induced policy

 $a_t = \operatorname{argmax}_a Q_{\theta^*}(\mathbf{s}_t, a)$

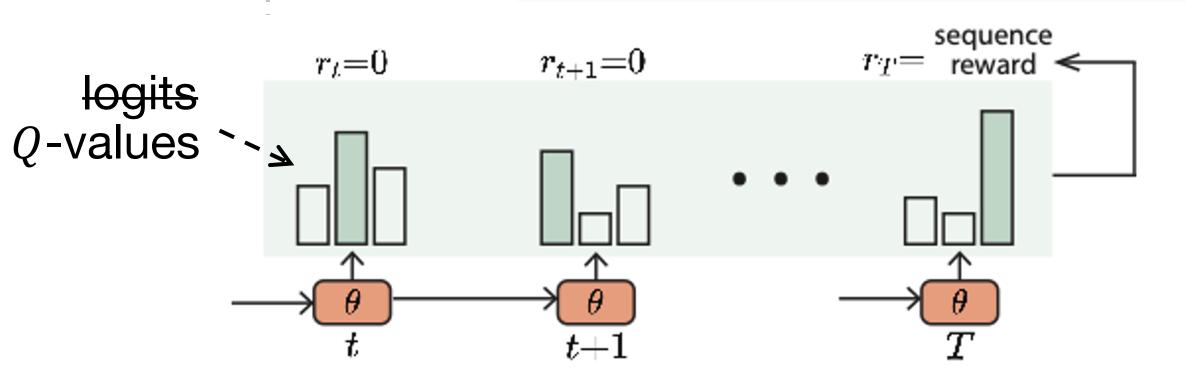
Goal: entropy regularized

$$J_{\text{MaxEnt}}(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} + \alpha \mathcal{H} \left(\pi \left(\cdot \mid \boldsymbol{s}_{t} \right) \right) \right]$$

Induced policy

$$\pi_{\theta^*}(a_t \mid \boldsymbol{s}_t) = \frac{\exp Q_{\theta^*}(a_t \mid \boldsymbol{s}_t)}{\sum_a \exp Q_{\theta^*}(a \mid \boldsymbol{s}_t)}$$

Generation model's "logits" now act as Q-values !



11

New RL for Text Generation: Soft *Q*-Learning (SQL) (Hard) *Q*-learning SQL

• Goal

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right]$$

Induced policy

$$a_t = \operatorname{argmax}_a Q_{\theta^*}(\mathbf{s}_t, a)$$

• Training objective:

• Based on temporal consistency Unstable training / slow updates • Goal: entropy regularized

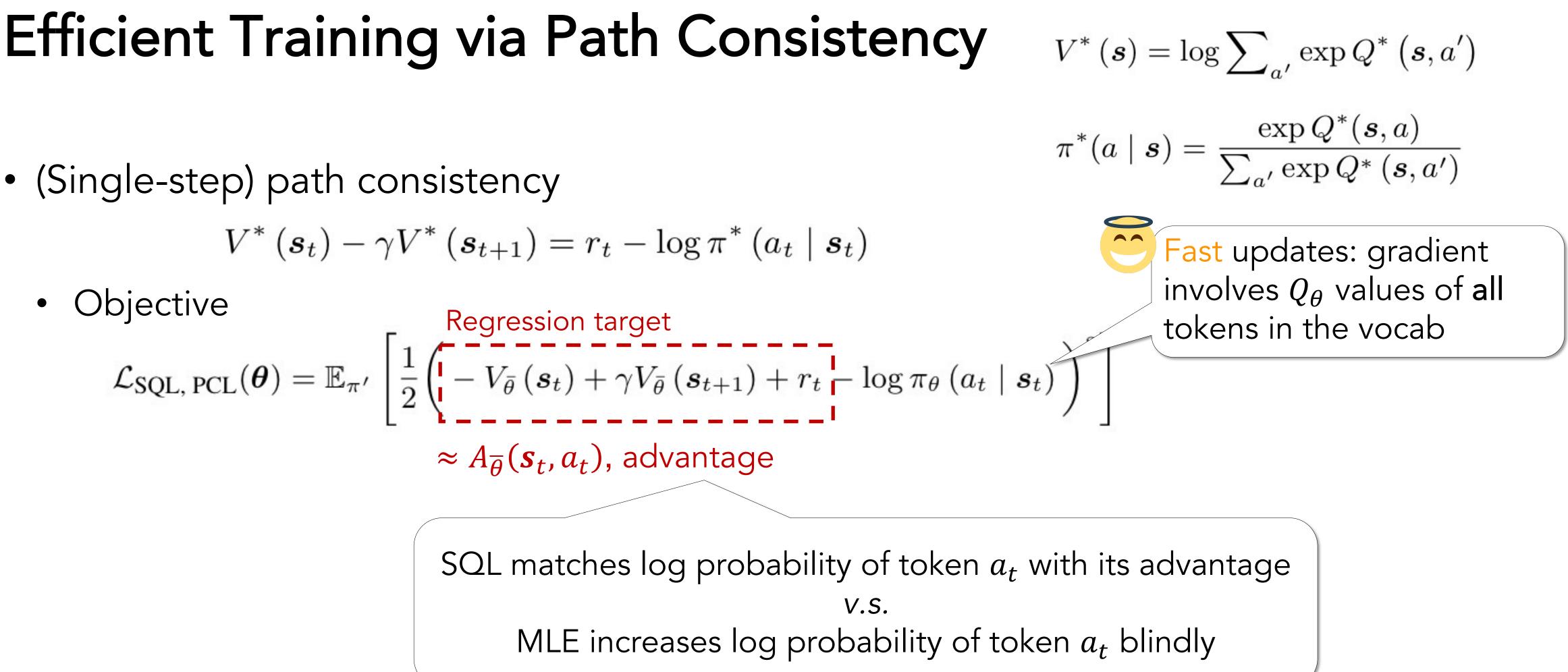
$$J_{\text{MaxEnt}}(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} + \alpha \mathcal{H} \left(\pi \left(\cdot \mid \boldsymbol{s}_{t} \right) \right) \right]$$

Induced policy

$$\pi_{\theta^*}(a_t \mid \boldsymbol{s}_t) = \frac{\exp Q_{\theta^*}(a_t \mid \boldsymbol{s}_t)}{\sum_a \exp Q_{\theta^*}(a \mid \boldsymbol{s}_t)}$$

- Training objective:
 - Based on path consistency
 - Stable / efficient

(Single-step) path consistency



[Nachum et al., 2017]

Efficient Training via Path Consistency

• (Single-step) path consistency $V^{*}(\boldsymbol{s}_{t}) - \gamma V^{*}(\boldsymbol{s}_{t+1}) = r_{t} - \log \pi^{*}(a_{t} | \boldsymbol{s}_{t})$

• Objective

$$\mathcal{L}_{SQL, PCL}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \begin{bmatrix} \frac{1}{2} \left(-V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) + \gamma V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) \end{bmatrix} \end{bmatrix}$$

