DSC291: Advanced Statistical Natural
Language Processing

Text Generation

Zhiting Hu
Lecture 14, May 12, 2022

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

Outline

e Reinforcement learning for text generation

e 2 Paper presentations (15 x 2 mins)
o Ruisi Zhang: Plug and Play Language Models: A Simple Approach to
Controlled Text Generation

o Han Cao: ELECTRA: Pre-training Text Encoders as Discriminators Rather Than
Generators

Reinforcement Learning

Recap: Reinforcement Learning

State s, Reward r,

Action a
Next state S... t

Environment

Goal: Learn how to take actions in order to maximize reward

Recap: Markov Decision Process

At time step t=0, environment samples initial state s, ~ p(s)
Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r, ~ R(. | s,, a,)

- Environment samples next state s,,, ~ P(. | s, a,)

- Agent receives reward r, and next state s,

A policy TTis a function from S to A that specifies what action to take in
each state

Objective: find policy 1T that maximizes cumulative discounted reward: Z’YtTt
t>0

Recap: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, ry, S, a;, Iy, ...

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
VT(s) = Z'y r¢|so = 8, T

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E |:Z fytrt|so = 8,ap = a, 71':|

t>0

Recap: Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) =maxE | ¥ 4're|so = 5,00 = a,m
>0

Q* satisfies the following Bellman equation:

Q*(s,a) =Eg g [7“ +ymax Q*(s',a’)|s, a]

Recap: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Eg~¢ ['r' +ymax Q*(s’,d’)|s, a,]
al

Q-learning: Use a function approximator to estimate the action-

value function)
Q(s,a;0) = Q" (s, a)

Loss function: L;(6;) = Es a~p() [(yz — Q(s, 6; 92‘))2]

where ¥ = Eg g [7” + "ymaa}x Q(s',a';0;-1)|s, a]

Recap: REINFORCE algorithm

Mathematically, we can write: ~ J(0) = Ernp(r0) [7(7T)]

_ /r r(r)p(r; 0)dr

Where r(7) is the reward of a trajectory 7 = (80, aog,To, S1y - - -

VoJ(6) = [(r() V0 log p(r0) plrs 6)dr
—]ETNp(T;O) [T(T)VO logp(Ta 9)]

When sampling a trajectory t, we can estimate J(8) with

Vod(0) = Z r(7)Ve log mg(as|st)

t>0

10

Intuition
Gradient estimator: VJ(6) ~ Z r(7)Ve log mg(at|st)

t>0

Interpretation:

If r(t) is high, push up the probabilities of the actions seen
If r(7) is low, push down the probabilities of the actions seen

11

Intuition
Gradient estimator: VJ(6) ~ Z r(7)Ve log mg(at|st)

t>0
Interpretation:
- If r(z) is high, push up the probabilities of the actions seen

- If r(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

12

Intuition
Gradient estimator: VJ(6) ~ Z r(7)Ve log mg(at|st)

t>0
Interpretation:

- If r(r) is high, push up the probabilities of the actions seen
- If r(r) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

13

Variance reduction

Gradient estimator: VgJ () & Z r(7)Velog me(as|st)
t>0

14

Variance reduction
Gradient estimator: VgJ(0) & Z r(7)Ve log mg(as|st)
t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VoJ(0) =~ Z (Z rt/) Vo log mg(az|st)

t>0 \t/'>t

15

Variance reduction
Gradient estimator: VgJ(0) & Z r(7)Ve log mg(as|st)

t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VoJ(0) =~ Z (Z rt/) Vo log mg(az|st)

t>0 \ ¢/ >t
Second idea: Use discount factor y to ignore delayed effects

VeJ (0 Z (Z 'yt —tp,) Vo log mg(az|st)

t>0 \t'>t

16

Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? \Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VeJ (0 Z (Z 'yt “ry — b(sy)) Vo logmg(at|st)

t>0 \t'>t

17

How to choose the baseline?

VoJ (6 E (Z ')/t ey — b(sy)) Vo logmg(at|st)

t>0 \t'>t

A simple baseline: constant moving average of rewards experienced so far
from all trajectories

18

How to choose the baseline?
VoJ (0 Z (Z v ey — b(sy)) Vo logmg(at|st)

t>0 \t'>t
A simple baseline: constant moving average of rewards experienced so far
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla
REINFORCE”

19

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if

this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

20

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if

this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

21

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from

that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a in a state s, if Q" (s, ar) — V7" (s¢t)
Is large. On the contrary, we are unhappy with an action if it's small.

