DSC291: Advanced Statistical Natural Language Processing

Sequence Tagging Parsing

Zhiting Hu Lecture 11, May 3, 2022

HALICIOĞLU DATA SCIENCE INSTITUTE

Outline

- Sequence Tagging/Labeling
- Parsing

Sequence Labeling

[Slides adapted from UW CSE 447 by Noah Smith]

Problem statement: given a sequence of n words x, assign each a label from \mathcal{L} . Let $L = |\mathcal{L}|$.

Every approach we see today will cast the problem as:

$$egin{aligned} \hat{m{y}} = rgmax \operatorname{Score}(m{x},m{y};m{ heta})\ m{y} \in \mathcal{L}^n \end{aligned}$$

Naïvely, that's a classification problem where the number of possible 'labels" (output sequences) depends on the input and is $O(L^n)$ in size!

Model	0	1	2	3	4
Score	$e(\mathbf{r} \ i \ u)$	$e(\mathbf{r} \mathbf{i} \mathbf{n})$	emission/	$s(x_i, y_i) +$	$s(\mathbf{r} \ i \ u \ u \ z)$
decomp.	$S(\boldsymbol{x}, \iota, \boldsymbol{y}_{l})$	$s(\boldsymbol{x}, \iota, \boldsymbol{g}_{1:i})$	transition	$s(y_i, y_{i+1})$	$S(\boldsymbol{x}, \iota, g_{\iota}, g_{\iota+1})$
learn	SGD	?	count &	?	?
ICAIII			normalize		
decode	local	beam search	Viterbi	Viterbi	Viterbi

model v.1

Model	0	1	2	3	4
Score	$s(\mathbf{r} \mid \mathbf{y})$	$s(\mathbf{r} i \mathbf{u}_{\perp})$	emission/	$s(x_i, y_i) +$	$s(\mathbf{r}_{i}, y_{i+1})$
decomp.	$[S(\boldsymbol{w}, \iota, g_i)]$	$S(\bm{w}, t, \bm{g}_{1:i})$	transition	$s(y_i, y_{i+1})$	$S(\boldsymbol{x}, \iota, g_i, g_{i+1})$
learn	SGD	?	count &	?	?
			normalize		
decode	local	beam	Viterbi	Viterbi	Viterbi
		search			
		<i>X</i> 1	X2	X 3	
xi ~	pemission (X	<i>yi</i>) ↑	1	1	
		<i>y</i> ₁ –	$y_2 \rightarrow$	$y_3 \rightarrow$	\bigcirc

 $y_{i+1} \sim p_{transition}(Y \mid y_i)$

Model	0	1	2	3	4
Score	$c(\boldsymbol{m} \mid \boldsymbol{a}, \boldsymbol{u})$	$c(\boldsymbol{\alpha} \mid \boldsymbol{\alpha} \mid \boldsymbol{\beta})$	emission/	$s(x_i, y_i) +$	$e(\alpha i \alpha \alpha \alpha)$
decomp.	$S(\boldsymbol{x}, i, y_i)$	$s(\boldsymbol{x}, i, \boldsymbol{y}_{1:i})$	transition	$s(y_i, y_{i+1})$	$S(\boldsymbol{x}, i, y_i, y_{i+1})$
loorn	SGD	?	count &	?	?
learn			normalize		
decode	local	beam	Viterbi	Viterbi	Viterbi
		search			

Model	0	1	2	3	4
Score	$e(\boldsymbol{\alpha}, \boldsymbol{i}, \boldsymbol{u})$	$c(\boldsymbol{\alpha} \mid \boldsymbol{\alpha} \mid \boldsymbol{\beta})$	emission/	$s(x_i, y_i) +$	$a(\mathbf{\alpha}, \mathbf{i}, \mathbf{u}, \mathbf{u}, \mathbf{v})$
decomp.	$S(\boldsymbol{x}, \iota, y_i)$	$S(x, i, y_{1:i})$	transition	$s(y_i, y_{i+1})$	$S(\boldsymbol{x}, i, y_i, y_{i+1})$
loarn	SGD	?	count &	?	?
lean			normalize		
decode	local	beam	Viterbi Vite	Vitorbi	Vitarbi
	iocai	search		VILEIDI	VILEIDI

s(**x**, yi, yi+1)

Model	0	1	2	3	4
Score	$e(\boldsymbol{\alpha}, \boldsymbol{i}, \boldsymbol{u})$	$c(\boldsymbol{\alpha} \mid \boldsymbol{\alpha} \mid \boldsymbol{\beta})$	emission/	$s(x_i, y_i) +$	$a(\mathbf{\alpha}, \mathbf{i}, \mathbf{u}, \mathbf{u}, \mathbf{v})$
decomp.	$S(\boldsymbol{x}, \iota, y_i)$	$S(x, i, y_{1:i})$	transition	$s(y_i, y_{i+1})$	$S(\boldsymbol{x}, \iota, y_i, y_{i+1})$
loarn	SGD	?	count &	?	?
learn			normalize		
decode	local	beam	Vitorbi	Vitorbi	Vitarbi
	iocai	search	VILEIDI		VILEIDI

s(**x**, yi, yi+1)

