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Outline

o Classification
o Weakly supervised learning

e Sequence Tagging/Labeling



Classification



Classification with few labels

e Data augmentation
e Zero-/few-shot learning via prompting
e Weak supervision



The difficulty with supervised learning

e Annotated data is expensive and costs increase when...
o A task requires specialized expertise
E.g. “Only a trained linguist or a board certified radiologist can label my data”

o Labeling examples involves making multiple decisions
E.g. “Annotate this sentence with a parse tree”

(instead of a single binary decision)

Credit: https://svivek.com/teaching/lectures/slides/weak-supervision/weak-supervision.pdf
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Traditional Supervision:
Have subject matter
experts (SMEs) hand-label
more training data

Too expensive!
\
Active Learning:
Estimate which points
are most valuable to
solicit labels for

How to get more labeled training data?

Semi-supervised Learning:
Use structural assumptions
to automatically leverage
unlabeled data

Weak Supervision: Get
lower-quality labels more
efficiently and/or at a
higher abstraction level

Transfer Learning: Use

on a different task

v

Get higher-level supervision Use one or more (noisy /
over unlabeled data from SMEs  biased) pre-trained models
to provide supervision

Get cheaper, lower-quality
labels from non-experts

Distant
Supervision

Expected

. Invariances
distributions

Heuristics Constraints

Credit: https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/ 6

models already trained



Example (l): labeling with heuristics

Task: Build a chest x-ray classifier Indication: Chest pain. Findings:

(normal/abnormal) Mediastinal contours are within
normal| 1imits. Heart size 1is
within (normal 1imits. [No) focal
consolidation, [pneumothorax| or
pleural effusion. Impression: [No
acute cardiopulmonary
abnormality.

Can you use the accompanying medical report (text
modality) to label the x-ray (image modality)?

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018 ds07.pdf]



Example (l): labeling with heuristics

Indication: Chest pain. Findings: How do we obtain Y?

Mediastinal contours are within

[hormal) 1imits. Heart size 1is

within [normall Timits. - focal \'%
consolidation, |pneumothorax or

[p1leural effusion. Impression: (Ng

acute cardiopulmonary
abnormality.

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018 ds07.pdf]



Example (l): labeling with heuristics

def LF_pneumothorax(c):

Indication: Chest pa-in' F-ind-ingS: if re.search(r’pneumo.x’, c.report.text):
Mediastinal contours are within return "ABNORMAL"

n(_)rma_'1 limits. |'.|E<'§lr't S1Z€ 15 def LF_pleural_effusion(c):
within|normal) Timits. focal if "pleural effusion" in c.report.text:
consolidation, |pneumothorax| or return "ABNORMAL"

p-leura-l E'F'FUS'IOI'i. Impression: |[NO def LF_normal_report(c, thresh=2):

acute cardiopulmonary if len(NORMAL_TERMS.intersection(c.

report.words)) > thresh:
return "NORMAL"

abnormality.

Normal Report LFs
(labeling functions)

Source: Khandwala et. al 2017, Cross Modal Data Programming for Medical Images

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018 ds07.pdf] 9



Example (Il): Labeling with knowledge bases

Task: relation extraction from text

e Hypothesis: If two entities belong to a certain relation, any sentence
containing those two entities is likely to express that relation

e Key idea: use a knowledge base of relations to get lots of noisy training
examples

Adapted from https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtradfionll.pdf