22

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from

that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a. in a state s, if Q" (s¢,ar) — V7" (s¢t)
is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: V,J(0) ~ Z(Q"G(st, at) — V7 (s:))Velogme(at|st)

t>0

23

Actor-Critic Algorithm

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust
- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy
- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an
action was better than expected A™(s,a) = Q" (s,a) — V™ (s)

24

Actor-Critic Algorithm

Initialize policy parameters 6, critic parameters @

For iteration=1,2 ... do
Sample m trajectories under the current policy

AG — 0
Fori=1, ..., mdo
Fort=1, ..., Tdo

Z’Yt - Z — Vo St)

t'>t
Af — A+ A, Vglog(al|si)

A6+ 30D VIl AP
0 all
¢ < BAY

End for

25

A B CDEFGH J] KLMNUOUPMOQRST

More policy gradients: AlphaGo: o

. e [@TOTO ‘e
Overview: e ©
- Mix of supervised learning and reinforcement learning s
- Mix of old methods (Monte Carlo Tree Search) and) [l .5&
recent ones (deep RL) :

. b

SRS R
How to beat the Go world champion: % O

- Featurize the board (stone color, move legality, bias, ...) SRR R R R RN el e
- Initialize policy network with supervised training from professional go games,
then continue training using policy gradient (play against itself from random
previous iterations, +1 / -1 reward for winning / losing)
- Also learn value network (critic)
- Finally, combine combine policy and value networks in a Monte Carlo Tree [Silver et al,
Search algorithm to select actions by lookahead search Nature 2016]

B R R R RERBHRBRB
HNWSRUSON®LY oo wsdo~®@L

N W& U N ®

34

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

RL for Text Generation

Two Central Goals

e Generating human-like, grammatical, and readable text

o l.e., generating natural language

Two Issues of MLE

e Exposure bias [Ranzato et al., 2015]

 Training: predict next token given the previous
ground-truth sequence

« Evaluation: predict next token given the previous
sequence that are generated by the model itself

e Mismatch between training & evaluation {1 3%2 3%3
criteria
o Train to maximize data log-likelihood) Multi-head Self-attention
o Evaluate with, e.g., BLEU
Training: <BOS> V1 Vs

[Ranzato et al., 2015] Sequence Level Training with Recurrent Neural Networks Eva/uatlon: <BOS> yl yZ

Reinforcement Learning (RL)

e Plug in arbitrary reward functions to drive learning
e Fertile research area for robotic and game control

e But ... limited success for training text generation
o Challenges:
= Large sequence space: (vocab-size)textlength ~ (1(©¢)20
= Sparse reward: only after seeing the whole text sequence
o Impossible to train from scratch, usually initialized with MLE
o Unclear improvement vs MLE

RL for Text Generation

DUD DDD . |:|El|:| |
—@—@ " '\ —()

e (Autoregressive) text generation model: \ T

exp fo (Vely<t) — logits |
Eyr exp fH (y’|y<t)

In RL terms: _trajectory, 7 _action, g, [state, s, _ policy mp(a; | s¢) |

Sentence y = (¥, -, Y1) g (Ve | Y<r) =

sequence
re =0 1= reward <

DDD I:llZ]D . DDH -
@

e (Autoregressive) text generation model: \ T

exp fo (Vely<t) — logits |
Eyr exp fH (y’|y<t)

In RL terms: _trajectory, 7 _action, g, [state, s, _ policy mp(a; | s¢) |

 Reward r, =r(s: a;)

RL for Text Generation

Sentence y = (¥, -, Y1) g (Ve | Y<r) =

. Often sparse: 1 = 0fort <T

RL for Text Generation: REINFORCE

Given a dataset of input output pairs, D = {(x¥),y®*)}V,

learn a conditional distribution pg(y | x) that minimizes

expected loss:

Lrr(0)= Y = poly|z)r(y,y*)
(¥)ED YEY X

Sample from the
model distribution

Slide courtesy: Russ Salakhutdinov @ CMU 10707

RL for Text Generation: REINFORCE

Given a dataset of input output pairs, D = {(x¥),y®*)}V,

learn a conditional distribution pg(y | x) that minimizes

expected loss:

Lrr(0)= Y = poly|z)r(y,y*)
(¥)ED YEY X

Y1 Y2 Y3
Sample from the A A A
model distribution
—> Multi-head Self-attention
No exposure bias Training: <BOS> 91 51
Slide courtesy: Russ Salakhutdinov @ CMU 10707 Evaluation: <BOS> Y1 Y2

Off-policy RL
RL fOr TeXt GeneratiOn (Static) Training Data

A skier is skiing down a mountain.
A dog are wags its tail down the boy.
Men paddle her wings on the lake.

The woman is carrying two trays of food.
A barber is giving a haircut.

