DSC291: Advanced Statistical Natural Language Processing

Classification
Sequence Tagging
Zhiting Hu
Lecture 10, April 28, 2022
UCSanDiego

Outline

- Classification
- Weakly supervised learning
- Sequence Tagging/Labeling

Classification

Classification with few labels

- Data augmentation
- Zero-/few-shot learning via prompting
- Weak supervision

The difficulty with supervised learning

- Annotated data is expensive and costs increase when...
- A task requires specialized expertise
E.g. "Only a trained linguist or a board certified radiologist can label my data"
- Labeling examples involves making multiple decisions
E.g. "Annotate this sentence with a parse tree"
(instead of a single binary decision)

How to get more labeled training data?

Example (I): labeling with heuristics

Task: Build a chest x-ray classifier (normal/abnormal)


```
Indication: Chest pain. Findings:
Mediastinal contours are within
normal limits. Heart size is
within normal limits. No focal
consolidation, pneumothorax or
pleural effusion. Impression: NO
acute cardiopulmonary
abnormality.
```

Can you use the accompanying medical report (text modality) to label the x-ray (image modality)?

Example (I): labeling with heuristics

Indication: Chest pain. Findings:
Mediastinal contours are within
norma7 limits. Heart size is
within normal limits. No focal
consolidation, pneumothorax or
pleural effusion. Impression: NO acute cardiopulmonary abnormality.

How do we obtain Y ?

Example (I): labeling with heuristics

```
Indication: Chest pain. Findings:
Mediastinal contours are within
norma7 limits. Heart size is
within normal limits. No focal
consolidation, pneumothorax or
pleural effusion. Impression:NO
acute cardiopulmonary
abnormality.
```

```
def LF_pneumothorax(c):
    if re.search(r'pneumo.*', c.report.text):
        return "ABNORMAL"
def LF_pleural_effusion(c):
    if "pleural effusion" in c.report.text:
            return "ABNORMAL"
def LF_normal_report(c, thresh=2):
    if len(NORMAL_TERMS.intersection(c.
        report.words)) > thresh:
        return "NORMAL"
                            LFs
                            (labeling functions)
```

Source: Khandwala et. al 2017, Cross Modal Data Programming for Medical Images

Example (II): Labeling with knowledge bases

Task: relation extraction from text

- Hypothesis: If two entities belong to a certain relation, any sentence containing those two entities is likely to express that relation
- Key idea: use a knowledge base of relations to get lots of noisy training examples

Example (II): Labeling with knowledge bases Frequent Freebase relations

Relation name	Size	Example
/people/person/nationality	281,107	John Dugard, South Africa
/location/location/contains	253,223	Belgium, Nijlen
/people/person/profession	208,888	Dusa McDuff, Mathematician
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield
/dining/restaurant/cuisine	86,213	MacAyo's Mexican Kitchen, Mexican
/business/business_chain/location	66,529	Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank	42,806	Scorpaeniformes, Order
/film/film/genre	40,658	Where the Sidewalk Ends, Film noir
/film/film/language	31,103	Enter the Phoenix, Cantonese
/biology/organism_higher_classification	30,052	Calopteryx, Calopterygidae
/film/film/country	27,217	Turtle Diary, United States
/film/writer/film	23,856	Irving Shulman, Rebel Without a Cause
/film/director/film	23,539	Michael Mann, Collateral
/film/producer/film	22,079	Diane Eskenazi, Aladdin
/people/deceased_person/place_of_death	18,814	John W. Kern, Asheville
/music/artist/origin	18,619	The Octopus Project, Austin
/people/person/religion	17,582	Joseph Chartrand, Catholicism
/book/author/works_written	17,278	Paul Auster, Travels in the Scriptorium
/soccer/football_position/players	17,244	Midfielder, Chen Tao
/people/deceased_person/cause_of_death	16,709	Richard Daintree, Tuberculosis
/book/book/genre	16,431	Pony Soldiers, Science fiction
/film/film/music	14,070	Stavisky, Stephen Sondheim
/business/company/industry	13,805	ATS Medical, Health care

Example (II): Labeling with knowledge bases

Corpus text

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft,
Bill Gates attended Harvard from
Google was founded by Larry Page

Training data

Freebase

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Example (II): Labeling with knowledge bases

Corpus text

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...
Bill Gates attended Harvard from...
Google was founded by Larry Page .