Recap: Inference (Decoding) -- Viterbi Algorithm

Let $\heartsuit_i(y)$ be the score of the best label sequence for $x_{1:i}$ that ends in y. It is defined recursively:

$$\begin{aligned} \nabla_{n+1}(\bigcirc) &= \max_{y_n \in \mathcal{L}} s(\boldsymbol{x}, n, y_n, \bigcirc) + \boxed{\bigtriangledown_n(y_n)} \\ \nabla_n(y) &= \max_{y_{n-1} \in \mathcal{L}} s(\boldsymbol{x}, n-1, y_{n-1}, y) + \boxed{\bigtriangledown_{n-1}(y_{n-1})} \\ \nabla_{n-1}(y) &= \max_{y_{n-2} \in \mathcal{L}} s(\boldsymbol{x}, n-2, y_{n-2}, y) + \boxed{\bigtriangledown_{n-2}(y_{n-2})} \\ &\vdots \\ \nabla_i(y) &= \max_{y_{i-1} \in \mathcal{L}} s(\boldsymbol{x}, i-1, y_{i-1}, y) + \boxed{\bigtriangledown_{i-1}(y_{i-1})} \\ &\vdots \\ \nabla_1(y) &= s(\boldsymbol{x}, 0, \bigcirc, y) \end{aligned}$$

$$\heartsuit_1(y) = s(\boldsymbol{x}, 0, \bigcirc, y)$$

$$\heartsuit_i(y) = \max_{y_{i-1} \in \mathcal{L}} s(\boldsymbol{x}, i-1, y_{i-1}, y) + \bigcirc_{i-1}(y_{i-1})$$

$$\heartsuit_n(y) = \max_{y_{n-1} \in \mathcal{L}} s(\boldsymbol{x}, n-1, y_{n-1}, y) + [\heartsuit_{n-1}(y_{n-1})]$$

$$\heartsuit_{n+1}(\bigcirc) = \max_{y_n \in \mathcal{L}} s(\boldsymbol{x}, n, y_n, \bigcirc) + [\heartsuit_n(y_n)]$$

Recap: Inference (Decoding) -- Viterbi Algorithm

Input: scores $s(\boldsymbol{x}, i, y, y')$, for all $i \in \{0, \dots, n\}$, $y, y' \in \mathcal{L}$

Output: \hat{y}

1. Base case:
$$\mathfrak{O}_1(y) = s(\boldsymbol{x}, 0, \bigcirc, y)$$

2. For $i \in \{2, \ldots, n+1\}$:
 \blacktriangleright Solve for $\mathfrak{O}_i(*)$ and $\mathrm{bp}_i(*)$.
 $\mathfrak{O}_i(y) = \max_{y_{i-1} \in \mathcal{L}} s(\boldsymbol{x}, i-1, y_{i-1}, y) + \mathfrak{O}_{i-1}(y_{i-1}),$
 $\mathrm{bp}_i(y) = \operatorname*{argmax}_{y_{i-1} \in \mathcal{L}} s(\boldsymbol{x}, i-1, y_{i-1}, y) + \mathfrak{O}_{i-1}(y_{i-1})$

(At n+1 we're only interested in $y = \bigcirc$.)

3. $\hat{y}_{i+1} \leftarrow \bigcirc$ 4. For $i \in \{n, \dots, 1\}$: $\hat{y}_i \leftarrow bp_{i+1}(\hat{y}_{i+1})$

Recap: Inference (Decoding) -- Viterbi Algorithm

• Viterbi Asymptotics

Space: need to store s, and fill in the cells above. $O(nL^2)$ for s (in the most general case, often less), O(nL) for cells

Runtime: each cell requires an "argmax." $O(nL^2)$

Back to s

We haven't said much about the function that scores candidate label pairs at different positions, s(x, i, y, y').

This function is very important; two common choices are:

- Expert-designed, task-specific features $\mathbf{f}(\boldsymbol{x}, i, y, y')$ and weights $\boldsymbol{\theta}$
- A neural network that encodes x_i in context, y_i , and y_{i+1} and gives back a goodness score

Either way, let θ denote the parameters of s. From now on, we'll use $s(x, i, y, y'; \theta)$ and $\text{Score}(x, y; \theta)$ to emphasize that "s" is a function of parameters θ we need to estimate.