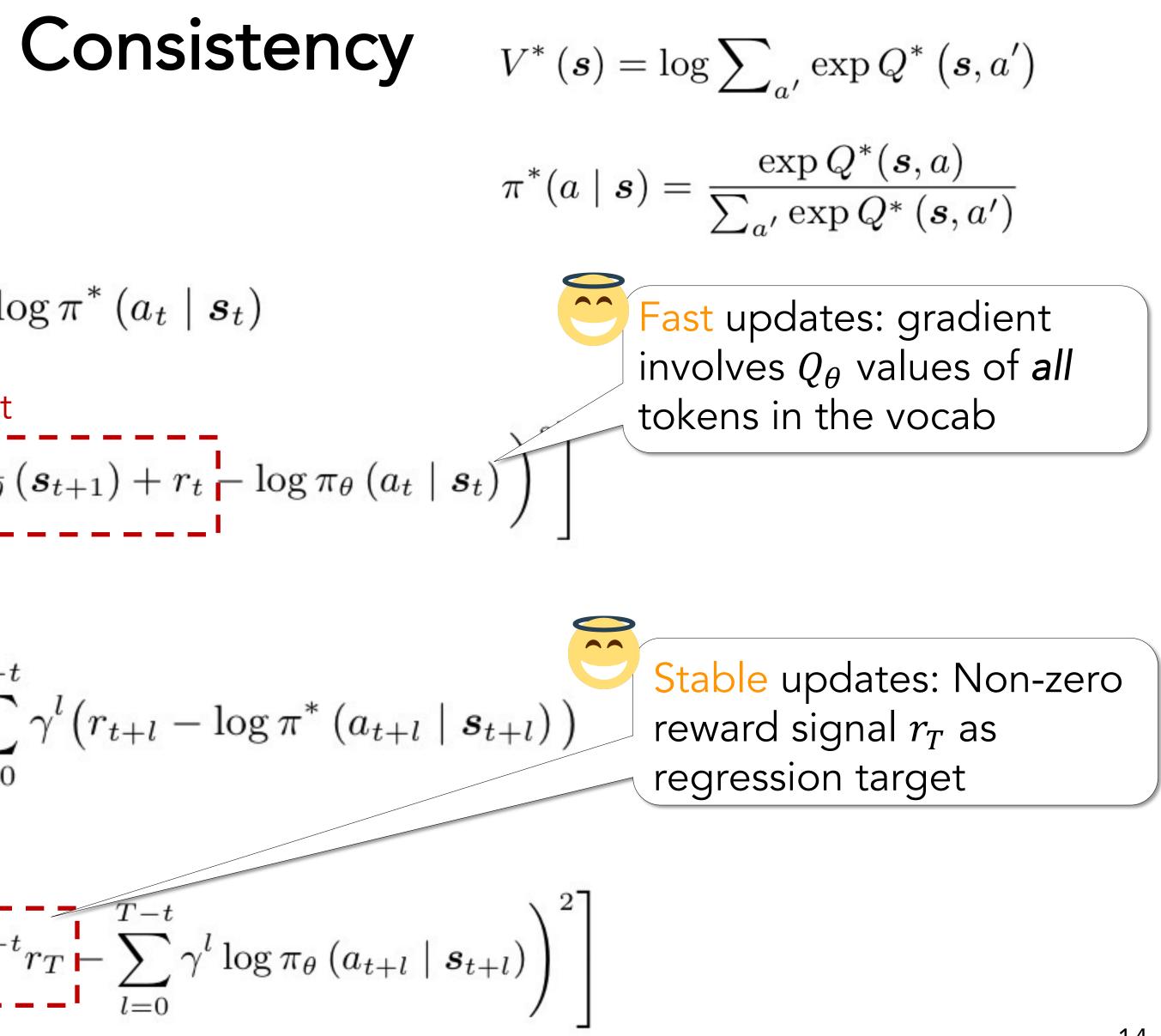
• (Multi-step) path consistency

$$V^{*}(\boldsymbol{s}_{t}) - \gamma^{T-t}V^{*}(\boldsymbol{s}_{T+1}) = \sum_{l=0}^{T-t}$$

Objective

$$\mathcal{L}_{\text{SQL, PCL-ms}}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \left[\frac{1}{2} \left(-V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) + \gamma^{T-t} \right) \right] \right]$$

[Nachum et al., 2017]



Efficient Training via Path Consistency

• (Single-step) path consistency

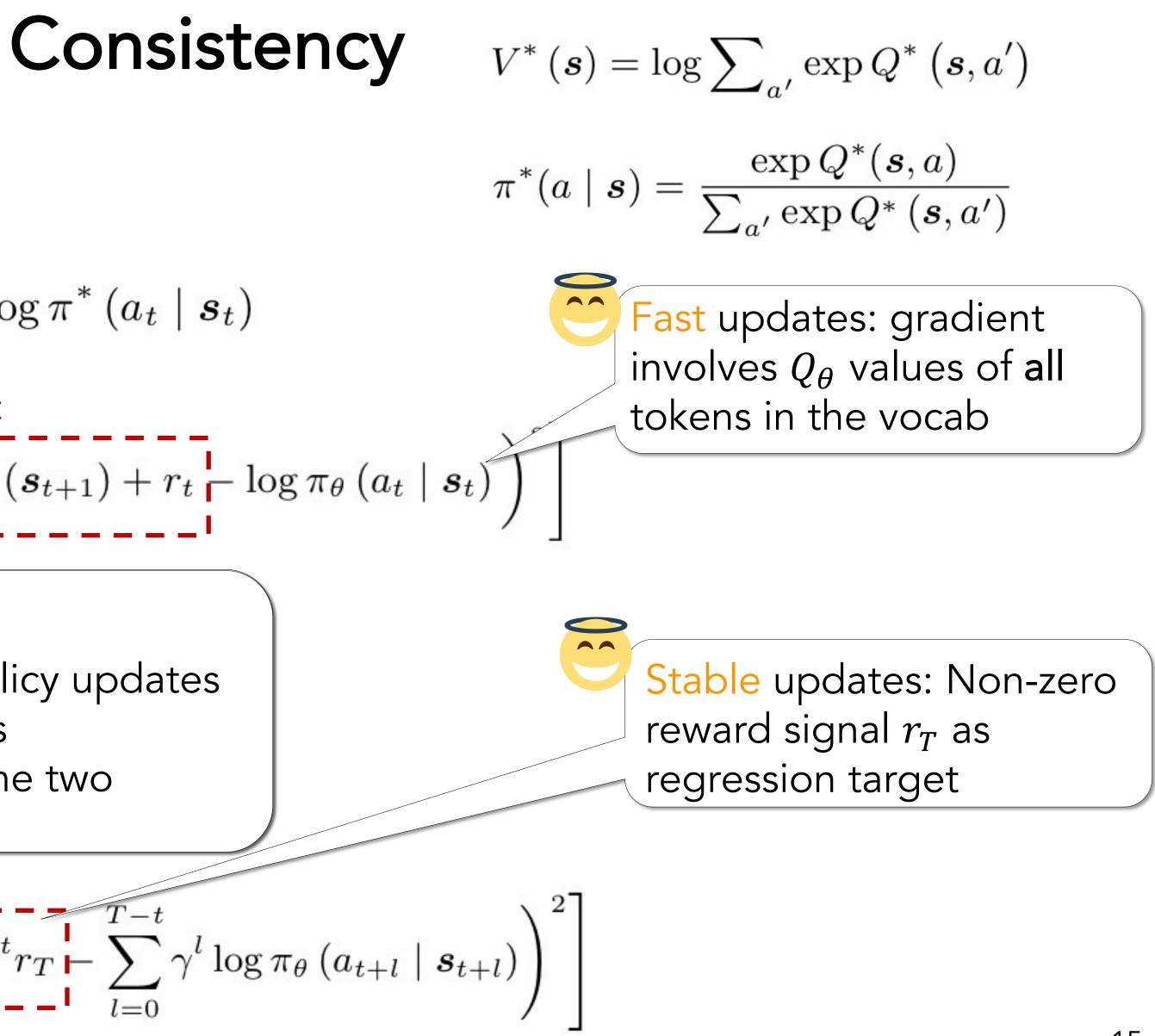
 $V^{*}(\boldsymbol{s}_{t}) - \gamma V^{*}(\boldsymbol{s}_{t+1}) = r_{t} - \log \pi^{*}(a_{t} | \boldsymbol{s}_{t})$

• Objective $\mathcal{L}_{\text{SQL, PCL}}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \left[\frac{1}{2} \left(-V_{\bar{\theta}} \left(\boldsymbol{s}_{t} \right) + \gamma V_{\bar{\theta}} \left(\boldsymbol{s}_{t+1} \right) + r_{t} - \log \pi_{\theta} \left(a_{t} \mid \boldsymbol{s}_{t} \right) \right) \right]$

Arbitrary policy:

- Training data (if available) \rightarrow off-policy updates
- Current policy \rightarrow on-policy updates
- We combine both for the best of the two

$$\mathcal{L}_{\text{SQL, PCL-ms}}(\boldsymbol{\theta}) = \mathbb{E}_{\pi'} \left[\frac{1}{2} \left(-V_{\bar{\theta}} \left(\boldsymbol{s}_t \right) + \gamma^{T-t} \right) \right]$$



Implementation is easy

```
model = TransformerLM(...)
for iter in range(max_iters):
    if mode == "off-policy":
        batch = dataset.sample_batch()
        sample_ids = batch.text_ids
    if mode == "on-policy":
        sample_ids = model.decode()
    Q_values = model.forward(sample_ids)
    Q_values_target = target_model.forward(sample_ids)
    rewards = compute_rewards(sample_ids)
    sql_loss = multi_step_SQL_objective(
        Q_values,
        Q_values_target,
        actions=sample_ids,
        rewards=rewards)
    # gradient descent over sql_loss
    # ...
```

def multi_step_SQL_objective(Q_values, Q_values_target, actions, rewards):

```
V = Q_values.logsumexp(dim=-1)
A = Q_values[actions] - V
```

V_target = Q_values_target.logsumexp(dim=-1)

```
A2 = masked_reverse_cumsum(
   A, lengths=actions.sequence_length,
   dim=-1)
```

```
return F.mse_loss(
   A2, rewards.view(-1, 1) - V_target,
   reduction="none")
```


