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Sequence Labeling

[Slides adapted from UW CSE 447 by Noah Smith]



Recap: Sequence Labeling
Sequence Labeling

Problem statement: given a sequence of n words x, assign each a
label from L. Let L = |L|.

Every approach we see today will cast the problem as:

ŷ = argmax
y2Ln

Score(x,y;✓)

Näıvely, that’s a classification problem where the number of
possible ‘labels” (output sequences) depends on the input and is
O(Ln) in size!
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Recap: Sequence Labeling

Where We Are

0 1 2 3 4
Score

s(x, i, yi) s(x, i,y1:i)
emission/ s(xi, yi)+ s(x, i, yi, yi+1)decomp. transition s(yi, yi+1)

learn
SGD ? count & ? ?

normalize

decode local
beam

Viterbi Viterbi Viterbi
search
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Model

x1 x2 x3
↑ ↑ ↑
y1 → y2 → y3 →  

yi+1∼ ptransition (Y | yi)

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3 x4
" " " "
y1 ! y2 ! y3 ! y4 ! 8

y5 ⇠ ptransition(Y | y4)

35 / 109
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Model

x1 x2 x3
| | |
y1 y2 y3

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:
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Model

x
|

y1 y2 y3

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:
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Recap: Inference (Decoding) -- Viterbi AlgorithmRecurrence
First, think about the score of the best sequence.

Let ~i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

~n�1(y) = max
yn�22L

s(x, n� 2, yn�2, y) + ~n�2(yn�2)

...

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) + ~i�1(yi�1)

...

~1(y) = s(x, 0,�, y)

73 / 109
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1
`2
...
`L
8
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ~1(`1)
`2 ~1(`2)
...
`L ~1(`L)
8

~1(y) = s(x, 0,�, y)
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn
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Recap: Inference (Decoding) -- Viterbi AlgorithmFull Viterbi Procedure

Input: scores s(x, i, y, y0), for all i 2 {0, . . . , n}, y, y0 2 L

Output: ŷ

1. Base case: ~1(y) = s(x, 0,�, y)

2. For i 2 {2, . . . , n+ 1}:
I Solve for ~i(⇤) and bpi(⇤).

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) +~i�1(yi�1),

bpi(y) = argmax
yi�12L

s(x, i� 1, yi�1, y) +~i�1(yi�1)

(At n+ 1 we’re only interested in y = 8.)

3. ŷi+1  8
4. For i 2 {n, . . . , 1}:

I ŷi  bpi+1(ŷi+1)

85 / 109
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Recap: Inference (Decoding) -- Viterbi Algorithm
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● Viterbi Asymptotics
Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells

Runtime: each cell requires an “argmax.” O(nL2)

90 / 109



Back to s
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Back to “s”

We haven’t said much about the function that scores candidate
label pairs at di↵erent positions, s(x, i, y, y0).

This function is very important; two common choices are:

I Expert-designed, task-specific features f(x, i, y, y0) and
weights ✓

I A neural network that encodes xi in context, yi, and yi+1 and
gives back a goodness score

Either way, let ✓ denote the parameters of s. From now on, we’ll
use s(x, i, y, y0;✓) and Score(x,y;✓) to emphasize that “s” is a
function of parameters ✓ we need to estimate.

92 / 109



Probabilistic View of Learning 
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Probabilistic View of Learning

As we’ve done before, we start with the principle of maximum
likelihood to estimate ✓:

✓⇤ = argmax
✓2Rd

TY

i=1

p(Y = yi | X = xi;✓)

= arg max
✓2Rd

TX

i=1

log p(Y = yi | X = xi;✓)

= arg min
✓2Rd

TX

i=1

� log p(Y = yi | X = xi;✓)| {z }
sometimes called “log loss” or “cross entropy”

Next, we’ll drill down into “p(Y = yi | X = xi;✓).”