Probabilistic View of Learning

As we've done before, we start with the principle of maximum likelihood to estimate θ :

$$\begin{split} \boldsymbol{\theta}^* &= \arg \max_{\boldsymbol{\theta} \in \mathbb{R}^d} \prod_{t=1}^T p(\boldsymbol{Y}_t = \boldsymbol{y} \mid \boldsymbol{X}_t = \boldsymbol{x} \cdot; \boldsymbol{\theta}) \\ &= \arg \max_{\boldsymbol{\theta} \in \mathbb{R}^d} \sum_{t=1}^T \log p(\boldsymbol{Y}_t = \boldsymbol{y} \mid \boldsymbol{X}_t = \boldsymbol{x} ; \boldsymbol{\theta}) \\ &= \arg \min_{\boldsymbol{\theta} \in \mathbb{R}^d} \sum_{t=1}^T \underbrace{-\log p(\boldsymbol{Y}_t = \boldsymbol{y} \mid \boldsymbol{X}_t = \boldsymbol{x} ; \boldsymbol{\theta})}_{\text{sometimes called "log loss" or "cross entropy"}} \end{split}$$

Next, we'll drill down into " $p(\mathbf{Y} = \mathbf{y}_t \mid \mathbf{X} = \mathbf{x}_t; \boldsymbol{\theta})$."

Conditional Random Fields (CRFs)

Lafferty et al. (2001)

CRFs are a tremendously influential model that generalizes multinomial logistic regression to structured outputs like sequences.

$$p_{\text{CRF}}(\boldsymbol{y} \mid \boldsymbol{x}; \boldsymbol{\theta}) = \frac{\exp \text{Score}(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta})}{Z(\boldsymbol{x}; \boldsymbol{\theta})}$$
$$Z(\boldsymbol{x}; \boldsymbol{\theta}) = \sum_{\boldsymbol{y'} \in \mathcal{Y}(\boldsymbol{x})} \exp \text{Score}(\boldsymbol{x}, \boldsymbol{y'}; \boldsymbol{\theta})$$
$$-\log p_{\text{CRF}}(\boldsymbol{y} \mid \boldsymbol{x}; \boldsymbol{\theta}) = -\underbrace{\text{Score}(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta})}_{\text{"hope"}} + \underbrace{\log Z(\boldsymbol{x}; \boldsymbol{\theta})}_{\text{"fear"}}$$

So, our "CRF" :

- Uses Viterbi for decoding (our v. 4 sequence labeler)
- Trains parameters to maximize likelihood (like MLR and NNs)

Sequence-Level Log Loss

Here's the maximum likelihood learning problem (equivalently, sequence-level log loss):

$$oldsymbol{ heta}^* = \operatorname*{argmin}_{oldsymbol{ heta} \in \mathbb{R}^d} \sum_{t=1}^T -\operatorname{Score}(oldsymbol{x}_t, oldsymbol{y}_t; oldsymbol{ heta}) + \log Z(oldsymbol{x}_t; oldsymbol{ heta})$$

If we can calculate and differentiate (w.r.t. θ) the Score and Z functions, we can use SGD to learn.

Calculating $Z(x; \theta)$

Good news! The algorithm that gives us Z is almost exactly like the Viterbi algorithm.

Forward algorithm: sums the $\exp \text{Score}$ values for all label sequences, given x, in the same asymptotic time and space as Viterbi.

Let $\alpha_i(y)$ be the sum of all (exponentiated) scores of label prefixes of length i, ending in y.

Some Algebra

Given the decomposition

Score
$$(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}) = \sum_{i=0}^{n} s(\boldsymbol{x}, i, y_i, y_{i+1}; \boldsymbol{\theta}),$$

it holds that

$$\exp \operatorname{Score}(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}) = \prod_{i=0}^{n} e^{s(\boldsymbol{x}, i, y_i, y_{i+1}; \boldsymbol{\theta})},$$

and therefore

$$Z(\boldsymbol{x};\boldsymbol{\theta}) = \sum_{\boldsymbol{y'}\in\mathcal{Y}(\boldsymbol{x})} \prod_{i=0}^{n} e^{s(\boldsymbol{x},i,y'_i,y'_{i+1};\boldsymbol{\theta})}$$

Forward Algorithm

Input: scores $s(\boldsymbol{x}, i, y, y'; \boldsymbol{\theta})$, for all $i \in \{0, \dots, n\}$, $y, y' \in \mathcal{L}$

Output: $Z(\boldsymbol{x}; \boldsymbol{\theta})$

1. Base case: $\alpha_1(y) = e^{s(\boldsymbol{x}, 0, \bigcirc, y; \boldsymbol{\theta})}$ 2. For $i \in \{2, \dots, n+1\}$: \blacktriangleright Solve for $\alpha_i(*)$.

$$\alpha_i(y) = \sum_{y_{i-1} \in \mathcal{L}} e^{s(\boldsymbol{x}, i-1, y_{i-1}, y; \boldsymbol{\theta})} \times \alpha_{i-1}(y_{i-1})$$

(At n+1 we're only interested in $y = \bigcirc$.)