Example (Il): Labeling with knowledge bases
Frequent Freebase relations

Relation name Size | Example

/people/person/nationality 281,107 | John Dugard, South Africa
/location/location/contains 253,223 | Belgium, Nijlen
/people/person/profession 208,888 | Dusa McDuff, Mathematician
/people/person/place_of_birth 105,799 | Edwin Hubble, Marshfield
/dining/restaurant/cuisine 86,213 | MacAyo’s Mexican Kitchen, Mexican
/business/business_chain/location 66,529 | Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank 42,806 | Scorpaeniformes, Order
/film/film/genre 40,658 | Where the Sidewalk Ends, Film noir
/film/film/language 31,103 | Enter the Phoenix, Cantonese
/biology/organism_higher_classification 30,052 | Calopteryx, Calopterygidae
/Aln/film/country 27,217 | Turtle Diary, United States
/film/writer/film 23,856 | Irving Shulman, Rebel Without a Cause
/film/director/film 23,539 | Michael Mann, Collateral
/film/producer/film 22,079 | Diane Eskenazi, Aladdin
/people/deceased_person/place_of_death 18,814 | John W. Kern, Asheville
/music/artist/origin 18,619 | The Octopus Project, Austin
/people/person/religion 17,582 | Joseph Chartrand, Catholicism
/book/author/works_written 17,278 | Paul Auster, Travels in the Scriptorium
/soccer/football_position/players 17,244 | Midfielder, Chen Tao
/people/deceased_person/cause_of_death | 16,709 | Richard Daintree, Tuberculosis
/book/book/genre 16,431 | Pony Soldiers, Science fiction
/film/film/music 14,070 | Stavisky, Stephen Sondheim
/business/company/industry 13,805 | ATS Medical, Health care

Adapted from https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtraéfionll.pdf



Example (Il): Labeling with knowledge bases

Corpus text Training data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...

Bill Gates attended Harvard from...
Google was founded by Larry Page ...

Freebase

Founder: (Bill Gates, Microsoft)

Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionll.pdf



Example (Il): Labeling with knowledge bases

Corpus text Training data

(Bill Gates, Microsoft)
Label: Founder
Feature: X foundedY

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...

Bill Gates attended Harvard from...
Google was founded by Larry Page ...

Freebase

Founder: (Bill Gates, Microsoft)

Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionll.pgdf



Example (Il): Labeling with knowledge bases

Corpus text Training data

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...

Bill Gates attended Harvard from...
Google was founded by Larry Page ...

Freebase

Founder: (Bill Gates, Microsoft)

Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionll.gdf



Example (Il): Labeling with knowledge bases

Corpus text Training data

Bill Gates founded Microsoft in 1975. (Bill Gates, Microsoft)
Label: Founder

Bill Gates, founder of Microsoft, ... Feature: X founded Y

Bill Gates attended Harvard from... _
Google was founded by Larry Page ... Feature: X, founder of Y

(Bill Gates, Harvard)
Label: CollegeAttended

Freebase Feature: X attended Y

Founder: (Bill Gates, Microsoft)

Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionll.gdf



Corpus text

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...

Bill Gates attended Harvard from...
Google was founded by Larry Page ...

Freebase

Founder: (Bill Gates, Microsoft)

Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Example (Il): Labeling with knowledge bases

Training data

(Bill Gates, Microsoft)
Label: Founder
Feature: X foundedY
Feature: X, founder of Y

(Bill Gates, Harvard)
Label: CollegeAttended

Feature: X attended Y

(Larry Page, Google)
Label: Founder
Feature: Y was founded by X

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionll.gdf



Example (Il): Labeling with knowledge bases
Negative training data

Can’t train a classifier with only positive data!

| o Training data
Need negative training data too!

(Larry Page, Microsoft)

_ Label: NO_RELATION
Solution? Feature: X took a swipe atY

Sample 1% of unrelated pairs of entities.

(Larry Page, Harvard)
Label: NO_RELATION
Feature: Y invited X

Corpus text

Larry Page took a swipe at Microsoft... (Bill Gates, Google)
...after Harvard invited Larry Page to...//> Label: NO_RELATION
Google is Bill Gates' worst fear ... Feature: Y is X's worst fear

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionll.pgdf



Integrating multiple noisy labels

VVYYVYY

\ 4

ﬁi (ylx) ‘ Y1 | hy

4 N ' Xpo
N p(ylx) -
hy 3
>
> 6 = argmingE )~ [L(y, fo ()]
Example Weak Technical Challenge: Use Weak Supervision
Supervision Sources Integrating & Modeling to Train End Model

Diverse Sources

Source: A. Ratner et. al https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/
[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018 ds07.pdf] 18



Integrating multiple noisy labels

LAlizoElee Label Matrix

L (N x M)

Data, X
(N points)

Labeling functions
(M functions)

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018 ds07.pdf] 19



Integrating multiple noisy labels

slilEloslee Label Matrix

L (N x M)

Data, X
(N points)

Labeling functions
(M functions)

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018 ds07.pdf] 20



Integrating multiple noisy labels

How do we obtain probabilistic labels, Y, from the label matrix, L?

