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Outline
● Reinforcement learning for text generation

● 2 Paper presentations (15 x 2 mins)

! Ruisi Zhang: Plug and Play Language Models: A Simple Approach to 
Controlled Text Generation

! Han Cao: ELECTRA: Pre-training Text Encoders as Discriminators Rather Than 
Generators
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Reinforcement Learning



Agent

Environment

Action a t
State st

Recap: Reinforcement Learning

Reward rt 
Next state s

t+1
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Goal: Learn how to take actions in order to maximize reward



Recap: Markov Decision Process
- At time step t=0, environment samples initial state s0 ~ p(s0)
- Then, for t=0 until done:

- Agent selects action at
- Environment samples reward rt ~ R( . | st, at)
- Environment samples next state st+1 ~ P( . | st, at)
- Agent receives reward rt and next state st+1

- A policy π is a function from S to A that specifies what action to take in  
each state

- Objective: find policy π* that maximizes cumulative discounted reward:

5



Recap: Value function and Q-value function
Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy 
from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from 
taking action a in state s and then following the policy:
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Recap: Bellman equation

Q* satisfies the following Bellman equation:

The optimal Q-value function Q* is the maximum expected cumulative reward achievable 
from a given (state, action) pair:
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Remember: want to find a Q-function that satisfies the Bellman Equation:

Q-learning: Use a function approximator to estimate the action-
value function

Forward Pass 
Loss function:

where

Recap: Q-learning
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Recap: REINFORCE algorithm
Mathematically, we can write:

Where r(𝜏) is the reward of a trajectory
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When sampling a trajectory 𝜏, we can estimate J(𝜃) with



Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen
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Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!
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Intuition
Gradient estimator:

Interpretation:
- If r(r) is high, push up the probabilities of the actions seen
- If r(r) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is 
really hard. Can we help the estimator?

13



Gradient estimator:

Variance reduction
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Variance reduction
Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state
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Variance reduction
Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state

Second idea: Use discount factor 𝛾 to ignore delayed effects

16



Variance reduction: Baseline
Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you 
expect to get

Idea: Introduce a baseline function dependent on the state. 
Concretely, estimator is now:
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A simple baseline: constant moving average of rewards experienced so far 
from all trajectories

How to choose the baseline?
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How to choose the baseline?

A simple baseline: constant moving average of rewards experienced so far 
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla 
REINFORCE”

19



How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?
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How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of? 

A: Q-function and value function!
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How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of? 

A: Q-function and value function!

Intuitively, we are happy with an action at in a state st if
is large. On the contrary, we are unhappy with an action if it’s small.
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How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of? 

A: Q-function and value function!

Intuitively, we are happy with an action at in a state st if
is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:
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Actor-Critic Algorithm
Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning 
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor 
how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values 
of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an 

action was better than expected
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Actor-Critic Algorithm
Initialize policy parameters 𝜃, critic parameters ø
For iteration=1, 2 … do

Sample m trajectories under the current policy

For i=1, …, m do
For t=1, ... , T do

End for
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More policy gradients: AlphaGo

- Featurize the board (stone color, move legality, bias, …)
- Initialize policy network with supervised training from professional go games, 

then continue training using policy gradient (play against itself from random 
previous iterations, +1 / -1 reward for winning / losing)

- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree 

Search algorithm to select actions by lookahead search

Overview:
- Mix of supervised learning and reinforcement learning
- Mix of old methods (Monte Carlo Tree Search) and 

recent ones (deep RL)

How to beat the Go world champion:

[Silver et al., 
Nature 2016]

This image is CC0 public domain

Lecture 14 -
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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RL for Text Generation



Two Central Goals

● Generating human-like, grammatical, and readable text

! I.e., generating natural language

● Generating text that contains desired information inferred from inputs

! Machine translation
§ Source sentence --> target sentence w/ the same meaning

! Data description
§ Table --> data report describing the table

! Attribute control
§ Sentiment: positive --> ``I like this restaurant’’

! Conversation control
§ Control conversation strategy and topic



Two Issues of MLE

● Exposure bias [Ranzato et al., 2015]

● Mismatch between training & evaluation 
criteria
! Train to maximize data log-likelihood
! Evaluate with, e.g., BLEU

LSTM! LSTM! LSTM!

<BOS>

!𝑦!