3. Return $\alpha_{n+1}(\bigcirc)$, which is equal to $Z(\boldsymbol{x};\boldsymbol{\theta})$.

Key Takeaways

• HMM (generative model) - models joint distribution

$$x_{i} \sim p_{emission}(X \mid y_{i}) \uparrow \qquad \uparrow \qquad \uparrow \qquad p_{i=1} p(y_{i} \mid y_{i-1}) p(x_{i} \mid y_{i})$$

$$y_{i+1} \sim p_{transition}(Y \mid y_{i})$$

$$p(x, y) = \prod_{i=1}^{N} p(y_{i} \mid y_{i-1}) p(x_{i} \mid y_{i})$$

• CRF (discriminative model) - directly models conditional distribution

$$p_{\text{CRF}}(\boldsymbol{y} \mid \boldsymbol{x}; \boldsymbol{\theta}) = \frac{\exp \text{Score}(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta})}{Z(\boldsymbol{x}; \boldsymbol{\theta})}$$

$$ext{Score}(\mathbf{x},\,\mathbf{y}) = \sum_{i=0}^n s(\mathbf{x},i,y_i,y_{i+1})$$

Key Takeaways

- HMM (generative model) models joint distribution
- CRF (discriminative model) directly models conditional distribution
- Inference: Viterbi algorithm
- Learning

[Slides adapted from UW CSE 447 by Noah Smith; UCB Info 159/259 by David Bamman]

Motivation

As data, we tend to view natural language text as sequences (of words, wordpieces, or characters, depending on the NLP application).

But language obeys implicit rules of grammar, and it carries meaning.

- It's helpful to consider an analogy to programming languages, which have syntax and semantics; well-formed programs can be compiled and executed to carry out a task.
- Well-formed natural language strings can be understood by others.

Computational models that analyze natural language syntax and semantics typically map into **structures** like trees, graphs, and more.

Linguistic Analysis

- Syntax: rules governing grammaticality or well-formedness of strings, relative to a language
- Semantics: how the meaning of an utterance is constructed, grounded in "the world" (or a proxy to the world)
- Pragmatics: the intended meaning by a speaker, in a given social context

Each has many theories, and none of them is complete!

Syntax

 With syntax, we're moving from labels for discrete items — documents (sentiment analysis), tokens (POS tagging, NER) — to the structure between items.

I shot an elephant in my pajamas

Syntax

- With syntax, we're moving from labels for discrete items documents (sentiment analysis), tokens (POS tagging, NER) — to the structure between items.
- Syntax is fundamentally about the hierarchical structure of language and (in some theories) which sentences are grammatical in a language

words \rightarrow phrases \rightarrow clauses \rightarrow sentences

Formalisms

Dependency grammar (Mel'čuk 1988; Tesnière 1959; Pāṇini)

Constituency

- Groups of words ("constituents") behave as single units
 - Noun Phrases: groups of tokens that act Like nouns
 - ► Harry the Horse
 - the Broadway coppers
 - ► they
 - a high-class spot such as Mindy's
 - ► the reason he comes into the Hot Box
 - three parties from Brooklyn

Constituency

- Groups of words ("constituents") behave as single units
 - Noun Phrases: groups of tokens that act Like nouns
- Linguists characterize constituents in a number of ways, including:
 - ▶ where they occur (e.g., "NPs can occur before verbs")
 - where they can move in variations of a sentence
 - On September 17th, I'd like to fly from Atlanta to Denver
 - I'd like to fly on September 17th from Atlanta to Denver
 - I'd like to fly from Atlanta to Denver on September 17th
 - what parts can move and what parts can't
 - *On September I'd like to fly 17th from Atlanta to Denver
 - what they can be conjoined with
 - I'd like to fly from Atlanta to Denver on September 17th and in the morning

Context-Free Grammar (CFG)

- Take constituents to be the main building block of natural language syntax, we can attempt to formalize what makes a string grammatical in a language.
- A CFG gives a formal way to define what meaningful constituents are and exactly how a constituent is formed out of other constituents (or words). It defines valid structure in a language.