Applications & Experiments

Application (I): Learning from Noisy (Negative) Text

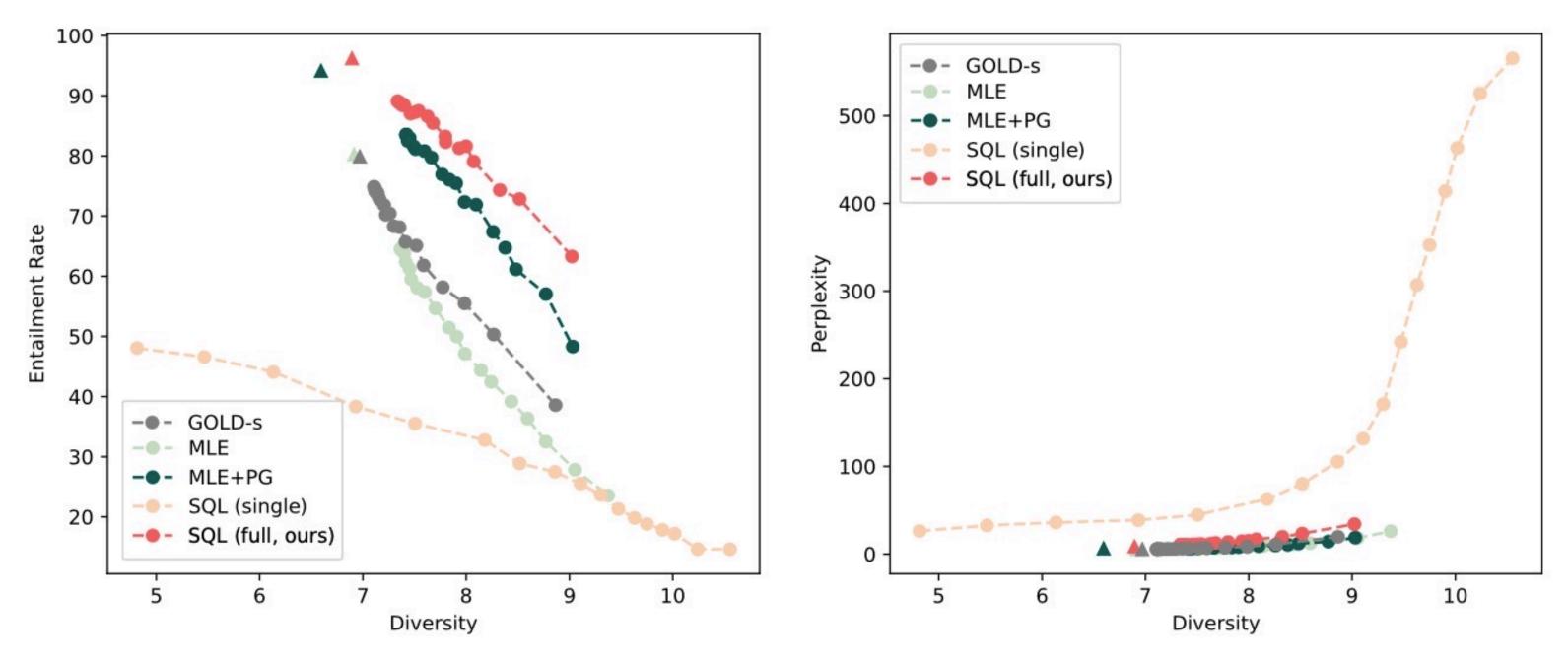
- Entailment generation
 - Given a *premise*, generates a *hypothesis* that entails the premise
 - "Sophie is walking a dog outside her house" -> "Sophie is outdoor"
 - Negative sample: "Sophie is inside her house"
- Training data:
 - Subsampled 50K (premise, hypothesis) noisy pairs from SNLI
 - Average entailment probability: 50%
 - 20K examples have entailment probability < 20% (≈ **negative** samples)
- Rewards:
 - Entailment classifier
 - Pretrained LM for perplexity
 - BLEU w.r.t input premises (which effectively prevents trivial generations)

18

Whiteboard

Application (I): Learning from Noisy (Negative) Text

- MLE and pure off-policy RL (GOLD-s) do not work \leftarrow rely heavy on data quality
- **SQL (full)** > **MLE+PG** (PG alone does not work)
- SQL (single-step only) does not work: the multi-step SQL objective is crucial



Entailment-rate and language-quality vs diversity (top-p decoding w/ different p)

Application (II): Universal Adversarial Attacks

- Attacking entailment classifier
 - Generate readable hypotheses that are classified as "entailment" for all premises
 - **Unconditional** hypothesis generation model
- Training data:
 - No direct supervision data available
 - "Weak" data: all hypotheses in MultiNLI corpus
- Rewards:
 - Entailment classifier to attack
 - Pretrained LM for perplexity
 - BLEU w.r.t input premises
 - Repetition penalty

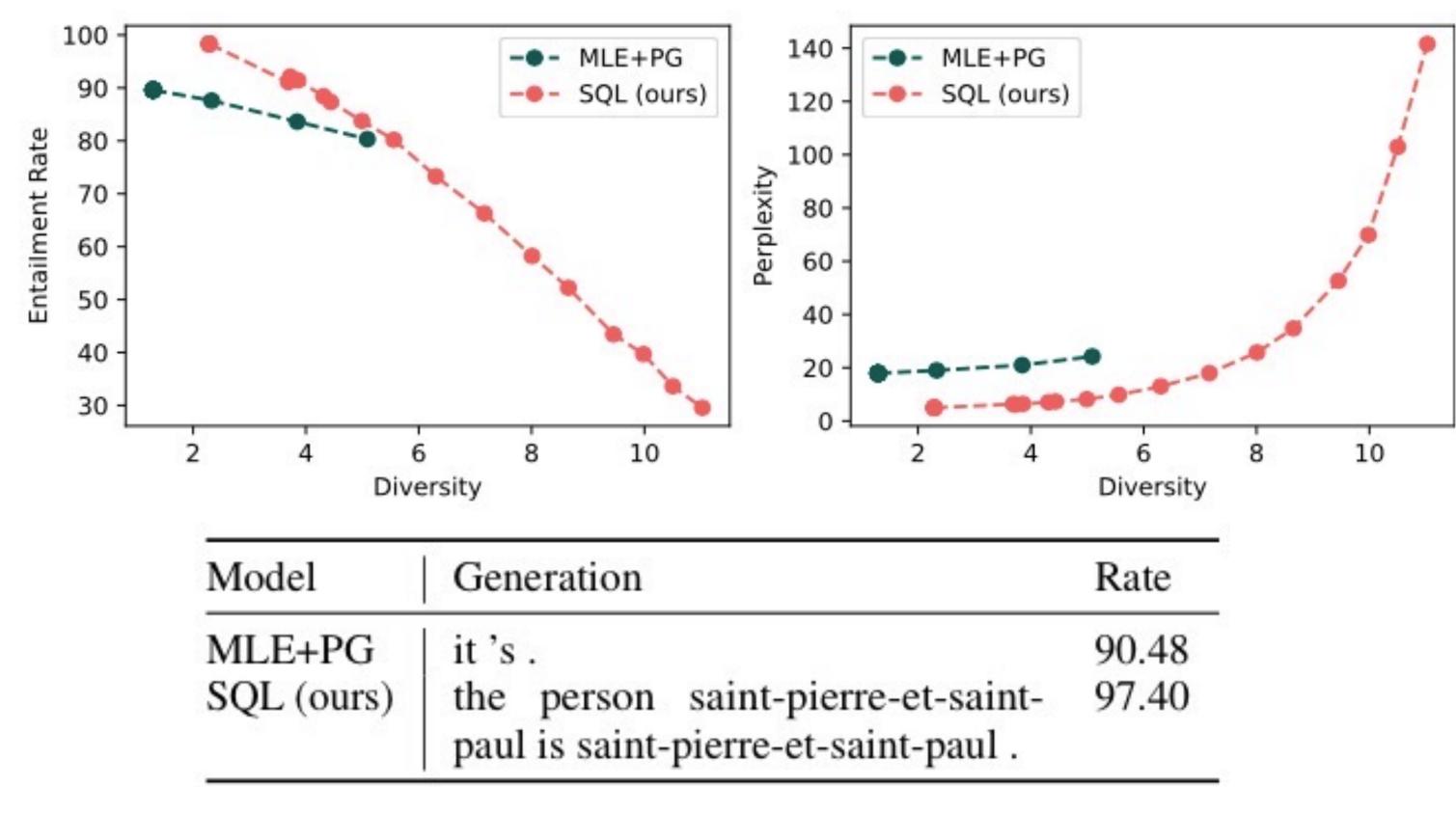
Previous adversarial algorithms are not applicable here:

- only attack for specific premise
- not readable

Whiteboard

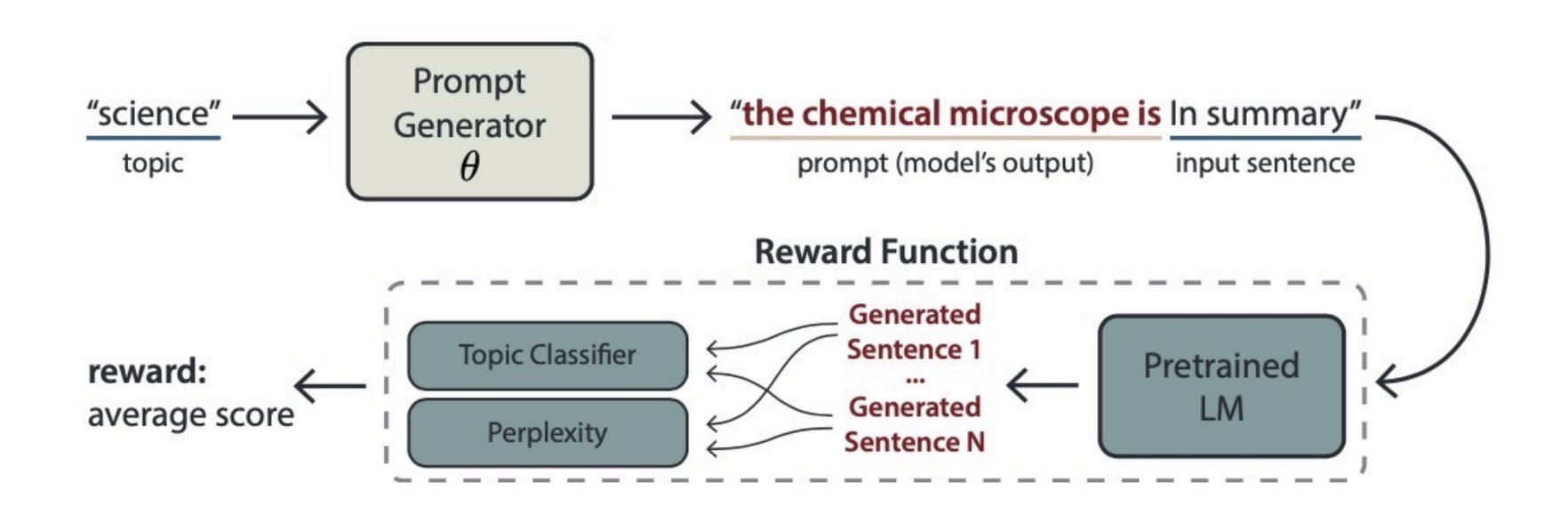
Application (II): Universal Adversarial Attacks

- SQL (full) > MLE+PG (PG alone does not work)
- MLE+PG collapses: cannot generate more diverse samples ullet



Samples of highest attack rate

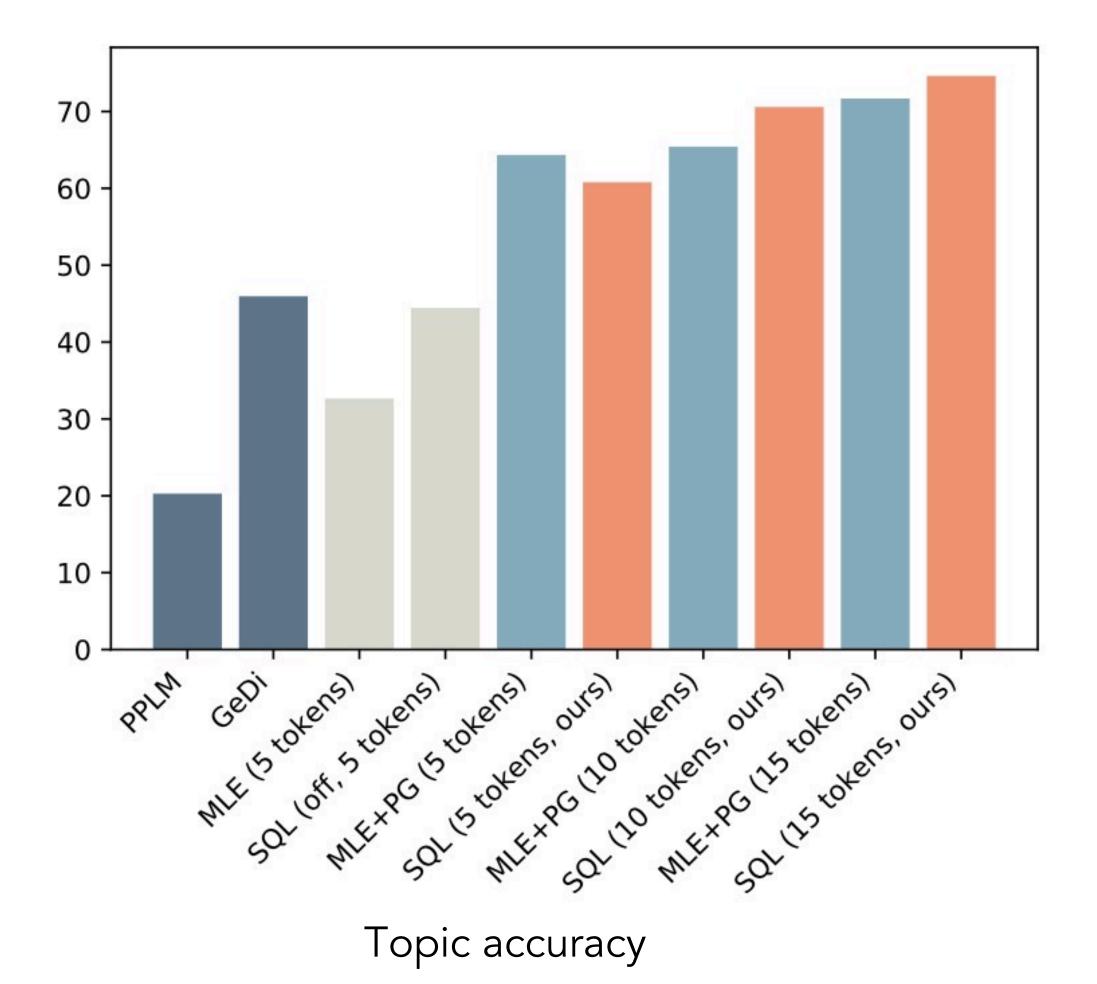
Application (III): Prompt Generation for Controlling LMs



Existing gradient-based prompt tuning methods are not applicable due to discrete components

• Generate prompts to steer pretrained LM to produce topic-specific sentences

Application (III): Prompt Generation for Controlling LMs



- Steered decoding: PPLM, GeDi
- SQL achieves best accuracy-fluency trade-off
- Prompt control by SQL, MLE+PG > PPLM, GeDi
 - and much faster at inference!
- SQL (off-policy only) > MLE

GeDi		MLE (5)	SQL (off, 5)
123.8	8	25.70	25.77
PG (5/1	l 0/15)	SQL (5/1	10/15, ours)
28.16/2	8.71	25.94/26	.95/29.10
Lan	guage	perplex	ity
odel	PPLM	GeDi	SQL
conds	5.58	1.05	0.07
	123.8 PG (5/1 28.16/28	123.88 PG (5/10/15) 28.16/28.71 Language	123.88 25.70 PG (5/10/15) SQL (5/10/15) 28.16/28.71 25.94/26 Language perplex Iodel PPLM GeDi

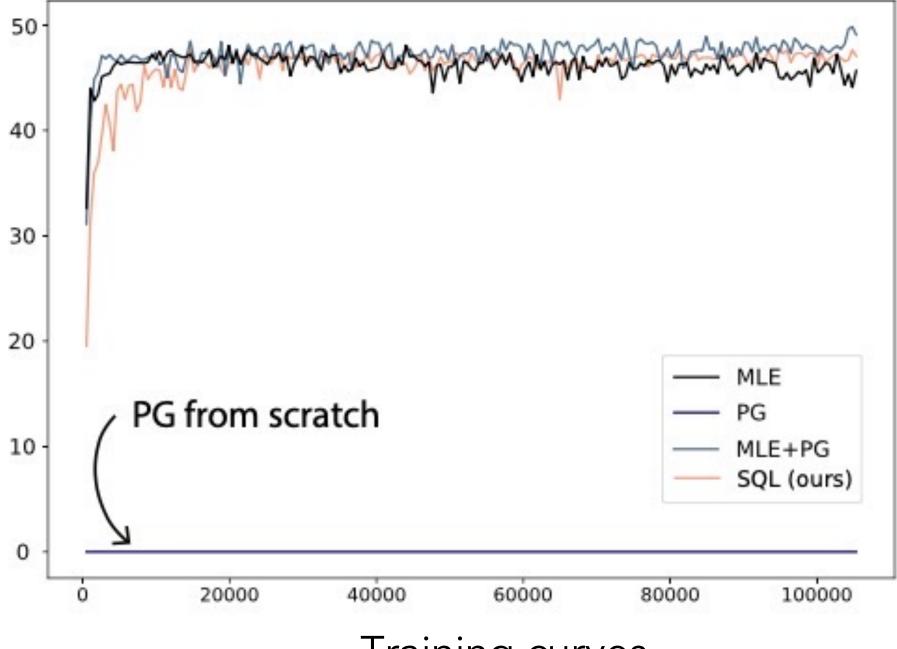
Time cost for generating one sentence

Promising results on standard supervised tasks

- SQL from scratch is competitive with MLE in terms of performance and stability
 - Results on E2E dataset
 - **PG** from scratch fails