…

!𝑦"

𝑦!∗ 𝑦"∗

!𝑦$

• Training: predict next token given the previous 
ground-truth sequence

• Evaluation: predict next token given the previous 
sequence that are generated by the model itself

[Ranzato et al., 2015] Sequence Level Training with Recurrent Neural Networks 

Training:
Evaluation: <BOS> !𝑦! !𝑦"

DecoderDecoderMulti-head Self-attention



Reinforcement Learning (RL)
● Plug in arbitrary reward functions to drive learning
● Fertile research area for robotic and game control
● But … limited success for training text generation 
! Challenges:
§ Large sequence space: (vocab-size)text-length ~ (10+),-
§ Sparse reward: only after seeing the whole text sequence

! Impossible to train from scratch, usually initialized with MLE
! Unclear improvement vs MLE



RL for Text Generation

● (Autoregressive) text generation model:

𝜋! 𝑦" 𝒚#") =
exp 𝑓!(𝑦"|𝒚#")

∑$% exp 𝑓!(𝑦′|𝒚#")
Sentence 𝒚 = (𝑦&, … , 𝑦')

logits

In RL terms: state, 𝒔"action, 𝑎"trajectory, 𝜏 policy 𝜋! 𝑎" 𝒔" )



RL for Text Generation

● (Autoregressive) text generation model:

𝜋! 𝑦" 𝒚#") =
exp 𝑓!(𝑦"|𝒚#")

∑$% exp 𝑓!(𝑦′|𝒚#")
Sentence 𝒚 = (𝑦&, … , 𝑦')

In RL terms: state, 𝒔"action, 𝑎"trajectory, 𝜏

• Reward 𝑟% = 𝑟(𝒔% , 𝑎%)

• Often sparse: 𝑟" = 0 for 𝑡 < 𝑇

policy 𝜋! 𝑎" 𝒔" )

logits



RL for Text Generation: REINFORCEExpected reward (-loss) 

Given a dataset of input output pairs,                                         

learn a conditional distribution                   that minimizes 

expected loss: 

Difficult / Impossible to train from scratch!! 

Sample from the 
model distribution 

Slide courtesy: Russ Salakhutdinov @ CMU 10707



RL for Text Generation: REINFORCEExpected reward (-loss) 

Given a dataset of input output pairs,                                         

learn a conditional distribution                   that minimizes 

expected loss: 

Difficult / Impossible to train from scratch!! 

Sample from the 
model distribution 

Slide courtesy: Russ Salakhutdinov @ CMU 10707

LSTM! LSTM! LSTM!

<BOS>

!"!

…

!""

!"! !"!

!"#

Training:
Evaluation: <BOS> !"! !""

DecoderDecoderMulti-head Self-attention

No exposure bias



• Off-policy RL 
• e.g., 𝑄-learning

• Implicitly learns the policy 𝜋 by approximating the 𝑄! 𝒔" , 𝑎"
• Bellman temporal consistency:

• Learns 𝑄# with the regression objective:

• After learning, induces the policy as 𝑎" = argmax$ 𝑄#∗(𝒔" , 𝑎)

RL for Text Generation

2

target Q-network

Arbitrary policy, e.g., 
training data

Regression target



• Off-policy RL 
• e.g., 𝑄-learning

• Implicitly learns the policy 𝜋 by approximating the 𝑄! 𝒔" , 𝑎"
• Bellman temporal consistency:

• Learns 𝑄# with the regression objective:

• After learning, induces the policy as 𝑎" = argmax$ 𝑄#∗(𝒔" , 𝑎)

RL for Text Generation

3

Arbitrary policy, e.g., 
training data

Regression target is unstable
• Bootstrapped 𝑄!"
• Sparse reward 𝑟# = 0 (𝑡 < 𝑇): no ”true” training signal

Slow updates: gradient 
involves only 𝑄"-value of one
action 𝑎# (vs 10$ vocab size)



RL for Text Generation

• On-policy RL, e.g., Policy Gradient (PG)

• Exploration to maximize reward directly

• Extremely low data efficiency

• Off-policy RL, e.g., 𝑄-learning

• Unstable training due to bootstrapping & sparse reward

• Slow updates due to large action space

• Sensitive to training data quality; lacks on-policy exploration
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New RL for Text Generation: Soft 𝑄-Learning (SQL)

• Goal

• Induced policy

5

• Goal: entropy regularized

• Induced policy

(Hard) 𝑄-learning SQL

𝑎" = argmax$ 𝑄#∗(𝒔" , 𝑎)

Generation model’s “logits” now act as 𝑄-values !

𝜋#∗ 𝑎" 𝒔") =
exp𝑄#∗(𝑎"|𝒔")
∑$ exp𝑄#∗(𝑎|𝒔")

logits
𝑄-values



New RL for Text Generation: Soft 𝑄-Learning (SQL)

• Goal

• Induced policy

• Training objective:
• Based on temporal consistency

• Unstable training / slow updates
6

• Goal: entropy regularized

• Induced policy

• Training objective:
• Based on path consistency
• Stable / efficient

(Hard) 𝑄-learning SQL

𝑎" = argmax$ 𝑄#∗(𝒔" , 𝑎) 𝜋#∗ 𝑎" 𝒔") =
exp𝑄#∗(𝑎"|𝒔")
∑$ exp𝑄#∗(𝑎|𝒔")



Efficient Training via Path Consistency

• (Single-step) path consistency

• Objective
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Regression target 

Fast updates: gradient 
involves 𝑄" values of all
tokens in the vocab

SQL matches log probability of token 𝑎# with its advantage
v.s.