Context-Free Grammar (CFG)

A context-free grammar consists of:

- A finite set of nonterminal symbols N (sometimes called "categories")
 - $\blacktriangleright \text{ A start symbol } S \in \mathcal{N}$
- \blacktriangleright A finite alphabet $\Sigma,$ called "terminal" symbols, distinct from ${\mathcal N}$
- Production rule set \mathcal{R} , each of the form " $N
 ightarrow oldsymbol{lpha}$ " where
 - \blacktriangleright The lefthand side N is a nonterminal from ${\cal N}$
 - The righthand side α is a sequence of zero or more terminals and/or nonterminals: $\alpha \in (\mathcal{N} \cup \Sigma)^*$
 - Special case: Chomsky normal form constrains α to be either a single terminal symbol or two nonterminals

An Example CFG for a Tiny Bit of English

From Jurafsky and Martin (forthcoming)

 $S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow VP$ $NP \rightarrow Pronoun$ $\mathsf{NP} \rightarrow \mathsf{Proper-Noun}$ $NP \rightarrow Det Nominal$ Nominal \rightarrow Noun Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP PP$ $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $PP \rightarrow Preposition NP$

 $\begin{array}{l} \mathsf{Det} \to \mathsf{that} \mid \mathsf{this} \mid \mathsf{a} \\ \mathsf{Noun} \to \mathsf{book} \mid \mathsf{flight} \mid \mathsf{meal} \mid \mathsf{money} \\ \mathsf{Verb} \to \mathsf{book} \mid \mathsf{include} \mid \mathsf{prefer} \\ \mathsf{Pronoun} \to \mathsf{I} \mid \mathsf{she} \mid \mathsf{me} \\ \mathsf{Proper-Noun} \to \mathsf{Houston} \mid \mathsf{NWA} \\ \mathsf{Aux} \to \mathsf{does} \\ \mathsf{Preposition} \to \mathsf{from} \mid \mathsf{to} \mid \mathsf{on} \mid \mathsf{near} \\ \mid \mathsf{through} \end{array}$

"Lexicon"

This term is used in NLP to refer to an object that associates information with words.

In a CFG, the "lexicon rules" are the rules that map a nonterminal (usually a part of speech) to a single word.

Derivation

- Given a CFG, a derivation is the sequence of productions used to generate a string of words (e.g., a sentence), often visualized as a parse tree.
- Language: the formal language defined by a CFG is the set of strings derivable from *S* (start symbol)

Example Derivation

The phrase-structure tree represents both the syntactic structure of the sentence and the **derivation** of the sentence under the grammar. E.g., VP corresponds to the rule VP \rightarrow Verb NP.

Example Derivation

Every internal node is a phrase

- my pajamas
- in my pajamas
- elephant in my pajamas
- an elephant in my pajamas
- shot an elephant in my pajamas
- I shot an elephant in my pajamas

Each phrase could be replaced by another of the same type of constituent

Where do natural language CFGs come from?

Building a CFG for a natural language by hand is really hard (Jurafsky and Martin, forthcoming, chapter 10).

- Need lots of categories to make sure all and only grammatical sentences are included.
- Categories tend to start exploding combinatorially.
- Alternative grammar formalisms are typically used for manual grammar construction; these are often based on constraints and a powerful algorithmic tool called *unification*.

A data-driven approach:

- Build a corpus of annotated sentences, called a treebank. (e.g., the Penn Treebank, Marcus et al., 1993.)
- 2. Extract rules from the treebank.
- 3. Optionally, use statistical models to generalize the rules.

collections of sentences annotated with syntactic structure

Example from the Penn Treebank

. . . 989 VP \rightarrow VBG S 985 NP-SBJ \rightarrow NN 983 PP-MNR \rightarrow IN NP 983 NP-SBJ \rightarrow DT 969 VP \rightarrow VBN VP

 $40717 \text{ PP} \rightarrow \text{IN NP}$ 33803 S \rightarrow NP-SBJ VP 22513 NP-SBJ \rightarrow -NONF-21877 NP \rightarrow NP PP 12922 VP \rightarrow TO VP 98 VP \rightarrow VBD PP-TMP 11881 PP-LOC \rightarrow IN NP 11467 NP-SBJ \rightarrow PRP 11378 NP \rightarrow -NONF-11291 NP \rightarrow NN

Some Penn Treebank Rules with Counts

100 VP \rightarrow VBD PP-PRD 100 PRN \rightarrow : NP : 100 NP \rightarrow DT US 100 NP-CLR \rightarrow NN 20740 NP \rightarrow DT NN 99 NP-SBJ-1 \rightarrow DT NNP 14153 S \rightarrow NP-SBJ VP . 98 VP \rightarrow VBN NP PP-DIR 98 PP-TMP \rightarrow VBG NP 97 VP \rightarrow VBD ADVP-TMP VP 10 WHNP-1 \rightarrow WRB JJ 10 VP \rightarrow VP CC VP PP-TMP $10 \text{ VP} \rightarrow \text{VP CC VP}$ ADVP-MNR 10 VP \rightarrow VBZ S , SBAR-ADV 10 VP \rightarrow VB7 S ADVP-TMP

Penn Treebank Rules: Statistics

32,728 rules in the training section (not including 52,257 lexicon rules)

4,021 rules in the development section

overlap: 3,128

(Phrase-Structure) Recognition and Parsing

Given a CFG $(\mathcal{N}, S, \Sigma, \mathcal{R})$ and a sentence \boldsymbol{x} , the **recognition** problem is:

Is x in the language of the CFG?