Model	MLE	PG	MLE+PG	SQL (ours)
val	45.67	0.00	49.08	47.04
test	41.75	0.00	42.26	41.70

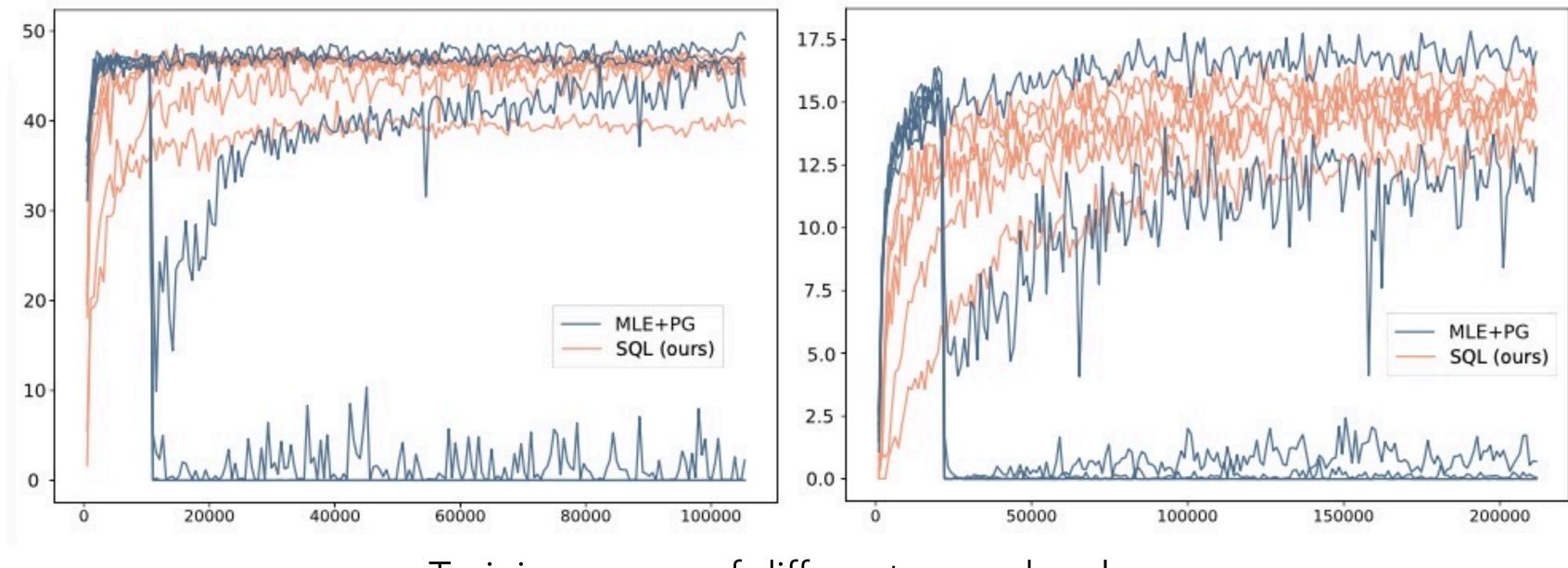
BLEU scores



Training curves

Promising results on standard supervised tasks

- SQL from scratch is competitive with MLE in terms of performance and stability
 - Results on E2E dataset
 - **PG** from scratch fails
- SQL is less sensitive to hyperparameters than MLE+PG



Training curves of different reward scales

Key Takeaways

- On-policy RL, e.g., REINFORCE, Policy Gradient (PG) Extremely low data efficiency
- Off-policy RL, e.g., *Q*-learning Unstable training; slow updates; sensitive to training data quality
- SQL
 - Objectives based on path consistency
- Combines the best of on-/off-policy
- More stable training from scratch given sparse reward
- Faster updates given large action space

• Enormous new opportunities for integrating more advanced RL for text generation!

- Generating human-like, grammatical, and readable text
 - I.e., generating **natural** language
- Generating text that contains desired information inferred from inputs
 - Machine translation
 - Source sentence --> target sentence w/ the same meaning
 - Data description
 - Table --> data report describing the table
 - Attribute control
 - Sentiment: positive --> ``I like this restaurant"
 - Conversation control
 - Control conversation strategy and topic

- Generating human-like, grammatical, and readable text
 - Exposure bias, criteria mismatch: reinforcement learning (next lecture)
- Generating text that contains desired information inferred from inputs
 - Machine translation
 - Source sentence --> target sentence w/ the same meaning
 - Data description
 - Table --> data report describing the table
 - Attribute control
 - Sentiment: positive --> ``I like this restaurant"
 - Modify sentiment from positive to negative
 - Conversation control
 - Control conversation strategy and topic

- Generating human-like, grammatical, and readable text
 - Exposure bias, criteria mismatch: reinforcement learning (next lecture)
- Generating text that contains desired information inferred from #supervision data inputs Machine translation Ο Source sentence --> target sentence w/ the same meaning 10s of millions Data description Ο -----> 10s of 1000s Table --> data report describing the table Attribute control 0 -----> 10s of 1000s Sentiment: positive --> ``I like this restaurant" -----> Modify sentiment from positive to negative $\mathbf{0}$ Conversation control Ο _____ Control conversation strategy and topic

Controlled generation in unsupervised settings

- Generating human-like, grammatical, and readable text
 - Exposure bias, criteria mismatch: reinforcement learning (next lecture)
- Generating text that contains desired information inferred from #supervision data inputs Machine translation Ο Source sentence --> target sentence w/ the same meaning 10s of millions Data description Ο -----> 10s of 1000s Table --> data report describing the table Attribute control 0 -----> 10s of 1000s Sentiment: positive --> ``I like this restaurant" ------» Modify sentiment from positive to negative \mathbf{O} Conversation control Ο _____ Control conversation strategy and topic

Unsupervised Controlled Generation of Text

- Sentence-level control
 - Text attribute transfer (style transfer)
 - Text content manipulation
- Conversation-level control
 - Target-guided open-domain conversation

Unsupervised Controlled Generation of Text

- Sentence-level control
 - Text attribute transfer (style transfer)
 - Text content manipulation
- Conversation-level control
 - Target-guided open-domain conversation

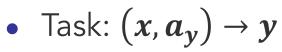
Text Attribute Transfer

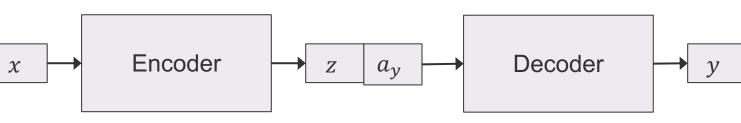
- Modify a given sentence to
 - Have desired attribute values
 - While keeping all other aspects unchanged
- Attribute: sentiment, tense, voice, gender, ...
- E.g., transfer sentiment from negative to positive:
 - ``It was super dry and had a weird taste to the entire slice ."
 - ``It was super fresh and had a delicious taste to the entire slice ."
- Applications:
 - Personalized article writing, emotional conversation systems, ...