93 / 109
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Conditional Random Fields (CRFs)Conditional Random Fields
La↵erty et al. (2001)

CRFs are a tremendously influential model that generalizes
multinomial logistic regression to structured outputs like sequences.

pCRF(y | x;✓) = exp Score(x,y;✓)

Z(x;✓)

Z(x;✓) =
X

y02Y(x)

exp Score(x,y0;✓)

� log pCRF(y | x;✓) = � Score(x,y;✓)| {z }
“hope”

+ logZ(x;✓)| {z }
“fear”

So, our“CRF”:

I Uses Viterbi for decoding (our v. 4 sequence labeler)

I Trains parameters to maximize likelihood (like MLR and NNs)

94 / 109
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Sequence-Level Log Loss 
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Sequence-Level Log Loss

Here’s the maximum likelihood learning problem (equivalently,
sequence-level log loss):

✓⇤ = argmin
✓2Rd

TX

i=1

�Score(xi,yi;✓) + logZ(xi;✓)

If we can calculate and di↵erentiate (w.r.t. ✓) the Score and Z
functions, we can use SGD to learn.

96 / 109
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Calculating !(#; %)Calculating Z(x;✓)

Good news! The algorithm that gives us Z is almost exactly like
the Viterbi algorithm.

Forward algorithm: sums the exp Score values for all label
sequences, given x, in the same asymptotic time and space as
Viterbi.

Let ↵i(y) be the sum of all (exponentiated) scores of label prefixes
of length i, ending in y.

98 / 109 19



Some Algebra Some Algebra

Given the decomposition

Score(x,y;✓) =
nX

i=0

s(x, i, yi, yi+1;✓),

it holds that

exp Score(x,y;✓) =
nY

i=0

es(x,i,yi,yi+1;✓),

and therefore

Z(x;✓) =
X

y02Y(x)

nY

i=0

es(x,i,y
0
i,y

0
i+1;✓)

99 / 109
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Forward Algorithm

21

Forward Algorithm

Input: scores s(x, i, y, y0;✓), for all i 2 {0, . . . , n}, y, y0 2 L

Output: Z(x;✓)

1. Base case: ↵1(y) = es(x,0,�,y;✓)

2. For i 2 {2, . . . , n+ 1}:
I Solve for ↵i(⇤).

↵i(y) =
X

yi�12L
es(x,i�1,yi�1,y;✓) ⇥ ↵i�1(yi�1)

(At n+ 1 we’re only interested in y = 8.)

3. Return ↵n+1(8), which is equal to Z(x;✓).

100 / 109



Key Takeaways
● HMM (generative model) - models joint distribution 

● CRF (discriminative model) - directly models conditional distribution 
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x1 x2 x3
↑ ↑ ↑
y1 → y2 → y3 →  

yi+1∼ ptransition (Y | yi)

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3 x4
" " " "
y1 ! y2 ! y3 ! y4 ! 8

y5 ⇠ ptransition(Y | y4)
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xi ∼ pemission(X | yi) ! ", $ =
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s(x,  y i , yi+1)

| | |
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Key Takeaways
● HMM (generative model) - models joint distribution 
● CRF (discriminative model) - directly models conditional distribution 
● Inference: Viterbi algorithm
● Learning
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Parsing

[Slides adapted from UW CSE 447 by Noah Smith; UCB Info 159/259 by David Bamman]



Motivation Motivation

As data, we tend to view natural language text as sequences (of
words, wordpieces, or characters, depending on the NLP
application).

But language obeys implicit rules of grammar, and it carries
meaning.

I It’s helpful to consider an analogy to programming languages,
which have syntax and semantics; well-formed programs can
be compiled and executed to carry out a task.

I Well-formed natural language strings can be understood by
others.

Computational models that analyze natural language syntax and
semantics typically map into structures like trees, graphs, and
more.

2 / 136
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Linguistic Analysis 

What Theories?

The field of linguistics o↵ers a huge range of theories that can
inform our design of Y.