» Off-policy RL
* e.g., Q-learning
» Implicitly learns the policy m by approximating the Q™ (s, a;)

» Bellman temporal consistency: Q"(s¢,a:) =7+ + ymax Q" (s¢41, ar41)

at+1

* Learns Qg with the regression objective: target Q—network}

1 A L 2
L(0) =E, > G}“t + ymax Qg(St+1,at41)1— QQ(Staat))
At 41 |

. | | N Regression target i
Arbitrary policy, e.g.,

training data
N /

» After learning, induces the policy as a; = argmax, Qg+ (s¢, a)

RL for Text Generation

» Off-policy RL

* e.g., Q-learning

Off-policy RL

(Static) Training Data

A skier is skiing down a mountain.
A dog are wags its tail down the boy.
Men paddle her wings on the lake.

The woman is carrying two trays of food.
A barber is giving a haircut.

» Implicitly learns the policy m by approximating the Q™ (s, a;) W’[SIow updates: gradient

» Bellman temporal consistency: Q"(s¢,a:) =7+ + ymax Q" (s¢41, ar41)

* Learns Qg with the regression objective:

L(0) =E,

4)
Arbitrary policy, e.g.,
training data

o J

» After learning, induces the policy as a; = argmax, Qg+ (s¢, a)

&

2

involves only Qg-value of one

\

_

at+1 action a, (vs 10° vocab size) ,
| fomT oo , 2
I
5 (Tt + ymax Qg(8t+1, ar+1)1— Qo(St, at)>
At41 |
) T~ ~
. . N
Regression target is unstable
» Bootstrapped Q3
* Sparserewardr; =0 (t <T): no "true” training signalj
3

RL for Text Generation

* On-policy RL, e.g., Policy Gradient (PG)

’

On-policy RL

—_ — — —I— == = = =,

Model’s Generated Data

People carrying food on trays.

» Exploration to maximize reward directly | Giles e

A skier on on on on to the mountain.

Horse grass cat dog are.

| Abarbers cooking grass.

W Extremely low data efficiency X

» Oft-policy RL, e.g., Q-learning
& Unstable training due to bootstrapping & sparse reward
& Slow updates due to large action space

L___/F____)

|

Model

Off-policy RL

s

&~ Sensitive to training data quality; lacks on-policy exploration

(Static) Training Data
A skier is skiing down a mountain.
A dog are wags its tail down the boy.
Men paddle her wings on the lake.
The woman is carrying two trays of food.
A barber is giving a haircut.

~\

!

Model

New RL for Text Generation: Soft Q-Learning (SQL)

(Hard) Q-learning SQL
* Goal » Goal: entropy regularized
T P i T I
J(m) = B ;7 " IMaxEnt(T) = Err | > e+ oM (n (- | s¢))
-1=0 - t=0
* Induced policy * Induced policy

- €Xp Qo+ (a¢l|s:)
a; = argmax, Qg+(s: a) T (ar | 5¢) = 2.q €Xp Qg+ (als;)

{Generation model’s “logits” now act as Q-values !}

sequence
r=0 req1=(} I'r=— reward <€——

togits

Q-values ~~4

—)@ —’i] 5

t—1 I

New RL for Text Generation: Soft Q-Learning (SQL)
sQL

(Hard) Q-learning

¢ Goal

JUT) = Bopasr

* Induced policy

|~ T

> o'

L#=0

a; = argmax, Qg (S, a)

* Training objective:

» Based on temporal consistency

WUnstable training / slow updates

JMaxEnt (77) =

* Induced policy

ne*(at ‘ St) — Z

-
LT~

» Goal: entropy regularized

> A+ aH (m (-] se))

exp Qo+ (a¢|s;)

* Training objective:

exp Qo+ (als;)

» Based on path consistency
°" Stable / efficient

Efficient Training via Path Consistency

| , m(als)=
* (Single-step) path consistency
* * * <
V7 (st) =7V (8t41) =71 —log7 (as | s¢) e updates: gradient
. ObJeCt|Ve - Regression target tokens in the vocab

LsoL. pcL(0) =E

[Nachum et al., 2017]

——————————————— | —_
Q— T T I WAL —— -

V™ (s) =log Za, expQ” (s,a’)

exp Q* (s, a)

.. expQ* (s,a’)

involves Qg values of all

~

~ Az(s:, ay), advantage

-

N

SQL matches log probability of token a; with its advantage
V.S.
MLE increases log probability ot token a; blindly

~

/

Efficient Training via Path Consistency

* (Single-step) path consistency

V*(st) = vV (8441) =1¢ —logn™ (ay | s¢)