Text Attribute Transfer

- Original sentence x, original attribute a_x
- Target sentence y, target attribute a_y
- Task: $(x, a_y) \rightarrow y$
 - y has the desired attribute a_y
 - \circ y keeps all attribute-independent properties of x
- Usually, only have pairs of (x, a_x) , but no $((x, a_x), (y, a_y))$ for training
 - E.g., two sets of sentences: one with positive sentiment, the other with negative

Text Attribute Transfer: Solution

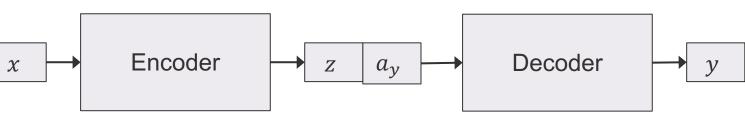




- y has the desired attribute a_y
- \circ y keeps all attribute-independent properties of x
- Model $p_{\theta}(\mathbf{y}|\mathbf{x}, \mathbf{a}_{\mathbf{y}})$

Text Attribute Transfer: Solution

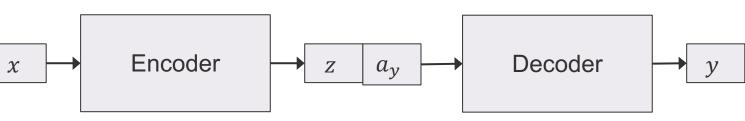
• Task: $(x, a_y) \rightarrow y$



- y has the desired attribute a_y
- \circ y keeps all attribute-independent properties of x
- Model $p_{\theta}(\mathbf{y}|\mathbf{x}, \mathbf{a}_{\mathbf{y}})$
- Key intuition for learning:
 - Decompose the task into competitive sub-objectives
 - Use direct supervision for each of the sub-objectives

Text Attribute Transfer: Solution

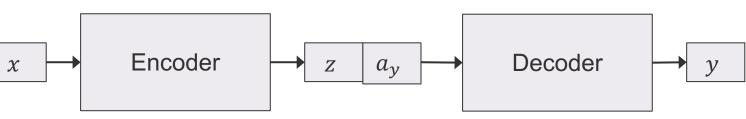
• Task: $(x, a_y) \rightarrow y$



- y has the desired attribute a_y
- \circ **y** keeps all attribute-independent properties of **x**
- Model $p_{\theta}(\mathbf{y}|\mathbf{x}, \mathbf{a}_{\mathbf{y}})$
- Key intuition for learning:
 - Decompose the task into competitive sub-objectives
 - Use direct supervision for each of the sub-objectives
- Auto-encoding loss: $(x, a_x) \rightarrow x$

Text Attribute Transfer: Solution

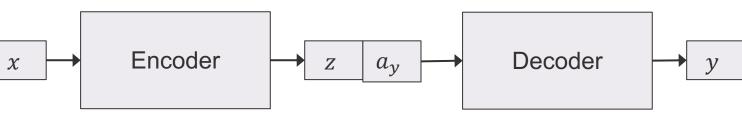
• Task: $(x, a_y) \rightarrow y$



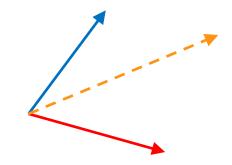
- y has the desired attribute a_y
- \circ **y** keeps all attribute-independent properties of **x**
- Model $p_{\theta}(\mathbf{y}|\mathbf{x}, \mathbf{a}_{\mathbf{y}})$
- Key intuition for learning:
 - Decompose the task into competitive sub-objectives
 - Use direct supervision for each of the sub-objectives
- Auto-encoding loss: $(x, a_x) \rightarrow x$
- Classification loss: $\hat{y} \sim p_{\theta}(y|\mathbf{x}, \mathbf{a}_{y}), f(\hat{y}) \rightarrow \mathbf{a}_{y}$
 - \circ where f is a pre-trained attribute classifier

Text Attribute Transfer: Solution

• Task: $(x, a_y) \rightarrow y$



- y has the desired attribute a_y
- \circ y keeps all attribute-independent properties of x
- Model $p_{\theta}(\mathbf{y}|\mathbf{x}, \mathbf{a}_{\mathbf{y}})$
- Key intuition for learning:
 - Decompose the task into competitive sub-objectives
 - Use direct supervision for each of the sub-objectives
- Auto-encoding loss: $(x, a_x) \rightarrow x$
- Classification loss: $\hat{y} \sim p_{\theta}(y|\mathbf{x}, \mathbf{a}_{y}), f(\hat{y}) \rightarrow \mathbf{a}_{y}$
 - \circ where f is a pre-trained attribute classifier
- The above two losses are competitive; minimize jointly to avoid collapse



- Performance on sentiment:
 - Accuracy: 92%
 - BLEU against input sentence: 54

- Performance on sentiment:
 - Accuracy: 92%
 - BLEU against input sentence: 54
- Problem:
 - Language quality is often not good
 - LM perplexity: 239.8

Original: if i could give them a zero star review i would ! **Output:** if i lite give them a sweetheart star review i would !

Original: uncle george is very friendly to each guest **Output:** uncle george is very **lackluster** to each guest

Original: the food is fresh and the environment is good **Output:** the food is **atrocious** and the environment is **atrocious**

- Performance on sentiment:
 - Accuracy: 92%
 - BLEU against input sentence: 54
- Problem:
 - Language quality is often not good
 - LM perplexity: 239.8
- Improvement:
 - Use an LM as a direct supervision!
 - $\hat{\boldsymbol{y}} \sim p_{\theta}(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{a}_{\boldsymbol{y}}), \max_{\theta} LM(\hat{\boldsymbol{y}})$
 - Accuracy: 91%
 - BLEU against input sentence: 57
 - LM perplexity: 60.9

Original: if i could give them a zero star review i would ! **Output:** if i lite give them a sweetheart star review i would !

Original: uncle george is very friendly to each guest **Output:** uncle george is very lackluster to each guest

Original: the food is fresh and the environment is good **Output:** the food is **atrocious** and the environment is **atrocious**

[Yang et al., 18] Unsupervised text style transfer using language models as discriminators

- Performance on sentiment:
 - Accuracy: 92%
 - BLEU against input sentence: 54
- Problem:
 - Language quality is often not good
 - LM perplexity: 239.8
- Improvement:
 - Use an LM as a direct supervision!
 - $\hat{\boldsymbol{y}} \sim p_{\theta}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{a}_{\boldsymbol{y}}), \max_{\theta} LM(\hat{\boldsymbol{y}})$
 - Accuracy: 91%
 - BLEU against input sentence: 57
 - LM perplexity: 60.9

Original: if i could give them a zero star review i would !
Output: if i lite give them a sweetheart star review i would !
+ LM: if i can give them a great star review i would !

Original: uncle george is very friendly to each guest Output: uncle george is very lackluster to each guest + LM: uncle george is very rude to each guest

Original: the food is fresh and the environment is good
Output: the food is atrocious and the environment is atrocious
+ LM: the food is bland and the environment is bad .

[Yang et al., 18] Unsupervised text style transfer using language models as discriminators

Unsupervised Controlled Generation of Text

- Sentence-level control
 - Text attribute transfer (style transfer)
 - Text content manipulation
- Conversation-level control
 - Target-guided open-domain conversation

Key idea:

- Decompose the task into competitive sub-objectives
- Use direct supervision for each of the sub-objectives

Unsupervised Controlled Generation of Text

- Sentence-level control
 - Text attribute transfer (style transfer)
 - Text content manipulation
- Conversation-level control
 - Target-guided open-domain conversation

Key idea:

- Decompose the task into competitive sub-objectives
- Use direct supervision for each of the sub-objectives

• Generate a sentence to describe content in a given data record

Data Record	Name	Food	Area	Price	Near
	Loch Fyne	Italian	Riverside	£20-25	Strada

- Generate a sentence to describe content in a given data record
- But language is rich with variation -- there are diverse possible ways of saying the same content (writing style):
 - word choice, expressions, transitions, tones, ...

Data Record	Name	Food	Area	Price	Near
	Loch Fyne	Italian	Riverside	£20-25	Strada

- Generate a sentence to describe content in a given data record
- But language is rich with variation -- there are diverse possible ways of saying the same content (writing style):
 - word choice, expressions, transitions, tones, ...
- We want to control the **writing style**: use the writing style of a reference sentence

Data Record	Name	Food	Area	Price	Near
	Loch Fyne	Italian	Riverside	£20-25	Strada

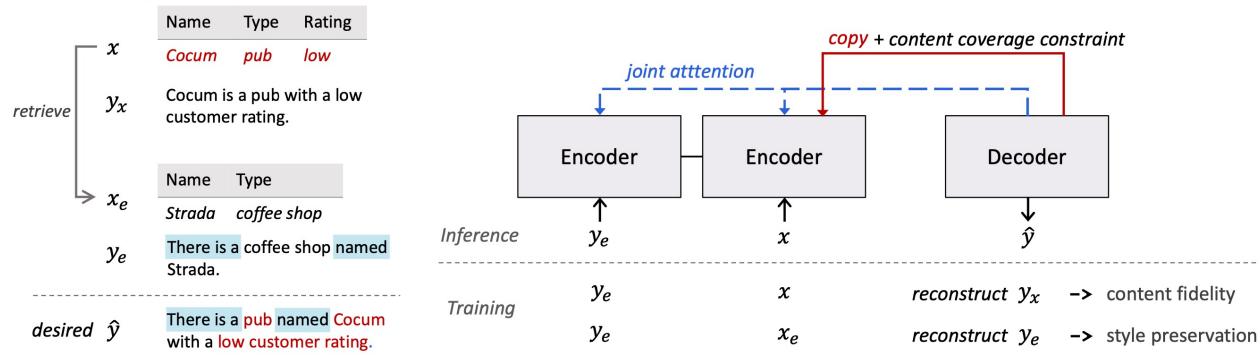
• Generate a sentence to describe content in a given data record

Data Record	Name	Food	Area	Price	Near			
	Loch Fyne	Italian	Riverside	£20-25	Strada			
-			ch dining but with ning with a £20-2			Cocum in the city center. riverside.		
Exemplar 2 Generation 2	Located near the Blue Spice, there is a highly-rated place, the Mill, as a choice that frugally priced. Located near Strada by the river, there is a place with Italian foods, Loch Fyne, as a choice that priced £20-25.							
Exemplar 3 Generation 3	With a family-friendly atmosphere and a 5-star rating, Aromi is a pub in the city center. With Italian foods and a moderate price range, Loch Fyne is near Strada at the riverside.							