I Syntax: rules governing grammaticality or well-formedness of
strings, relative to a language

I Semantics: how the meaning of an utterance is constructed,
grounded in “the world” (or a proxy to the world)

I Pragmatics: the intended meaning by a speaker, in a given
social context

Each has many theories, and none of them is complete!

4 / 136
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Syntax
● With syntax, we’re moving from labels for discrete items — documents 

(sentiment analysis), tokens (POS tagging, NER) — to the structure
between items. 

27
I shot an elephant in my pajamas

PRP VBD DT NN IN PRP$ NNS



Syntax
● With syntax, we’re moving from labels for discrete items — documents 

(sentiment analysis), tokens (POS tagging, NER) — to the structure
between items. 

● Syntax is fundamentally about the hierarchical structure of language and 
(in some theories) which sentences are grammatical in a language 

28

words → phrases → clauses → sentences 



Formalisms Formalisms
Dependency grammar 

(Mel’čuk 1988; Tesnière 1959; Pāṇini)
Phrase structure grammar 

(Chomsky 1957)

today Mar 16
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Constituency
● Groups of words (“constituents”) behave as single units 
! Noun Phrases: groups of tokens that act Like nouns 

30

Noun Phrases: Groups of Tokens that “Act Like” Nouns

What, exactly makes a noun phrase? Examples (Jurafsky and
Martin, forthcoming):

I Harry the Horse

I the Broadway coppers

I they

I a high-class spot such as Mindy’s

I the reason he comes into the Hot Box

I three parties from Brooklyn

6 / 136



Constituency
● Groups of words (“constituents”) behave as single units 
! Noun Phrases: groups of tokens that act Like nouns 

●

31

Constituents

More general than noun phrases: constituents are groups of words
with certain (possible) behaviors.

Linguists characterize constituents in a number of ways, including:

I where they occur (e.g., “NPs can occur before verbs”)
I where they can move in variations of a sentence

I On September 17th, I’d like to fly from Atlanta to Denver
I I’d like to fly on September 17th from Atlanta to Denver
I I’d like to fly from Atlanta to Denver on September 17th

I what parts can move and what parts can’t
I *On September I’d like to fly 17th from Atlanta to Denver

I what they can be conjoined with
I I’d like to fly from Atlanta to Denver on September 17th and

in the morning

10 / 136



Context-Free Grammar (CFG)
● Take constituents to be the main building block of natural language 

syntax, we can attempt to formalize what makes a string grammatical in a 
language. 

● A CFG gives a formal way to define what meaningful constituents are 
and exactly how a constituent is formed out of other constituents (or 
words). It defines valid structure in a language. 

32

• A CFG gives a formal way to define what meaningful constituents are 
and exactly how  a constituent is formed out of other constituents (or 
words).  It defines valid structure in a language.

Context-free grammar

NP → Det Nominal NP → Verb Nominal



Context-Free Grammar (CFG)
Context-Free Grammar

A context-free grammar consists of:
I A finite set of nonterminal symbols N (sometimes called

“categories”)
I A start symbol S 2 N

I A finite alphabet ⌃, called “terminal” symbols, distinct from
N

I Production rule set R, each of the form “N ! ↵” where
I The lefthand side N is a nonterminal from N
I The righthand side ↵ is a sequence of zero or more terminals

and/or nonterminals: ↵ 2 (N [ ⌃)⇤

I Special case: Chomsky normal form constrains ↵ to be
either a single terminal symbol or two nonterminals

14 / 136
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An Example CFG for a Tiny Bit of English 

34

An Example CFG for a Tiny Bit of English

From Jurafsky and Martin (forthcoming)

S ! NP VP Det ! that | this | a
S ! Aux NP VP Noun ! book | flight | meal | money
S ! VP Verb ! book | include | prefer
NP ! Pronoun Pronoun ! I | she | me
NP ! Proper-Noun Proper-Noun ! Houston | NWA
NP ! Det Nominal Aux ! does
Nominal ! Noun Preposition ! from | to | on | near
Nominal ! Nominal Noun | through
Nominal ! Nominal PP
VP ! Verb
VP ! Verb NP
VP ! Verb NP PP
VP ! Verb PP
VP ! VP PP
PP ! Preposition NP

15 / 136



”Lexicon”

35

“Lexicon”

This term is used in NLP to refer to an object that associates
information with words.