Approach 1 - Majority Vote

Take the majority vote of the labelling functions (LFs).
Let'ssay L =[O0, 1,0, 1,0]; [1, 1, 1, 1, O]].

Y =0, 1]

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018 ds07.pdf]

21



Integrating multiple noisy labels

How do we obtain probabilistic labels, Y, from the label matrix, L?

Approach 1 - Majority Vote

Majority vote fails:

def LF_pneumothorax(c):

Indication: Chest pa-in- F-ind-ingS: if re.search(r’pneumo.x*’, c.report.text):
Mediastinal contours are within return "ABNORMAL"

n(.)r'me.l'l Timits. I-_Iea_'r't S1Z€ 15 def LF_pleural_effusion(c):

within normal) Timits. focal if "pleural effusion" in c.report.text:
consolidation, |pneumothorax| or return "ABNORMAL"

pleural effusion. Impression: (No d68 LF nemmal, repentis, Shnoski=2):

acute cardiopulmonary if len (NORMAL_TERMS.intersection(c.

report.words)) > thresh:
return "NORMAL"

abnormality.

Normal Report LFs

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018 ds07.pdf] 22



Integrating multiple noisy labels

How do we obtain probabilistic labels, Y, from the label matrix, L?

Approach 2
Train a generative model over P(L, Y) where Y are the (unknown) true labels

~

Ger;erative Model

P(Y4ILy)

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018 ds07.pdf] 23



Summary: Weak/distant supervision

How to get more labeled training data?

_
P
4 'y
Traditional Supervision: Semi-supervised Learning: Weak Supervision: Get Transfer Learning: Use
Have subject matter Use structural assumptions lower-quality labels more models already trained
experts (SMEs) hand-label to automatically leverage efficiently and/or at a on a different task
more training data unlabeled data higher abstraction level
Too expensive!
A
Active Learning: | v
. . . A
Estimate which points Get cheaper, lower-quality Get higher-level supervision Use one or more (noisy /
aic m'o.st valuable to labels from non-experts over unlabeled data from SMEs  biased) pre-trained models
solicit labels for to provide supervision
Heuristics Dista'n t Constraints E xP_eCt‘?d Invariances
Supervision distributions

24



Sequence Labeling

[Slides adapted from UW CSE 447 by Noah Smith]



Motivation

Many tasks in NLP can be cast as sequence labeling, where each token
(usually, word) gets its own label. Compare:

» Text classification: (x1, x2, . . ., xn) »—>y €L
» Sequence labeling: (x1 »—>y1, x2 »>y2, . . ., xn »>yn), each
Vi € L

» Translation: x >y

Many to One Many to Many Many to Many

» g% @@
9:6.0 9.%.% 9:6.0
ENENED (9 () &) ) @) @)

26/109



Problems Typically Cast as Sequence Labeling

P supersense tagging
» part-of-speech tagging
» morphosyntactic tagging

» segmentation into words or multiword
expressions

» code switching (S

» dialogue acts

» spelling correction

» word alignment (V.

» named entity recognition

P compression

27/ 109



Supersense Tagging Example

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10  X11 X12  X13 X14 X15 X16 X17

Clara Harris , one of the guests inthe box , stood up and demanded water . input tokens

labeled spans

Z Z
. 0
t g8
) )
0] o8]
S S
Z Z

OVAILYV'N
NOILOWA
NOILVDO
HONVLSHNS'N

e % P
¥ 0 e Y ¥ < Z
Z Z z - < QQ 72 .
= o = % : > O = BIO encodin
o sl o lo| lo| o = HYESE 2B = 5 2 N - oding
7 & 7 = = o< —
= >
z S S > S z S Z
: es!
Yl y2 Y3 y4 yYs Yo y7 yg8 Y9 uir Y12 U1z Yi4 U1s Ui6 Y17




Observations

» Lots of subproblems: Which words have supersenses? Which words group together to
form a multiword expression? For those that do, which supersense?

» Every word's label depends on the words around it, and their labels.

» Segmentation problems can be cast as sequence labeling

» Two labels, B and |, if every word must be in some segment

» Three labels, B, |, and O, if some words are to be “discarded”

» Variants for five labels (E for end, S for singleton), gaps/noncontiguous spans,
and nesting, exist.