• Generate a sentence to describe content in a given data record

Content Record	PLAYER LeBron_James	PT 32	RB 4	AS 7	PLAYER Kyrie_Irving	PT 20
Reference Sentence	Jrue_Holiday led while Goran_Dra rebounds .		-	-		
Output	LeBron_James le 4 rebounds, whi					and

Record and exemplar:



Results

Content Record	Name Cocum	EatType coffee shop	Food Italian	PriceRange £20-25	CustomRating high	FamilyFriendly family friendly				
Exemplar 1	Looking	Looking for French food near Zizzi? Come try Strada, which has a 3-star customer rating and priced lowly.								
Slot filling		Looking for Italian [] food near Zizzi? Come try [] Cocum, which has a high customer rating and priced £20-25.								
AdvST	For Italia £20-25.	ın [] place ne	ar Zizzi?	Come try [] C	ocum, which has a	high customer rating with priced				
Ours		Looking for an Italian coffee shop? Come try family-friendly Cocum, which has a high customer rating and priced £20-25.								
Exemplar 2	Along th average of	e riverside near customer rating	r Cafe Ro	uge, there is a J s not a family-fr	apanese food place iendly environmen	called The Golden Curry. It has an t.				
Slot-filling	Along th customer	Along the riverside near Cafe Rouge [], there is a Italian food [] place called Cocum. It has an high customer rating since it is not a family-friendly environment.								
AdvST				there is a mily-friendly e		lace called Cocum. It has [] high				
Ours		20-25, there is a -friendly enviro		food coffee sho	p called Cocum. It	has a high customer rating since it is				

Results

		NBA Reports					
	Method			Style m-BLEU	Content Precision Recall		Style m-BLEU
Reference	AttnCopy-S2S Slot-filling	78.88±2.08 61.23	99.71±0.06 66.2	$\begin{array}{c} 13.95 \scriptstyle \pm 0.52 \\ 100 \end{array}$	81.62±3.25 56.69	75.65±7.42 71.34	$\begin{array}{c} 45.5{\scriptstyle\pm0.71}\\ 100\end{array}$
Baselines	MAST AdvST	$\begin{array}{c} 36.28 {\scriptstyle \pm 0.25} \\ 51.64 {\scriptstyle \pm 4.45} \end{array}$	$\begin{array}{c} 37.06 {\scriptstyle \pm 0.16} \\ 57.06 {\scriptstyle \pm 4.44} \end{array}$	91.76±0.28 76.02±5.27	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$27.37{\scriptstyle\pm3.88}\atop{\scriptstyle66.79{\scriptstyle\pm1.43}}$	$95.43{\scriptstyle\pm2.71}\\64.67{\scriptstyle\pm4.81}$
Ours	Transformer w/o Coverage + Coverage	$\begin{array}{c} 60.03{\scriptstyle\pm2.16}\\ 61.84{\scriptstyle\pm1.31}\end{array}$	$74.65{\scriptstyle\pm2.69}\\81.14{\scriptstyle\pm2.73}$	$77.81{\scriptstyle \pm 3.83} \\ 80.29{\scriptstyle \pm 0.35}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$70.22{\scriptstyle\pm3.58} \\ \textbf{74.35}{\scriptstyle\pm1.22} \\$	$\begin{array}{c} 81.75 {\scriptstyle \pm 2.32} \\ 81.97 {\scriptstyle \pm 2.87} \end{array}$
Ours _	LSTM w/o Coverage + Coverage	$\begin{array}{c} 60.83 \pm 1.29 \\ \textbf{65.02} \pm \textbf{4.16} \end{array}$	81.45±1.10 82.53±0.70	$78.91{\scriptstyle\pm1.05}\\82.92{\scriptstyle\pm3.18}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 69.35{\scriptstyle\pm3.30} \\ 73.27{\scriptstyle\pm1.18} \end{array}$	79.88±2.44 80.66±1.89

Unsupervised Controlled Generation of Text

- Sentence-level control
 - Text attribute transfer (style transfer)
 - Text content manipulation
- Conversation-level control
 - Target-guided open-domain conversation

Key idea:

- Decompose the task into competitive sub-objectives
- Use direct supervision for each of the sub-objectives

Unsupervised Controlled Generation of Text

- Sentence-level control
 - Text attribute transfer (style transfer)
 - Text content manipulation
- Conversation-level control
 - Target-guided open-domain conversation

Key idea:

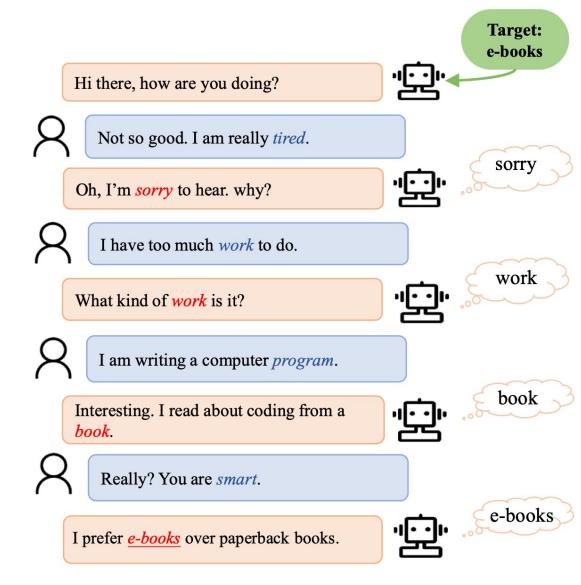
- Decompose the task into competitive sub-objectives
- Use direct supervision for each of the sub-objectives

Target-guided Open-domain Conversation

- Task-oriented dialog:
 - Address a specific task, e.g., booking a flight
 - Close domain
- Open-domain chit-chat:
 - Improve user engagement
 - Random conversation, hard to control
- Target-guided conversation:
 - Open-domain conversation
 - Controlled conversation strategy to reach a *desired topic* in the end of conversation
 - Applications:
 - Bridges task-oriented dialog and open-domain chit-chat
 - Conversational recommender system, education, psychotherapy

Target-guided Open-domain Conversation

- Two goals:
 - Starting from any topic, reach a desired topic in the end of conversation
 - Natural conversation: smooth transition