MLE increases log probability of token 𝑎# blindly

≈ 𝐴!" 𝒔# , 𝑎# , advantage

[Nachum et al., 2017]



Efficient Training via Path Consistency

• (Single-step) path consistency

• Objective

• (Multi-step) path consistency

• Objective

8

Regression target 

Fast updates: gradient 
involves 𝑄" values of all
tokens in the vocab

Stable updates: Non-zero 
reward signal 𝑟% as 
regression target

[Nachum et al., 2017]



Efficient Training via Path Consistency

• (Single-step) path consistency

• Objective
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Regression target 

Fast updates: gradient 
involves 𝑄" values of all
tokens in the vocab

Stable updates: Non-zero 
reward signal 𝑟% as 
regression target

Arbitrary policy:
• Training data (if available) → off-policy updates
• Current policy → on-policy updates
• We combine both for the best of the two



Implementation is easy
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Applications & Experiments
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Application (I): Learning from Noisy (Negative) Text 
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• Entailment generation
• Given a premise, generates a hypothesis that entails the premise

• “Sophie is walking a dog outside her house” -> “Sophie is outdoor”

• Negative sample: ”Sophie is inside her house”

• Training data:
• Subsampled 50K (premise, hypothesis) noisy pairs from SNLI

• Average entailment probability: 50%

• 20K examples have entailment probability < 20% (≈ negative samples)

• Rewards:
• Entailment classifier

• Pretrained LM for perplexity

• BLEU w.r.t input premises (which effectively prevents trivial generations)



Application (I): Learning from Noisy (Negative) Text 
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• MLE and pure off-policy RL (GOLD-s) do not work  ← rely heavy on data quality 

• SQL (full) > MLE+PG (PG alone does not work)

• SQL (single-step only) does not work: the multi-step SQL objective is crucial

Entailment-rate and language-quality vs diversity (top-𝑝 decoding w/ different 𝑝)



Application (II): Universal Adversarial Attacks
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• Attacking entailment classifier
• Generate readable hypotheses that are classified as 

“entailment” for all premises

• Unconditional hypothesis generation model

• Training data:
• No direct supervision data available

• “Weak” data: all hypotheses in MultiNLI corpus

• Rewards:
• Entailment classifier to attack

• Pretrained LM for perplexity

• BLEU w.r.t input premises

• Repetition penalty

Previous adversarial algorithms are 
not applicable here:
• only attack for specific premise
• not readable



Application (II): Universal Adversarial Attacks
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• SQL (full) > MLE+PG (PG alone does not work)

• MLE+PG collapses: cannot generate more diverse samples

Samples of highest attack rate



Application (III): Prompt Generation for Controlling LMs
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• Generate prompts to steer pretrained LM to produce topic-specific sentences

Existing gradient-based prompt tuning methods are not applicable due to discrete components



Application (III): Prompt Generation for Controlling LMs
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Topic accuracy

Language perplexity

• Steered decoding: PPLM, GeDi
• SQL achieves best accuracy-fluency trade-off

• Prompt control by SQL, MLE+PG > PPLM, GeDi
• and much faster at inference!

• SQL (off-policy only) > MLE

Time cost for generating one sentence



Promising results on standard supervised tasks
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• SQL from scratch is competitive with MLE in terms of performance and stability 
• Results on E2E dataset

• PG from scratch fails

BLEU scores

Training curves



Promising results on standard supervised tasks
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• SQL from scratch is competitive with MLE in terms of performance and stability 
• Results on E2E dataset

• PG from scratch fails

• SQL is less sensitive to hyperparameters than MLE+PG

Training curves of different reward scales



Key Takeaways
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• On-policy RL, e.g., Policy Gradient (PG)

• Extremely low data efficiency

• Off-policy RL, e.g., 𝑄-learning

• Unstable training; slow updates; sensitive to training data quality

• SQL
• Objectives based on path consistency

• Combines the best of on-/off-policy, while solving the difficulties

• Stable training from scratch given sparse reward

• Fast updates given large action space

• Opens up enormous opportunities for integrating more advanced RL for text generation



Questions?



RL for Text Generation: REINFORCEExpected reward (-loss) 

Given a dataset of input output pairs,                                         

learn a conditional distribution                   that minimizes 

expected loss: 

Difficult / Impossible to train from scratch!! 

Sample from the 
model distribution On-policy RL: generate text samples from the current policy 𝑝& itself

• On-policy exploration to maximize the reward directly

Extremely low data efficiency: most samples 
from 𝜋& are gibberish with zero reward