» QObjective

_ L4 ., T
»CSQL, pcL(0) = E,/ 5 Q—— Vi (8t) + Vg (8t41) + 74

* (Multi-step) path consistency

V*(s¢) =7 V" (s741)

* Objective

LsoL, pcL-ms(0) = E,/

[Nachum et al., 2017]

Regression target

V*(s) =log Za, exp Q™ (s,a’)

) exp Q" (s, a)
m(a|s)= o —"
Za/ eXpQ (S) a)
== ~
updates: gradient
involves Qg values of all
/Gokens in the vocab)
log e (at | st)
| —_—
~ A \

updates: Non-zero
reward signal r as
regression target

J

Efficient Training via Path Consistency

* (Single-step) path consistency

V7 (8t) =7V7 (8t41) = re —log ™ (as | s¢)

» QObjective

Regression target

_ | AN
LsoL. pcL(0) = E 5 Q—— Vi (8:) + V5 (8t41) + 14

/
Arbitrary policy:

* Current policy = on-policy updates

N

e We combine both for the best of the two

» Training data (it available) — off-policy updates

ESQL, PCL-ms(G) = I,/

V™ (s) =log Za, exp Q™ (s,a’)

§ exp Q" (s, a)
m(a|s)= - —
Za/ OXpQ (87 a)
== ~
updates: gradient
involves Qg values of all
/Gokens in the vocab)
log e (at | 8t)
|

~ A

updates: Non-zero
reward signal r as
regression target

~

J

Implementation is easy

model = TransformerLM(...)

lter range(max_titers):
mode "off-policy":
batch ='dataset.sample_b§tch() S G Sl e
sample_ids = batch.text_ids Q_values, Q_values_target, acttions, rewards):

mode == "on-policy": Q_values.logsumexp(dim=-1)
sample_ids = model.decode() Q_values[actions] -V
Q_values = model.forward(sample_ids) target = Q_values_target. logsumexp(dim=-1)

Q_values_target = target_model.forward(sample_1ds) A2 = masked reverse cumsum(

_ A, lengths=actions.sequence_length,
rewards = compute_rewards(sample_1ids) dim=-1)

sgl_loss = multi_step_SQL_objective(F.mse_Lloss(
Q_values, A2, rewards.view(-1, 1) - V_target,

reduction="none"
Q_values_target,)
actions=sample_1ids,
rewards=rewards)

Applications & Experiments

11

Application (l): Learning from Noisy (Negative) Text

» Entailment generation

» QGiven a premise, generates a hypothesis that entails the premise
» "“Sophie is walking a dog outside her house” -> “Sophie is outdoor”

» Negative sample: “"Sophie is inside her house”
 Training data:

» Subsampled 50K (premise, hypothesis) noisy pairs from SNLI

» Average entailment probability: 50%

» 20K examples have entailment probability < 20% (= negative samples)
* Rewards:

» Entailment classifier
* Pretrained LM for perplexity

» BLEU w.r.t input premises (which etfectively prevents trivial generations)

12

Application (l): Learning from Noisy (Negative) Text

» MLE and pure oftf-policy RL (GOLD-s) do not work « rely heavy on data quality
« SQL (full) > MLE+PG (PG alone does not work)
» SQL (single-step only) does not work: the multi-step SQL objective is crucial

Entailment-rate and language-quality vs diversity (top-p decoding w/ ditferent p)

100
A A -®- GOLD-s
90 - MLE
\. 5001 -@- MLE+PG
80 - " ‘i SQL (single)
\ ~® - SQL (full, ours)
, 70- \] 400 -
© % ‘
o4 & >
= 60 - g
< o, S 300
& -
£ \ \ e
B =Y ® &
c
L 200 A
40 -
-®- GOLD-s
MLE
30 -]
~®- MLE+PG 100
20 - :Qt (?Tlgle) > 4
~®- SQL (full, ours) el A AamEBAItAS -
5 6 7 8 9 10 5 6 7 8 9 10
Diversity Diversity

13

Application (ll): Universal Adversarial Attacks

~ Hugging Face

 Attacking entailment classitier : EEor——

l____d

» Generate readable hypotheses that are classified as
“entailment” for all premises S

* Unconditional hypothesis generation model

facebook/bart-large-mnli

* Training data:

» No direct supervision data available

» "Weak"” data: all hypotheses in MultiNLI corpus Previous adversarial algorithms are

not applicable here:
* Rewards: » only attack for specific premise
* not readable

 Entailment classifier to attack

* Pretrained LM for perplexity
* BLEU w.r.t input premises
* Repetition penalty

Application (ll): Universal Adversarial Attacks

« SQL (full) > MLE+PG (PG alone does not work)