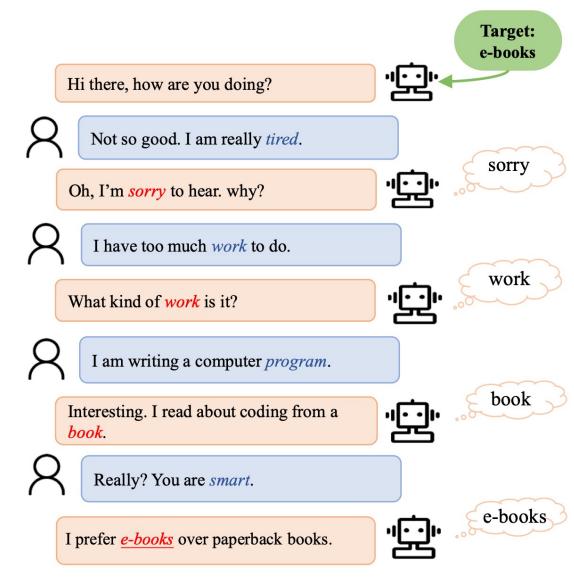


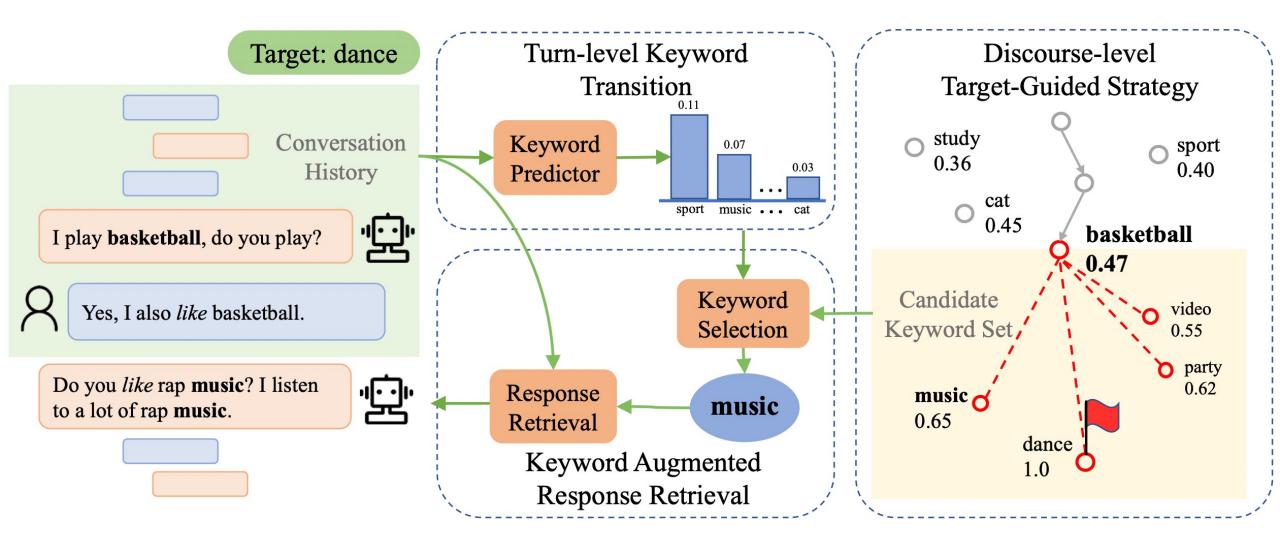
Target-guided Open-domain Conversation

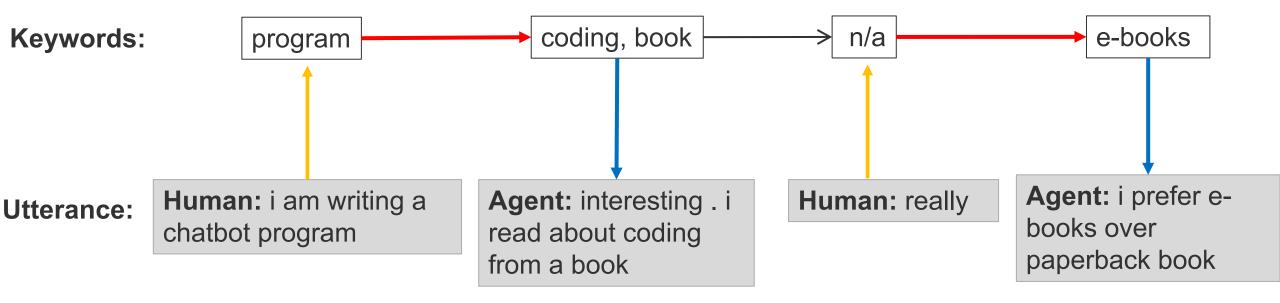
- Two goals:
 - Starting from any topic, reach a desired topic in the end of conversation
 - Natural conversation: smooth transition

Challenge: No supervised data for the task Solution: Use competitive sub-objectives and partial supervision

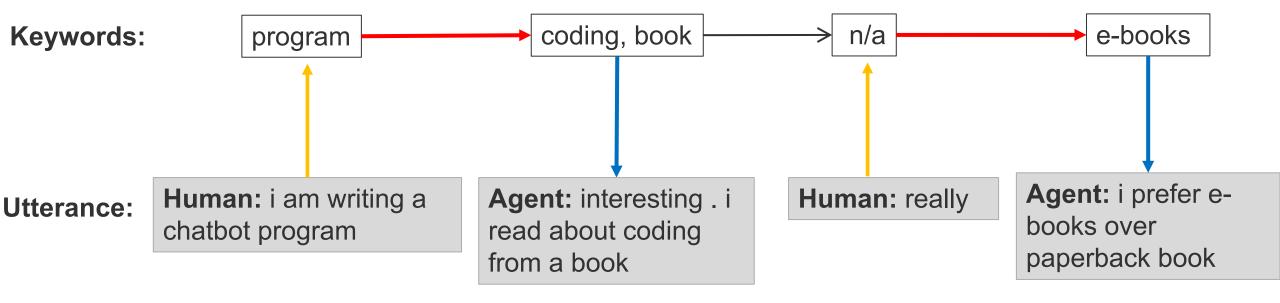
- Natural conversation: rich chit-chat data to learn smooth single-turn transition
- Reaching desired target: rule-based multiturn planning



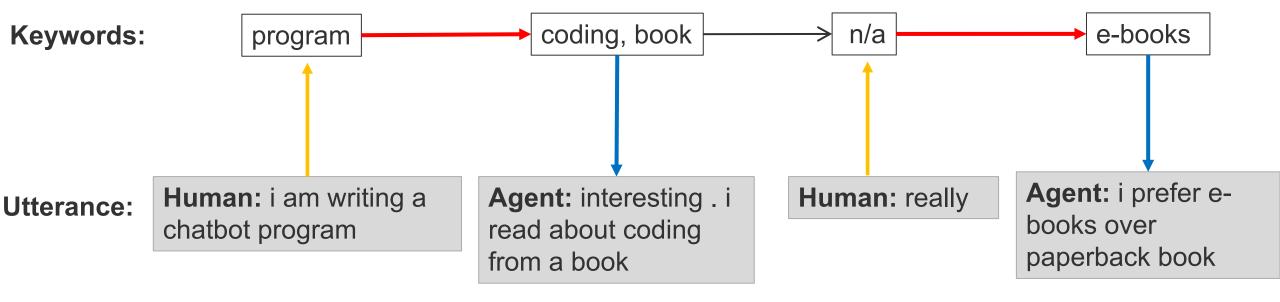




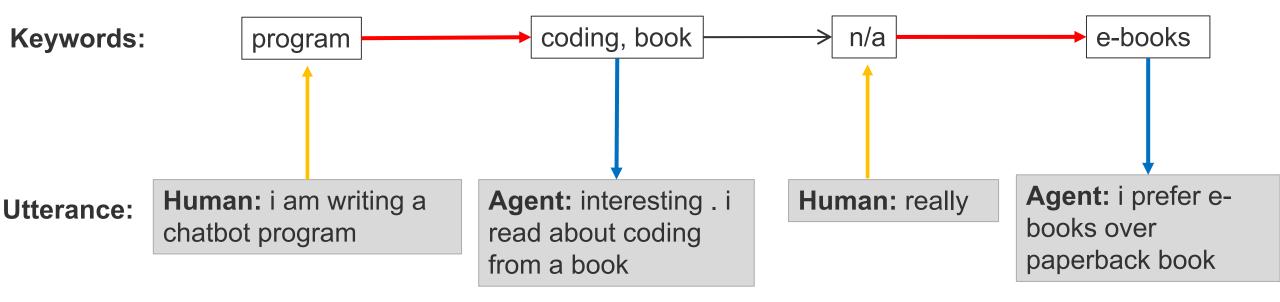
• --- keyword extraction



- --- keyword extraction
- - keyword conditional response retrieval



- -- keyword extraction
- - keyword conditional response retrieval
- → learned kernel-based topic transition + target-guided rule:
 - (1) transit to keywords that are close in the word embedding space smooth
 - (2) next keywords must get closer to the target keyword target-guided
 - Tune relative weight of (1) and (2) to control aggressiveness



Example Results

Target: dance

Agent : hi how is it going with you Human : fine . I'm playing sports Agent : i play basketball . u play ? Human : yeah i also like basketball . Agent : you like rap music ? i listen to a lot of rap music Human : no i like classic music Agent : its a taylor swift song Human : taylor swift is a great singer Agent : sing to me , what are you going to sing Human : i know nothing about singing Agent : oh i think i can dance lol

Example Results – Failure Case

Target: listen

Agent : hi ! how are you ? i am very exciting about my new job ! Human : fine . what is your new job ? Agent : that sounds exciting . Human : i like read books Agent : what kind of books do you read ? Human : i read comics Agent : i do not have tv Human : watch anime is fun Agent : what position d you play ? Human : i play a lot of sports Agent : oh really ? what kind of music . i listen to classical

Unsupervised Controlled Generation of Text

- Sentence-level control
 - Text attribute transfer (style transfer)
 - Text content manipulation
- Conversation-level control
 - Target-guided open-domain conversation

Key idea:

- Decompose the task into competitive sub-objectives
- Use direct supervision for each of the sub-objectives

Key Takeaways: Two Central Goals

- Generating human-like, grammatical, and readable text
 - Exposure bias, criteria mismatch: reinforcement learning (next lecture)
- Generating text that contains desired information inferred from inputs
 - Machine translation
 - Source sentence --> target sentence w/ the same meaning
 - Data description
 - Table --> data report describing the table
 - Attribute control
 - Sentiment: positive --> ``I like this restaurant"
 - Conversation control
 - Control conversation strategy and topic

Questions?