Concatenate B, |, etc., with labels to get labeled segmentation.
» Some sequences of labels might be invalid under your theory/label semantics.
» Evaluation: usually precision, recall, and F1 on labeled segments.



Sequence Labeling

Problem statement: given a sequence of n words @, assign each a
label from L. Let L = |L].

Every approach we see today will cast the problem as:

Y = argmax Score(x, y; 0)
yeLn

Naively, that's a classification problem where the number of
possible ‘labels” (output sequences) depends on the input and is

O(L"™) in size!



Sequence Labeling v. 0: Local Classifiers

Define score of a word x; getting label y € L in context:
score(x,,1; @), for example through a feature vector, f(x,,y).
(Here, “i"" indicates the position of the input word to be

classified.)

Train a classifier to decode locally, i.e.,

y; = argmax score(x, ¢, y; 0)
yeLl

= argmax 8 f(x,i,y)
yeL

The classifier is applied to each x1,zo,... Iin turn, but all the
words can be made available at each position.



Sequence Labeling v. 0: Local Classifiers

B-PER

AT R

BERT
cen | £ || E €,
=
ices) | Tok1 || Tok2 Tok N

Single Sentence

33



Sequence Labeling v. 0: Local Classifiers

We can do better when there are predictable relationships among labels.

9y = argmax Score(x, y; 0)
yeLn

34



Sequence Labeling v. 1: Sequential Classifiers

Define score of a word x; getting label y in context, including
previous labels: score(x,i,Y.,_1,y;0). (From here, we won't
always write 6, but the dependence remains.)

Train a classifier, e.g.,

Y; = argmax SCOI‘G(CE, 7;7 Yi.i—1> y)
yel

The classifier is applied to each x1,x9,... in turn. Each one
depends on the outputs of preceding iterations.



Sequence Labeling v. 1: Sequential Classifiers

Define score of a word x; getting label y in context, including
previous labels: score(x,i,9.;_1,y;0). (From here, we won't
always write @, but the dependence remains.)

Train a classifier, e.g.,

Y, = argmax SCOI‘G(QZ, ia Y1:4-15 y)
yel

The classifier is applied to each x1,z9,... in turn. Each one
depends on the outputs of preceding iterations.

Drawback: “downstream” effects of a mistake can be catastrophic.

There is much literature on methods for training, and for decoding,
with models like this. Important decoding method in NLP: beam
search.



Beam Search for Sequential Classifiers

Input: @ (length n), a sequential classifier's scoring function score,
and beam width k

Let Hy score hypotheses at position 0, defining only Hy({)) = 0.
Fori e {1,...,n}:
» Empty C.
» For each hypothesis 4.,_; scored by H;_1:
» For each y € L, place new hypothesis
Y.y — Hi—1(91.,_1) + score(x, 1, §q,;_1,y) into C.
» Let H; be the k-best scored elements of C.

Output: best scored element of H,,.

37



Beam Search for Sequential Classifiers

» Runtime is O(n?kL), space is O(n?k).
» You can improve runtime (e.g., to O(nkL)) if computation is
shared across different ¢ (often true with neural networks).

» Special cases:
» Lk =1 is greedy left-to-right decoding.
» At k£ = L", you're doing brute force, exhaustive search.

38



A Generative Approach

e The next approach should remind you of language models. It assumes
that labeled sequences are generated according to the following story:

y1

y1 ~ pstart(Y)



A Generative Approach

e The next approach should remind you of language models. It assumes
that labeled sequences are generated according to the following story:

X1

y1

X1 ~ Pemission (X |
Y1)



A Generative Approach

e The next approach should remind you of language models. It assumes
that labeled sequences are generated according to the following story:

X1
T

yir — )2

Y2 ~ Ptransition(Y |y1)



A Generative Approach

e The next approach should remind you of language models. It assumes
that labeled sequences are generated according to the following story:

X1 X2
T T
yir. — Y2

X2 ~ Pemission (X | y2)



A Generative Approach

e The next approach should remind you of language models. It assumes
that labeled sequences are generated according to the following story:

X1 X2
T T

V1 - VY2 - VY3

Y3 ~ Ptransition(Y |y2)