In a CFG, the “lexicon rules” are the rules that map a nonterminal
(usually a part of speech) to a single word.

(In an earlier lecture, we encountered WordNet, which is a
semantic lexicon.)

16 / 136



Derivation
● Given a CFG, a derivation is the sequence of productions used to 

generate a string of words (e.g., a sentence), often visualized as a parse 
tree. 

● Language: the formal language defined by a CFG is the set of strings 
derivable from S (start symbol) 

36



Example Derivation
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Example Phrase Structure Tree

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

meal

The phrase-structure tree represents both the syntactic structure
of the sentence and the derivation of the sentence under the
grammar. E.g., VP

Verb NP

corresponds to the rule VP ! Verb NP.

17 / 136



Example Derivation

38

Constituents
Every internal node is a phrase 

• my pajamas 
• in my pajamas 
• elephant in my pajamas 
• an elephant in my pajamas 
• shot an elephant in my pajamas 
• I shot an elephant in my pajamas

Each phrase could be replaced by 
another of the same type of constituent



Where do natural language CFGs come from? Where do natural language CFGs come from?

Building a CFG for a natural language by hand is really hard
(Jurafsky and Martin, forthcoming, chapter 10).

I Need lots of categories to make sure all and only grammatical
sentences are included.

I Categories tend to start exploding combinatorially.

I Alternative grammar formalisms are typically used for manual
grammar construction; these are often based on constraints
and a powerful algorithmic tool called unification.

A data-driven approach:

1. Build a corpus of annotated sentences, called a treebank.
(e.g., the Penn Treebank, Marcus et al., 1993.)

2. Extract rules from the treebank.

3. Optionally, use statistical models to generalize the rules.

23 / 136
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collections of sentences 
annotated with syntactic 
structure 



Example from the Penn Treebank 
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Example from the Penn Treebank

S

NP-SBJ

NP

NNP

Pierre

NNP

Vinken

,

,

ADJP

NP

CD

61

NNS

years

JJ

old

,

,

VP

MD

will

VP

VB

join

NP

DT

the

NN

board

PP-CLR

IN

as

NP

DT

a

JJ

nonexecutive

NN

director

NP-TMP

NNP

Nov.

CD

29

24 / 136



Some Penn Treebank Rules with Counts 
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Some Penn Treebank Rules with Counts

40717 PP ! IN NP
33803 S ! NP-SBJ VP
22513 NP-SBJ ! -NONE-
21877 NP ! NP PP
20740 NP ! DT NN
14153 S ! NP-SBJ VP .
12922 VP ! TO VP
11881 PP-LOC ! IN NP
11467 NP-SBJ ! PRP
11378 NP ! -NONE-
11291 NP ! NN
. . .
989 VP ! VBG S
985 NP-SBJ ! NN
983 PP-MNR ! IN NP
983 NP-SBJ ! DT
969 VP ! VBN VP
. . .

100 VP ! VBD PP-PRD
100 PRN ! : NP :
100 NP ! DT JJS
100 NP-CLR ! NN
99 NP-SBJ-1 ! DT NNP
98 VP ! VBN NP PP-DIR
98 VP ! VBD PP-TMP
98 PP-TMP ! VBG NP
97 VP ! VBD ADVP-TMP VP
. . .
10 WHNP-1 ! WRB JJ
10 VP ! VP CC VP PP-TMP
10 VP ! VP CC VP
ADVP-MNR
10 VP ! VBZ S , SBAR-ADV
10 VP ! VBZ S ADVP-TMP

26 / 136



Penn Treebank Rules: Statistics 
Penn Treebank Rules: Statistics

32,728 rules in the training section (not including 52,257 lexicon
rules)

4,021 rules in the development section

overlap: 3,128

27 / 136
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(Phrase-Structure) Recognition and Parsing 
(Phrase-Structure) Recognition and Parsing

Given a CFG (N , S,⌃,R) and a sentence x, the recognition
problem is:

Is x in the language of the CFG?