The proof is a derivation of x using the rules \mathcal{R} .

Related problem: **parsing**:

Show one or more derivations for x, using \mathcal{R} .

With reasonable grammars, the number of parses is exponential in $|m{x}|.$

Syntactic Ambiguity

Ambiguity is the most serious problem faced by syntactic parsers

Parser Evaluation

Represent a parse tree as a collection of tuples $\langle \langle \ell_1, i_1, j_1 \rangle, \langle \ell_2, i_2, j_2 \rangle, \dots, \langle \ell_n, i_n, j_n \rangle \rangle$, where

- \blacktriangleright ℓ_k is the nonterminal labeling the kth phrase
- \blacktriangleright i_k is the index of the first word in the kth phrase

• j_k is the index of the last word in the *k*th phrase Example:

Convert gold-standard tree and system hypothesized tree into this representation, then estimate precision, recall, and F_1 .

Parser Evaluation

Tree Comparison Example

Two Views of Parsing

- 1. Incremental search: the state of the search is the partial structure built so far; each action incrementally extends the tree.
 - Often greedy, with a statistical classifier deciding what action to take in every state.
- 2. Discrete optimization: define a scoring function and seek the tree with the highest score.

Probabilistic Context-Free Grammar (PCFG)

- A basic CFG allows us to check whether a sentence is grammatical in the language it defines
- Binary decision: a sentence is either in the language (a series of productions yields the words we see) or it is not.
- PCFG: each production is also associated with a probability.
- This lets us calculate the probability of a parse for a given sentence
 - For a given parse tree T for sentence S comprised of n rules (each $A \rightarrow \beta$):

$$P(T,S) = \prod_{i}^{n} P(\beta \mid A)$$

Probabilistic Context-Free Grammar (PCFG)

- A probabilistic context-free grammar consists of:
 - \blacktriangleright A finite set of nonterminal symbols ${\cal N}$

 $\blacktriangleright \text{ A start symbol } S \in \mathcal{N}$

 \blacktriangleright A finite alphabet $\Sigma,$ called "terminal" symbols, distinct from ${\mathcal N}$

Production rule set \mathcal{R} , each of the form " $N
ightarrow oldsymbol{lpha}$ " where

- \blacktriangleright The lefthand side N is a nonterminal from ${\mathcal N}$
- The righthand side α is a sequence of zero or more terminals and/or nonterminals: $\alpha \in (\mathcal{N} \cup \Sigma)^*$
 - Special case: Chomsky normal form constrains α to be either a single terminal symbol or two nonterminals

For each $N \in \mathcal{N}$, a probability distribution over the rules where N is the lefthand side, $p(* \mid N)$.

PCFG Scores Trees

We can write the parsing problem as finding the best-scoring tree:

$$egin{argmax}{ll} egin{argmax}{ll} t = rgmax \operatorname{Score}(m{t}) \ m{t} \in \mathcal{T}_{m{x}} \end{aligned}$$

PCFGs view each tree t as a "bag of rules" (from \mathcal{R}), and define:

$$Score(\boldsymbol{t}) = p(\boldsymbol{t})$$
$$= \prod_{(N \to \alpha) \in \mathcal{R}} p(\alpha \mid N)^{count(N \to \alpha; \boldsymbol{t})}$$

S

1

ヘロト 人間 ト 人 ヨト 人 ヨト

2

うへで 41/136

Write down the start symbol. Here: S

Probability:

Choose a rule from the "S" distribution. Here: S \rightarrow Aux NP VP

Probability:

p(Aux NP VP | S)

4 ロ ト 4 日 ト 4 三 ト 4 三 ト 三 の 9 ()
42 / 136

Choose a rule from the "Aux" distribution. Here: $\mathsf{Aux} \to \mathsf{does}$

Probability:

 $p(\mathsf{Aux} \; \mathsf{NP} \; \mathsf{VP} \; | \; \mathsf{S}) \cdot p(\mathsf{does} \; | \; \mathsf{Aux})$

イロト 不得 トイヨト イヨト

∃ ∽ < ⊂ 43 / 136

Choose a rule from the "NP" distribution. Here: NP \rightarrow Det Noun

Probability:

 $p(Aux NP VP | S) \cdot p(does | Aux) \cdot p(Det Noun | NP)$

Choose a rule from the "Det" distribution. Here: Det \rightarrow this Probability:

 $p(\mathsf{Aux} \; \mathsf{NP} \; \mathsf{VP} \; | \; \mathsf{S}) \cdot p(\mathsf{does} \; | \; \mathsf{Aux}) \cdot p(\mathsf{Det} \; \mathsf{Noun} \; | \; \mathsf{NP}) \cdot p(\mathsf{this} \; | \; \mathsf{Det})$

Choose a rule from the "Noun" distribution. Here: Noun \rightarrow flight Probability:

 $p(\mathsf{Aux} \; \mathsf{NP} \; \mathsf{VP} \; | \; \mathsf{S}) \cdot p(\mathsf{does} \; | \; \mathsf{Aux}) \cdot p(\mathsf{Det} \; \mathsf{Noun} \; | \; \mathsf{NP}) \cdot p(\mathsf{this} \; | \; \mathsf{Det}) \\ \cdot p(\mathsf{flight} \; | \; \mathsf{Noun})$

Choose a rule from the "VP" distribution. Here: $VP \rightarrow Verb NP$ Probability:

$$\begin{split} p(\mathsf{Aux} ~\mathsf{NP} ~\mathsf{VP} \mid \mathsf{S}) \cdot p(\mathsf{does} \mid \mathsf{Aux}) \cdot p(\mathsf{Det} ~\mathsf{Noun} \mid \mathsf{NP}) \cdot p(\mathsf{this} \mid \mathsf{Det}) \\ \cdot p(\mathsf{flight} \mid \mathsf{Noun}) \cdot p(\mathsf{Verb} ~\mathsf{NP} \mid \mathsf{VP}) \end{split}$$

Choose a rule from the "Verb" distribution. Here: Verb \rightarrow include Probability:

$$\begin{split} p(\mathsf{Aux} ~\mathsf{NP} ~\mathsf{VP} \mid \mathsf{S}) \cdot p(\mathsf{does} \mid \mathsf{Aux}) \cdot p(\mathsf{Det} ~\mathsf{Noun} \mid \mathsf{NP}) \cdot p(\mathsf{this} \mid \mathsf{Det}) \\ \cdot p(\mathsf{flight} \mid \mathsf{Noun}) \cdot p(\mathsf{Verb} ~\mathsf{NP} \mid \mathsf{VP}) \cdot p(\mathsf{include} \mid \mathsf{Verb}) \end{split}$$

Choose a rule from the "NP" distribution. Here: NP \rightarrow Det Noun

Probability:

 $p(\mathsf{Aux} \mathsf{NP} \mathsf{VP} | \mathsf{S}) \cdot p(\mathsf{does} | \mathsf{Aux}) \cdot p(\mathsf{Det} \mathsf{Noun} | \mathsf{NP}) \cdot p(\mathsf{this} | \mathsf{Det})$

- $\cdot p(\mathsf{flight} \mid \mathsf{Noun}) \cdot p(\mathsf{Verb} \; \mathsf{NP} \mid \mathsf{VP}) \cdot p(\mathsf{include} \mid \mathsf{Verb})$
- $\cdot \ p(\mathsf{Det} \ \mathsf{Noun} \mid \mathsf{NP})$

Choose a rule from the "Det" distribution. Here: $\mathsf{Det} \to \mathsf{a}$ Probability:

 $p(\mathsf{Aux} \; \mathsf{NP} \; \mathsf{VP} \; | \; \mathsf{S}) \cdot p(\mathsf{does} \; | \; \mathsf{Aux}) \cdot p(\mathsf{Det} \; \mathsf{Noun} \; | \; \mathsf{NP}) \cdot p(\mathsf{this} \; | \; \mathsf{Det})$

- $\cdot \ p(\mathsf{flight} \mid \mathsf{Noun}) \cdot p(\mathsf{Verb} \ \mathsf{NP} \mid \mathsf{VP}) \cdot p(\mathsf{include} \mid \mathsf{Verb})$
- $\cdot \ p(\mathsf{Det} \ \mathsf{Noun} \ | \ \mathsf{NP}) \cdot p(\mathsf{a} \ | \ \mathsf{Det})$

Choose a rule from the "Noun" distribution. Here: Noun \rightarrow meal Probability:

 $p(\mathsf{Aux} \mathsf{NP} \mathsf{VP} \mid \mathsf{S}) \cdot p(\mathsf{does} \mid \mathsf{Aux}) \cdot p(\mathsf{Det} \mathsf{ Noun} \mid \mathsf{NP}) \cdot p(\mathsf{this} \mid \mathsf{Det})$

- $\cdot \ p(\mathsf{flight} \mid \mathsf{Noun}) \cdot p(\mathsf{Verb} \ \mathsf{NP} \mid \mathsf{VP}) \cdot p(\mathsf{include} \mid \mathsf{Verb})$
- $\cdot \ p(\mathsf{Det} \ \mathsf{Noun} \ | \ \mathsf{NP}) \cdot p(\mathsf{a} \ | \ \mathsf{Det}) \cdot p(\mathsf{meal} \ | \ \mathsf{Noun})$

Parsing with PCFGs

- How to set the probabilities p(righthand side | lefthand side)?
 - Counting / Learning (we won't discuss in this class due to time limit)

• How to decode/parse?