A Generative Approach

e The next approach should remind you of language models. It assumes
that labeled sequences are generated according to the following story:

X1 X2 X3
T T T

yr — Y2 - Y3

X3 ~ Pemission(X | y3)



A Generative Approach

e The next approach should remind you of language models. It assumes
that labeled sequences are generated according to the following story:

X1 X2 X3
T T T

yi = y2 - y3 — ()

ya ~ Ptransition (Y | y3)



Sequence Labeling v. 2: Hidden Markov Models

By convention, y,+1 = () is always the “stop label.”

p(X = &, Y = y) — pstart(yl)‘

n
Hpemissz'on (372 | yz) * Ptransition (yi—|—1 | yz>
=1

gy =argmaxp(Y =y | X =x)

yeLn

= argmaxp(X =z, Y =y)
yeLn

= argmaxlogp(X =z,Y = y)
yeLn

We can solve the global decoding problem exactly (i.e., find the
model-optimal §) in O(nL?) time and O(nL) space using the
Viterbi algorithm (more later).



 Quadratic complexity on the size of £
* For some problems the label set can be large

HMM Parameters

Classical HMM parameters are all interpretable as probabilities of
events.

Dstart 1S @ distribution over L. We estimate it by counting how
often sequences start with each label in the training data, and
normalizing.

DPemission 1S a distribution over words, for each label. Many people
find this counterintuitive! Estimation: counting occurrences of
labels with words, and normalizing (per label, not per word).

Ditransition 1S €xactly a bigram (first-order Markov) model over
labels.



Parameterized version

e Replace the “lookup” probabilities (peransition » Pemissions Pstart ) With
scoring functions

Classical HMM (v. 2):

y — arginax 1Og Pstart yl + Z
yeLln

( lngemzsszon (33’& ‘ y’b) )

+ logptmnsztzon (yz—i—l ‘ yz)

This approach (v. 3):

n

y — argrzlax Sstart (yl + § Semission (wu yz) + Stransition (yza yz—l—l)
yeLr =1

48



Parameterized version: Note

e Decoding is essentially the same as the classical HMM: Viterbi algorithm.

e Learning is now complicated and depends on the form of each “s” (but
is still efficient as we will see later)

e No part of the the scoring function looks at neighboring words.

49



Parameterized version (cont'd)

Let each scoring component (“s") “see” the whole input. By
convention, yo = () is always the “start label.”

Score(x,y)

A
r N\

y — argmaxz wazayuyz—l-l)
yeLn

Note that  can have arbitrary length, so we need “s” functions
that are capable of adapting to variable-length input.

50



Summary so far

Model

0 1 2 3 4
Score . . emission/  s(x;,y;)+ ,
decomp. $(@, 6, 4i) 5@ 0, Y1) transition  s(y;, yit1) (4, i, Y1)
SGD 7 count & 7 7
learn .
normalize
b . . . . . .
decode local cam Viterbi Viterbi Viterbi

search

51



Two Problems to Solve

1. Decoding: the Viterbi algorithm for choosing .
» Usually taught for classical HMMs (v. 2); | will teach it for

w_mn

v. 4, abstracting away “s.
2. Learning: estimating the parameters of each s function.

» Depending on your choices here, you arrive at the structured
perceptron, the classical conditional random field (CRF),
neural CRFs, and more.

62/109



A Data Structure

input sequence
X1 T2 . Ip

4

labels in £ E_Q

153

The cell at row j, column 7 will hold information pertaining to
choosing 9; = ¢;.

63 /109



The End of the Sequence

input sequence
I T2 e In

4

labels in £ 5_2

lr

n
U, = argmax Z s(@, i, Yi, Yi+1)
yn€L =0

= argmgxs(:v, 7:7 Yn—1, yn) + 5(93, iu Yn, O)
Yn€

The decision about ¢, is a function of y,_1, «, and nothing else!

64 /109



High-Level View of the Viterbi Algorithm

» The decision about ¢, is a function of y,_1, , and nothing
else!

65 /109



High-Level View of the Viterbi Algorithm

» The decision about ¢, is a function of y,_1, , and nothing
else!

» If, for each value of y,,—1, we knew the best (n — 1)-length
label prefix y;.,_1, then picking ¢, (and §,—1) would be easy.