The proof is a derivation of x using the rules R.

Related problem: parsing:

Show one or more derivations for x, using R.

With reasonable grammars, the number of parses is exponential in
|x|.

30 / 136

43



Syntactic Ambiguity 

44

Ambiguity is the most serious problem faced by syntactic parsers 

Syntactic Ambiguity

S

NP

I

VP

shot NP

an Nominal

Nominal

elephant

PP

in my pajamas

S

NP

I

VP

VP

shot NP

an Nominal

elephant

PP

in my pajamas

31 / 136



Parser Evaluation 

45

Parser Evaluation

Represent a parse tree as a collection of tuples
hh`1, i1, j1i, h`2, i2, j2i, . . . , h`n, in, jnii, where
I `k is the nonterminal labeling the kth phrase

I ik is the index of the first word in the kth phrase

I jk is the index of the last word in the kth phrase

Example:

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

meal

�!
⌧

hS, 1, 6i, hNP, 2, 3i,
hVP, 4, 6i, hNP, 5, 6i

�

Convert gold-standard tree and system hypothesized tree into this
representation, then estimate precision, recall, and F1.
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Parser Evaluation 
Tree Comparison Example 
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Tree Comparison Example

S

NP

I

VP

shot NP

an Nominal

Nominal

elephant

PP

in NP

my pajamas

S

NP

I

VP

VP

shot NP

an Nominal

elephant

PP

in NP

my pajamas

⌧
hNP, 3, 7i,

hNominal, 4, 7i

�

| {z }
only in left tree

* hNP, 1, 1i
hS, 1, 7i, hVP, 2, 7i,
hPP, 5, 7i, hNP, 6, 7i

hNominal, 4, 4i

+

| {z }
in both trees

⌧
hVP, 2, 4i,
hNP, 3, 4i

�

| {z }
only in right tree

34 / 136



Two Views of Parsing 
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Two Views of Parsing

1. Incremental search: the state of the search is the partial
structure built so far; each action incrementally extends the
tree.
I Often greedy, with a statistical classifier deciding what action

to take in every state.

2. Discrete optimization: define a scoring function and seek the
tree with the highest score.

38 / 136



Probabilistic Context-Free Grammar (PCFG)
● A basic CFG allows us to check whether a sentence is grammatical in the 

language it defines 
● Binary decision: a sentence is either in the language (a series of 

productions yields the words we see) or it is not. 

● PCFG: each production is also associated with a probability. 
● This lets us calculate the probability of a parse for a given sentence 
! For a given parse tree ! for sentence " comprised of # rules (each $ → &): 

48



Probabilistic Context-Free Grammar (PCFG)
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Probabilistic Context-Free Grammar

A probabilistic context-free grammar consists of:
I A finite set of nonterminal symbols N

I A start symbol S 2 N
I A finite alphabet ⌃, called “terminal” symbols, distinct from

N
I Production rule set R, each of the form “N ! ↵” where

I The lefthand side N is a nonterminal from N
I The righthand side ↵ is a sequence of zero or more terminals

and/or nonterminals: ↵ 2 (N [ ⌃)⇤

I Special case: Chomsky normal form constrains ↵ to be
either a single terminal symbol or two nonterminals

I For each N 2 N , a probability distribution over the rules
where N is the lefthand side, p(⇤ | N).
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PCFG Scores Trees

50

PCFGs Score Trees

We can write the parsing problem as finding the best-scoring tree:

t̂ = argmax
t2Tx

Score(t)

PCFGs view each tree t as a “bag of rules” (from R), and define:

Score(t) = p(t)