Freebase

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Training data

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y

Example (II): Labeling with knowledge bases

Corpus text

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft,
Bill Gates attended Harvard from Google was founded by Larry Page

Training data

```
(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y
```


Freebase

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Example (II): Labeling with knowledge bases

Corpus text

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...
Bill Gates attended Harvard from. Google was founded by Larry Page

Freebase

Training data

```
(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y
```

(Bill Gates, Harvard)
Label: CollegeAttended Feature: X attended Y

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Example (II): Labeling with knowledge bases

Corpus text

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...
Bill Gates attended Harvard from...
Google was founded by Larry Page

Freebase

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Training data

```
(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y
```

```
(Bill Gates, Harvard)
Label: CollegeAttended
Feature: X attended Y
```

(Larry Page, Google)
Label: Founder
Feature: Y was founded by X

Example (II): Labeling with knowledge bases Negative training data

Integrating multiple noisy labels

Source: A. Ratner et. al https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/

Integrating multiple noisy labels

Integrating multiple noisy labels

Integrating multiple noisy labels

How do we obtain probabilistic labels, $\tilde{\mathbf{Y}}$, from the label matrix, L?
Approach 1 - Majority Vote
Take the majority vote of the labelling functions (LFs).
Let's say $L=[[0,1,0,1,0] ;[1,1,1,1,0]]$.

$$
\tilde{\mathbf{Y}}=[0,1]
$$

Integrating multiple noisy labels

How do we obtain probabilistic labels, $\tilde{\mathbf{Y}}$, from the label matrix, L?

Approach 1 - Majority Vote

Majority vote fails:

```
Indication: Chest pain. Findings:
Mediastinal contours are within
normal limits. Heart size is
within normal limits. No focal
consolidation, pneumothorax or
pleural effusion. Impression: NO
acute cardiopulmonary
abnormality.
```

Normal Report

```
def LF_pneumothorax(c):
    if re.search(r'pneumo.*', c.report.text):
        return "ABNORMAL"
def LF_pleural_effusion(c):
    if "pleural effusion" in c.report.text:
        return "ABNORMAL"
def LF_normal_report(c, thresh=2):
    if len(NORMAL_TERMS.intersection(c.
        report.words)) > thresh:
        return "NORMAL"
                            LFs
```


Integrating multiple noisy labels

How do we obtain probabilistic labels, $\tilde{\mathbf{Y}}$, from the label matrix, L?

Approach 2

Train a generative model over $P(L, Y)$ where Y are the (unknown) true labels
Generative Model

Summary: Weak/distant supervision

How to get more labeled training data?

Sequence Labeling

Motivation

Many tasks in NLP can be cast as sequence labeling, where each token (usually, word) gets its own label. Compare:

- Text classification: $\left\langle x 1, x_{2}, \ldots, x_{n}\right\rangle \rightarrow y \in L$
- Sequence labeling: $\left\langle x_{1} \mapsto y_{1}, x_{2} \mapsto y_{2}, \ldots, x_{n} \longmapsto y_{n}\right\rangle$, each $y_{i} \in \mathrm{~L}$
- Translation: $x \rightarrow y$

Many to One

Many to Many

Many to Many

Problems Typically Cast as Sequence Labeling

- supersense tagging (Ciaramita and Johnson, 2003)
- part-of-speech tagging (Church, 1988)
- morphosyntactic tagging (Habash and Rambow, 2005)
- segmentation into words (Sproat et al., 1996) or multiword expressions (Schneider et al., 2014)
- code switching (Solorio and Liu, 2008)
- dialogue acts (Stolcke et al., 2000)
- spelling correction (Kernighan et al., 1990)
- word alignment (Vogel et al., 1996)
- named entity recognition (Bikel et al., 1999)
- compression (Conroy and O'Leary, 2001)