66 /109



High-Level View of the Viterbi Algorithm

» The decision about ¢, is a function of y,_1, , and nothing
else!
» If, for each value of y,,—1, we knew the best (n — 1)-length
label prefix y;.,_1, then picking ¢, (and §,—1) would be easy.
» Idea: for each position ¢, calculate the score of the best label
prefix y,.; ending in each possible value for the ith label.
> We'll call this value ©;(¢) for y; = ¢.

67 /109



High-Level View of the Viterbi Algorithm

» The decision about ¢, is a function of y,_1, , and nothing
else!

» If, for each value of y,,—1, we knew the best (n — 1)-length
label prefix y;.,_1, then picking ¢, (and §,—1) would be easy.

» Idea: for each position ¢, calculate the score of the best label
prefix y,.; ending in each possible value for the ith label.

> We'll call this value ©;(¢) for y; = ¢.

> With a little bookkeeping, we can then trace backwards and

recover the best label sequence.

68 /109



Recurrence

First, think about the score of the best sequence.

Let ©;(y) be the score of the best label sequence for x1.; that ends
in y. It is defined recursively:

Oia () = mase (a0 ) + [Tala]

yn€L

69 /109



Recurrence

First, think about the score of the best sequence.

Let Q,(y) be the score of the best label sequence for x;.; that ends
in y. It is defined recursively:

Dn1(0) = max s(a, 1, yn, O) +| Dn(yn) |

yn€£

QQ7’L(y) = Inax s(m,n - 17?/71—17?!) + @n_l(y’VL—l)
ynfleﬁ

70 /109



Recurrence
First, think about the score of the best sequence.

Let Q;(y) be the score of the best label sequence for x1.; that ends

in y. It is defined recursively:

@n+1(0) = ;22)28(23, n, Yn, O) +W

On(y) = max s(@,n—1,yn-1,9) +| Vn-1(yn-1) |

Yn—1E€L
Q?n—l(y) = Inax 5( —2,Yn-2,Y )+ QQ71—2(3/71—2)

Yn—2€L

71/109



Recurrence

First, think about the score of the best sequence.

Let ©,(y) be the score of the best label sequence for x;.; that ends
in y. It is defined recursively:

Oni1(0) = ma;gs(as,n,yn, O) +| Vnlyn) |

Yn€
On(y) = max, s(@,n—1,yn-1,9) +|Pn-1(n1)]
Yn— 1€L
On-1(y) = max s(xz,n—2,yn—2,9) +| On—2(yn—2)
Yn— 2€L

Ou) = e s(w.i~ L 1,9) + O 1|

72/109



Recurrence
First, think about the score of the best sequence.

Let ©,(y) be the score of the best label sequence for x;.; that ends
in y. It is defined recursively:

On1(0) = ma s(x, 7, yn, ©) +| On(yn)|

n - -1 n—1,Y n— n—
) = i, s~ 1100+ [Fon 1]
ars) = v (0.~ 2, 2,0) + [T a3

00 = oo i = oper) [Pl

Yi

@l(y) = S(:B, 0,0, y)

73/109



Viterbi Procedure (Part I: Prefix Scores)

T

input sequence

T2

Tn
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Viterbi Procedure (Part I: Prefix Scores)

input sequence

T T2 e In
0| Qu(h)
r 5_2 O1(f2)
lr | ©1(4r)
O

QQ1(y) = S(:I), 07 O? y)
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
T T2 e In
0| O1(ly) | Oa(ly)
Oy | O1(l2) | Da(la)

T [0 | Oa(tr)

i = ) | — 17 i—15 i— i—
Qi(y) yg?&s(w { Yi—1,Y) +|Vic1(yi—1)
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Viterbi Procedure (Part I: Prefix Scores)

input sequence

T T2 In
O | Ou(lr) | Oa(ly) O (1)
r by | O1(l2) | Oa(la) On(la)
7 [ O1n) | Oaf) 0ullr)
O

Oult) = i, @~ 1,0-1) + [Fo1n )]

Yn—1€

77/109



Viterbi Procedure (Part I: Prefix Scores)

input sequence

X1 ) Tn

G| O1l) | Oafy) On(t1)

r by | Qi(la) | Va(la) On(l2)

7 | Ol [ Oaltn) Onllz)
O @nJrl(O)

QQn—l—l(C)) = gllg)és(manvynv O) + m
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High-Level View of the Viterbi Algorithm

» The decision about ¢, is a function of y,_1, , and nothing
else!