* MLE+PG collapses: cannot generate more diverse samples

100 -
. 98 -®@- MLE+PG 1401 —@- MLE+PG -4
01{0-q. ®q ~®- SQL (ours) 1201 -®- sQL (ours) !
S 80 T~ ’
i e _ 100~
— /
%-' 70 - \\. .?f; 80 - !
i M a ®
é 60 .\ a 60 1 !
8 ‘ Q.
5 207 \ 40 -
40 L
s 20{ @-0---0--* _
30 - » i o--00e%
2 4 6 8 10 2 4 6 10
Diversity Diversity
Model Generation Rate
MLE+PG 1IL°8: 90.48
SQL (ours) | the person saint-pierre-et-saint- 97.40
paul 1s saint-pierre-et-saint-paul .

Samples of highest attack rate

15

Application (lll): Prompt Generation for Controlling LMs

» Generate prompts to steer pretrained LM to produce topic-specitic sentences

Prompt
') - 1/ '/ — — — "
science Generator | —> “the chemical microscope is In summary
topic prompt (model’s output) input sentence
Reward Function
P o e e el vt e (o ST ey e e o s 1 A e G e P M S e S L A R SR e \
| Generated
| Sentence 1
reward: — |
|

T e e s e

average score Generated
| «— SentenceN

AN SN B B B B S S B B I SIS BEEEE GBI BEEEE BEEEE B IS I BEEEE AR SIS B BT B B B e

Existing gradient-based prompt tuning methods are not applicable due to discrete components

16

70 -

60 -

50 -

40 -

30 §

20 -

10 -

Application (lll): Prompt Generation for Controlling LMs

» Steered decoding: PPLM, GeDi

« SQL achieves best accuracy-fluency trade-off
* Prompt control by SQL, MLE+PG > PPLM, GeDi

 and much faster at inference!
« SQL (off-policy only) > MLE

PPLM GeDi MLE (§) SQL (off, 5)

12.69 123.88 25.70 25.77
MLE+PG (5/10/15) SQL (5/10/15, ours)
25.52/28.16/28.71 25.94/26.95/29.10

Language perplexity

Model PPLM GeD1 SQL
Seconds 5.58 106 0.07

Topic accuracy Time cost for generating one sentence

17

Promising results on standard supervised tasks

» SQL from scratch is competitive with MLE in terms ot performance and stability

 Results on E2E dataset

e PG from scratch fails

20+

40 1

30 -

Model | MLE PG MLE+PG SQL (ours)
val 45.67 0.00 49.08 47.04 2 p—
test 4175 0.00 42.26 41.70 PG from scratch — P
10 - - MLE<4+PG
BLEU scores Q SQL (ours)

0 20000 40000 60000 80000 100000

Training curves

Promising results on standard supervised tasks

» SQL from scratch is competitive with MLE in terms ot performance and stability

 Results on E2E dataset

e PG from scratch fails

» SQL is less sensitive to hyperparameters than MLE+PG

50

40-

30

20+

10

~—— MLE+PG

20000

40000

60000 80000 100000

L3

15.01

12.51

10.0

i

5.0

i

0.0 -

h MV mev

W\W\”ud\ fw\,fvw'w‘uwm’wm ﬂu"“\\m’\ﬂ\/‘“-'

ﬂk\/‘"ﬂ‘ﬁl
Ay

\ l

e MLE+PG
SQL (ours)

0

50000

100000

Training curves of different reward scales

150000 200000

19

Key Takeaways

* On-policy RL, e.g., Policy Gradient (PG)

W Extremely low data efficiency

» Oft-policy RL, e.g., Q-learning
Wf Unstable training; slow updates; sensitive to training data quality

« SQL

» Objectives based on path consistency
** Combines the best of on-/oft-policy, while solving the difficulties
~ from scratch given sparse reward

" given large action space

» Opens up enormous opportunities for integrating more advanced RL for text generation

20

Questions?

On policy RL
RL for Text Generation: REINFORCE M"" v

|

|Ak tthm ntain. 0.00 |
Ho g td oga 0.00

|Ab rbers cooking gra 0.23 |

{ o J

Given a dataset of input output pairs, D = {(x¥,y®*)}V, S o _’I‘ S |

learn a conditional distribution pg(y | x) that minimizes

expected loss:

Lrr(0)= Y = poly|z)r(y,y")

(x,y*)ED y&)yV

On-policy RL: generate text samples from the current policy py itself
* On-policy exploration to maximize the reward directly

/\

Extremely low data efficiency: most samples
from my are gibberish with zero reward