Probabilistic CKY (Cocke-Kasami-Younger)

(Cocke and Schwartz, 1970; Kasami, 1965; Younger, 1967)

Input:

- ▶ a PCFG $(\mathcal{N}, S, \Sigma, \mathcal{R}, p(* | *))$, in **Chomsky normal form**
- \blacktriangleright a sentence x (let n be its length)

Output: If x is in the language of the grammar.

 $\underset{\boldsymbol{t}\in\mathcal{T}_{\boldsymbol{x}}}{\operatorname{argmax}}\log p(\boldsymbol{t});$

undefined if not.

Probabilistic CKY

Probabilistic CKY is closely related to the Viterbi algorithm; it is a dynamic programming algorithm. The recurrence is defined around

 $\heartsuit_{i:j}(N),$

which will store the best score (log probability) found (so far) for constructing an N-rooted constituent that spans $\langle x_i, \ldots, x_j \rangle$.

In Viterbi, we used conditional independence to collapse all prefix label sequences that ended in the same label into one stored item; here we collapse all trees spanning words i to j with the same root into a single item.

Probabilistic CKY

Base case: for $i \in \{1, \ldots, n\}$ and for each $N \in \mathcal{N}$:

 $\heartsuit_{i:i}(N) = \log p(x_i \mid N)$

For each i, k such that $1 \leq i < k \leq n$ and each $N \in \mathcal{N}$:

 $\heartsuit_{i:k}(N) = \max_{L,R \in \mathcal{N}, j \in \{i,\dots,k-1\}} \log p(L \ R \mid N) + \heartsuit_{i:j}(L) + \heartsuit_{(j+1):k}(R)$

Solution:

$$\heartsuit_{1:n}(S) = \max_{\boldsymbol{t}\in\mathcal{T}_{\boldsymbol{x}}}\log p(\boldsymbol{t})$$

Neural Parsing

- Kitaev and Klein (2018), "Constituency Parsing with a Self-Attentive Encoder"
- Neural model (attention encoder) generates representations of each token in a sentence)
- Learned scoring s(i,j,k) function for each span from token i to token j with label k
- CKY for decoding to find the best tree through this space.

Summary so far

- Constituents: groups of words behave as single units
- Context-Free Grammar (CFG)
 - A CFG gives a formal way to define a valid structure in a language
- Probabilistic Context-Free Grammar (PCFG)
 - Each production is also associated with a probability
- Parsing:
 - Show one or more derivations for a sentence, using the grammar
 - (Probabilistic) CKY

Formalisms

Dependency grammar (Mel'čuk 1988; Tesnière 1959; Pāṇini)

A different family of theories of syntax focuses on dependencies between words

 Dependency syntax doesn't have non-terminal structure like a CFG; words are directly linked to each other.

Dependencies vs constituents

• Dependency links are closer to semantic relationships; no need to infer the relationships from the structure of a tree

subject: S \rightarrow NP VP direct object: S \rightarrow NP (VP $\rightarrow \dots$ NP \dots)

Dependencies vs constituents

• Dependency links are closer to semantic relationships; no need to infer the relationships from the structure of a tree

Dependencies vs constituents

• Dependency links are closer to semantic relationships; no need to infer the relationships from the structure of a tree

Captures binary relations between words

- nsubj(NBC, suspended)
- obj(Williams, suspended)

Semantic Parsing

Semantic parsing comprises a wide range of tasks where strings are mapped into meaning representation languages. Examples:

Programming languages, especially query languages that can be used to answer questions using a database (Zettlemoyer and Collins, 2005, e.g.,)

Semantic Parsing

Semantic parsing comprises a wide range of tasks where strings are mapped into meaning representation languages. Examples:

- Programming languages, especially query languages that can be used to answer questions using a database (Zettlemoyer and Collins, 2005, e.g.,)
- Schemas designed around real-world event-types (called "frames"); trying to extract "who did what to whom?" (Baker et al., 1998; Palmer et al., 2005)

Figure Courtesy: Swayamdipta et al., 2017

Other Examples of Linguistic Structure Prediction

• Coreference resolution

Other Examples of Linguistic Structure Prediction

- Coreference resolution
- Discourse parsing

Key Takeaways

- Syntax
 - Constituency parsing
 - CFG, PCFG
 - Dependency parsing
- Semantic Parsing
- Coreference Resolution
- Discourse Parsing

Questions?