=
Y

(N!↵)2R

p(↵ | N)count(N!↵;t)
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PCFG Example

S

Write down the start symbol. Here: S

Probability:

1
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PCFG Example

S

Aux NP VP

Choose a rule from the “S” distribution. Here: S ! Aux NP VP

Probability:

p(Aux NP VP | S)
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PCFG Example

S

Aux

does

NP VP

Choose a rule from the “Aux” distribution. Here: Aux ! does

Probability:

p(Aux NP VP | S) · p(does | Aux)
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PCFG Example

S

Aux

does

NP

Det Noun

VP

Choose a rule from the “NP” distribution. Here: NP ! Det Noun

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP)
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PCFG Example

S

Aux

does

NP

Det

this

Noun

VP

Choose a rule from the “Det” distribution. Here: Det ! this

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)
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PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Choose a rule from the “Noun” distribution. Here: Noun ! flight

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)
· p(flight | Noun)
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PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb NP

Choose a rule from the “VP” distribution. Here: VP ! Verb NP

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)
· p(flight | Noun) · p(Verb NP | VP)
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PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Choose a rule from the “Verb” distribution. Here: Verb ! include

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)
· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)
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PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det Noun

Choose a rule from the “NP” distribution. Here: NP ! Det Noun

Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)
· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)
· p(Det Noun | NP)
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PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

Choose a rule from the “Det” distribution. Here: Det ! a
Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)
· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)
· p(Det Noun | NP) · p(a | Det)
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PCFG Example

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

meal

Choose a rule from the “Noun” distribution. Here: Noun ! meal
Probability:

p(Aux NP VP | S) · p(does | Aux) · p(Det Noun | NP) · p(this | Det)
· p(flight | Noun) · p(Verb NP | VP) · p(include | Verb)
· p(Det Noun | NP) · p(a | Det) · p(meal | Noun)
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Parsing with PCFGs 

● How to set the probabilities p(righthand side | lefthand side)? 
! Counting / Learning (we won’t discuss in this class due to time limit)

● How to decode/parse? 
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Probabilistic CKY (Cocke-Kasami-Younger)Probabilistic CKY

(Cocke and Schwartz, 1970; Kasami, 1965; Younger, 1967)

Input:

I a PCFG (N , S,⌃,R, p(⇤ | ⇤)), in Chomsky normal form

I a sentence x (let n be its length)

Output: If x is in the language of the grammar.

argmax
t2Tx

log p(t);

undefined if not.
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Probabilistic CKY 

54

Notation

Probabilistic CKY is closely related to the Viterbi algorithm; it is a
dynamic programming algorithm.
The recurrence is defined around

~i:j(N),

which will store the best score (log probability) found (so far) for
constructing an N -rooted constituent that spans hxi, . . . , xji.

In Viterbi, we used conditional independence to collapse all prefix
label sequences that ended in the same label into one stored item;
here we collapse all trees spanning words i to j with the same root
into a single item.

54 / 136



Probabilistic CKY 

55

Probabilistic CKY

Base case: for i 2 {1, . . . , n} and for each N 2 N :

~i:i(N) = log p(xi | N)

For each i, k such that 1  i < k  n and each N 2 N :

~i:k(N) = max
L,R2N ,j2{i,...,k�1}

log p(L R | N) +~i:j(L) +~(j+1):k(R)

N

L

xi . . . xj

R

xj+1 . . . xk

Solution:

~1:n(S) = max
t2Tx

log p(t)
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Neural Parsing Neural parsing
• Kitaev and Klein (2018), “Constituency 

Parsing with a Self-Attentive Encoder” 

• Neural model (attention encoder) 
generates representations of each 
token in a sentence) 

• Learned scoring s(i,j,k) function for 
each span from token i to token j with 
label k 

• CKY for decoding to find the best tree 
through this space.
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Summary so far
● Constituents: groups of words behave as single units 
● Context-Free Grammar (CFG)
! A CFG gives a formal way to define a valid structure in a language