» If, for each value of y,,—1, we knew the best (n — 1)-length
label prefix y;.,_1, then picking ¢, (and §,—1) would be easy.

» Idea: for each position ¢, calculate the score of the best label
prefix y,.; ending in each possible value for the ith label.

> We'll call this value ©;(¢) for y; = ¢.

> With a little bookkeeping, we can then trace backwards and

recover the best label sequence.
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Viterbi Procedure (Part |: Prefix Scores and Backpointers)

!

input sequence

T2

Tn

Lo

14
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Viterbi Procedure (Part |: Prefix Scores and Backpointers)

input sequence

T xI9 In

’ O1(41)
! bpl(gl)
ly V1l

bp1(52)

L

0 Q1)
L bpl(EL)
O

O1(y) = s(x,0,0,y)

bp: (y)
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Viterbi Procedure (Part |: Prefix Scores and Backpointers)

input sequence

I xT9 In
0 Q1(¢1) | Oa(ly)
bpl(fl) bpz(fl)
0, O1(l2) | Oa(l2)
bP1(£2) bPz(f2)
L
0 Q1(lr) | Oa(lr)
bpy (Y1) | bpa(fL)
O
QQi - -1 i—1,Y + Q?z 1—
(y) = mas s(@,i =1,y
bp,(y) = argmax s(x,i — 1,y;-1,y) +

Yyi—1€L
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Viterbi Procedure (Part |: Prefix Scores and Backpointers)

input sequence

1 o PN Ip
I RZICYRIRZICY (41)
' | bpy(£1) | bpy(fr) bp,, (¢1)
), Q1(l2) | Oa(la) On(42)
® | bpy(f2) | bpy(ts) bp,, (¢2)
L
’ C1(lr) | Oq(lr) On(lr)
" bpy(0r) | bpa(fr) bp, (¢r)
O
On(y) = max s(@n—1,gn1,9) +| V1) |

o) = g L 1:0) + [Fo 1l

Yn—1€L
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Viterbi Procedure (Part |: Prefix Scores and Backpointers)

input sequence

T1 o PN I

I RZICYRIRZICY (41)

' | bpy(£1) | bpy(fr) bp,, (41)

0, | Q1lla) | ©a(ls) (£2)

2 | bpy(f2) | bpy(la) bp,, (¢2)

L

/ @1@[1) @2(€L) @n(EL)

L bpy (1) | bpy(4L) bp,, (‘1)

O QQn+1(t))
bpn-i—l(o)

Ony1(0) = max s(x, 7, Yn, O) +| On(yn)

yn€L

bpn+1(0) = argm[z:ixs(:c, n,Yn, O) + @n(yn)
Yn€
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Full Viterbi Procedure
Input: scores s(x,i,y,y'), forall i € {0,...,n}, y,v/ € L

Output: ¢

1. Base case: Q1(y) = s(x,0,0,y)
2. Forie{2,...,n+ 1}
» Solve for Q;(x) and bp; ().
QQZ(y> = nax S(waZ - 17yi717y) + Oifl(yifl)u
Yi—1€L

bp;(y) = argmax s(x,i — 1,yi—1,y) + Vi—1(yi—1)
yi—1€L

(At n+ 1 we're only interested in y = ().)
3. Gig1 < O
4 Forie{n,...,1}:
» i < bp;yq(Pit1)
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Viterbi Asymptotics

labels in L

input sequence

z1

T2

Tn

141

lo

193
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Viterbi Asymptotics

input sequence
X1 o “. Ip

141

labels in £ E_Q

Ly

Space: need to store s, and fill in the cells above.
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Viterbi Asymptotics

input sequence
I T2 N In

41

labels in £ 6_2

193

Space: need to store s, and fill in the cells above. O(nL?) for s (in
the most general case, often less), O(nL) for cells
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Viterbi Asymptotics

input sequence
T o PN I

141

labels in £ 6_2

193

Space: need to store s, and fill in the cells above. O(nL?) for s (in
the most general case, often less), O(nL) for cells

Runtime: each cell requires an “argmax.”
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Viterbi Asymptotics

input sequence
il o .. Ip

4y
labels in £ E_Q

lr

Space: need to store s, and fill in the cells above. O(nL?) for s (in
the most general case, often less), O(nL) for cells

Runtime: each cell requires an “argmax.” O(nL?)
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Why it Works

Viterbi exploits the distributivity property:

n—1
maxz m7z7y17yz+1) maXS(a’a%ymO) + max ZS m717yl7y’b+1)
Yin 2 Yn Yiin—1 i—0
- IIzlJaXS(:B,’L,yn, O) +ma‘XS($7/L7yn 17yn)
n—2
+ max Z m7l7y7,7yz+1)
Y1iin—2

Max plus max plus max plus max plus ...

91 /109



Back to “s”

We haven't said much about the function that scores candidate
label pairs at different positions, s(x,1i,y,’).

This function is very important; two common choices are:
» Expert-designed, task-specific features f(x,i,y,y’) and
weights 6
» A neural network that encodes z; in context, y;, and y;4+1 and
gives back a goodness score

Either way, let 8 denote the parameters of s. From now on, we'll

use s(x,,y,y’;0) and Score(x, y; @) to emphasize that “s" is a
function of parameters 8 we need to estimate.
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Probabilistic View of Learning

As we've done before, we start with the principle of maximum
likelihood to estimate 0:

T
0" = arg max Y=y |X=x;0
geeRdi];[lp( Yi | i:0)
T
=argmax Y logp(Y =y, | X =x;;0
geeRd; gp(Y =y, | i0)
T

= arg min —logp(Y =y, | X =x;;0)
OcRd 1

sometimes called “log loss” or “cross entropy”

Next, we'll drill down into “p(Y =y, | X = x;;0).”
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Conditional Random Fields
Lafferty et al. (2001)

CRFs are a tremendously influential model that generalizes
multinomial logistic regression to structured outputs like sequences.

exp Score x,y;0

Z(z;0) Z expScore(a: y’;0)
y'eV()
—log porr(y | @;8) = — Score(x, y; 0) + log Z(x; 6)

AAhc;;)eH le;ryr

So, our“CRF":
» Uses Viterbi for decoding (our v. 4 sequence labeler)

» Trains parameters to maximize likelihood (like MLR and NNs)
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Sequence-Level Log Loss

Here's the maximum likelihood learning problem (equivalently,
sequence-level log loss):

T
0" — argminz —Score(x;, y;;0) + log Z (x;; 0)
1S

If we can calculate and differentiate (w.r.t. @) the Score and Z
functions, we can use SGD to learn.
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Reflection

Given a training instance (x;,y;), what do you need to do to
calculate Score(x;,y;;60)?
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Calculating Z(x; 0)

Good news! The algorithm that gives us Z is almost exactly like
the Viterbi algorithm.

Forward algorithm: sums the exp Score values for all label
sequences, given x, in the same asymptotic time and space as
Viterbi.

Let a;(y) be the sum of all (exponentiated) scores of label prefixes
of length ¢, ending in y.
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Some Algebra

Given the decomposition

Score(wvy; 0) = S(maiayiayi-i-l;a)a
1=0
it holds that

exp Score(x, y; 0 H * (@ iyiyit1:0

and therefore

n
E H e5(@0y L 156)

y' €V (@) i=0

99 /109



Forward Algorithm

Input: scores s(x,i,y,y';0), forall i € {0,...,n}, y,y € L

Output: Z(x;0)

1. Base case: aq(y) = e5(®0.0.4:0)
2. Forie{2,....,n+1}:
» Solve for a;(*).

a;i(y) = Z e @ITLYi-10) 5 o (i)
Yyi—1€L

(At n + 1 we're only interested in y = ().)
3. Return ay,11(0)), which is equal to Z(x; ).
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Intuitions about the Forward Algorithm

Just as Viterbi changes “scary max over big sum” to “max plus
max plus max plus ...,"

the Forward algorithm changes “scary sum over big product” to
“plus times plus times plus times ...."

If you organize the operations in the other direction, you get the
Backward algorithm.

You can differentiate Z with respect to s, because it's all just exp,
addition, and multiplication. If you mechanically derive the partial
derivatives, you will rediscover the Backward algorithm.
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