● Probabilistic Context-Free Grammar (PCFG)
! Each production is also associated with a probability

● Parsing:
! Show one or more derivations for a sentence, using the grammar 
! (Probabilistic) CKY

57

Example Phrase Structure Tree

S

Aux

does

NP

Det

this

Noun

flight

VP

Verb

include

NP

Det

a

Noun

meal

The phrase-structure tree represents both the syntactic structure
of the sentence and the derivation of the sentence under the
grammar. E.g., VP

Verb NP

corresponds to the rule VP ! Verb NP.
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Formalisms Formalisms
Dependency grammar 

(Mel’čuk 1988; Tesnière 1959; Pāṇini)
Phrase structure grammar 

(Chomsky 1957)

today Mar 16
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Dependency syntax

59

A different family of theories of syntax focuses on dependencies 
between words Dependency syntax

• Dependency syntax doesn’t have non-terminal structure like a CFG; 
words are directly linked to each other.



Dependency syntax
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headdependent



Dependency syntax
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Dependency syntax
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Dependencies vs constituents
● Dependency links are closer to semantic relationships; no need to infer 

the relationships from the structure of a tree 

63

NBC suspended Williams on Tuesday

NP

S

VP

V NP PP

NPP

noun verb noun prep noun

Who did what to whom?

subject: S → NP VP
direct object: S → NP (VP → … NP … )



Dependencies vs constituents
● Dependency links are closer to semantic relationships; no need to infer 

the relationships from the structure of a tree 
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NBC suspended Williams on Tuesday

NP

S

VP

V NP PP

NPP

noun verb noun prep noun

nsubj

obj

obl

case



Dependencies vs constituents
● Dependency links are closer to semantic relationships; no need to infer 

the relationships from the structure of a tree 
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Dependency grammar

• nsubj(NBC, suspended) 
• obj(Williams, suspended)

NBC suspended Williams on Tuesday

Captures binary relations between words

nsubj

obj

obl

case



Semantic ParsingSemantic Parsing

Semantic parsing comprises a wide range of tasks where strings are
mapped into meaning representation languages. Examples:

I Programming languages, especially query languages that can
be used to answer questions using a database (Zettlemoyer
and Collins, 2005, e.g.,)

I Schemas designed around real-world event-types (called
“frames”); trying to extract “who did what to whom?”
(Baker et al., 1998; Palmer et al., 2005)

These tasks have inspired a rich literature on learning for semantic
parsing, which builds heavily on the techniques we’ve covered in
this class and frequently goes beyond supervised learning (e.g.,
maybe we observe text inputs and semantic outputs, but no syntax
that links them). Kamath and Das (2019) gives a survey.

124 / 136
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Semantic ParsingSemantic Parsing

Semantic parsing comprises a wide range of tasks where strings are
mapped into meaning representation languages. Examples:

I Programming languages, especially query languages that can
be used to answer questions using a database (Zettlemoyer
and Collins, 2005, e.g.,)

I Schemas designed around real-world event-types (called
“frames”); trying to extract “who did what to whom?”
(Baker et al., 1998; Palmer et al., 2005)

These tasks have inspired a rich literature on learning for semantic
parsing, which builds heavily on the techniques we’ve covered in
this class and frequently goes beyond supervised learning (e.g.,
maybe we observe text inputs and semantic outputs, but no syntax
that links them). Kamath and Das (2019) gives a survey.
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Other Examples of Linguistic Structure Prediction

68

● Coreference resolution 

Figure Courtesy: https://nlp.stanford.edu/projects/coref.shtml



Other Examples of Linguistic Structure Prediction
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● Coreference resolution
● Discourse parsing 

Figure Courtesy: Pascal Kuyten



Key Takeaways
● Syntax
! Constituency parsing
§ CFG, PCFG

! Dependency parsing
● Semantic Parsing
● Coreference Resolution
● Discourse Parsing
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Questions?