Supersense Tagging Example

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	x_{16}	x_{17}

Observations

- Lots of subproblems: Which words have supersenses? Which words group together to form a multiword expression? For those that do, which supersense?
- Every word's label depends on the words around it, and their labels.
- Segmentation problems can be cast as sequence labeling (Ramshaw and Marcus, 1995):
- Two labels, B and I, if every word must be in some segment
- Three labels, B, I, and O, if some words are to be "discarded"
- Variants for five labels (E for end, S for singleton), gaps/noncontiguous spans, and nesting, exist.
Concatenate B, I, etc., with labels to get labeled segmentation.
- Some sequences of labels might be invalid under your theory/label semantics.
- Evaluation: usually precision, recall, and F_{1} on labeled segments.

Sequence Labeling

Problem statement: given a sequence of n words \boldsymbol{x}, assign each a label from \mathcal{L}. Let $L=|\mathcal{L}|$.

Every approach we see today will cast the problem as:

$$
\hat{\boldsymbol{y}}=\underset{\boldsymbol{y} \in \mathcal{L}^{n}}{\operatorname{argmax}} \operatorname{Score}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{\theta})
$$

Naïvely, that's a classification problem where the number of possible 'labels" (output sequences) depends on the input and is $O\left(L^{n}\right)$ in size!

Sequence Labeling v. 0: Local Classifiers

Define score of a word x_{i} getting label $y \in \mathcal{L}$ in context: $\operatorname{score}(\boldsymbol{x}, i, y ; \boldsymbol{\theta})$, for example through a feature vector, $\mathbf{f}(\boldsymbol{x}, i, y)$. (Here, " i "' indicates the position of the input word to be classified.)

Train a classifier to decode locally, i.e.,

$$
\begin{aligned}
\hat{y}_{i} & =\underset{y \in \mathcal{L}}{\operatorname{argmax}} \operatorname{score}(\boldsymbol{x}, i, y ; \boldsymbol{\theta}) \\
& =\underset{y \in \mathcal{L}}{\operatorname{argmax}} \boldsymbol{\theta}^{\top} \mathbf{f}(\boldsymbol{x}, i, y)
\end{aligned}
$$

The classifier is applied to each x_{1}, x_{2}, \ldots in turn, but all the words can be made available at each position.

Sequence Labeling v. 0: Local Classifiers

Sequence Labeling v. 0: Local Classifiers

We can do better when there are predictable relationships among labels.

$$
\hat{\boldsymbol{y}}=\underset{\boldsymbol{y} \in \mathcal{L}^{n}}{\operatorname{argmax}} \operatorname{Score}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{\theta})
$$

Sequence Labeling v. 1: Sequential Classifiers

Define score of a word x_{i} getting label y in context, including previous labels: score $\left(\boldsymbol{x}, i, \hat{\boldsymbol{y}}_{1: i-1}, y ; \boldsymbol{\theta}\right)$. (From here, we won't always write $\boldsymbol{\theta}$, but the dependence remains.)

Train a classifier, e.g.,

$$
\hat{y}_{i}=\underset{y \in \mathcal{L}}{\operatorname{argmax}} \operatorname{score}\left(\boldsymbol{x}, i, \hat{\boldsymbol{y}}_{1: i-1}, y\right)
$$

The classifier is applied to each x_{1}, x_{2}, \ldots in turn. Each one depends on the outputs of preceding iterations.

Sequence Labeling v. 1: Sequential Classifiers

Define score of a word x_{i} getting label y in context, including previous labels: score $\left(\boldsymbol{x}, i, \hat{\boldsymbol{y}}_{1: i-1}, y ; \boldsymbol{\theta}\right)$. (From here, we won't always write $\boldsymbol{\theta}$, but the dependence remains.)

Train a classifier, e.g.,

$$
\hat{y}_{i}=\underset{y \in \mathcal{L}}{\operatorname{argmax}} \operatorname{score}\left(\boldsymbol{x}, i, \hat{\boldsymbol{y}}_{1: i-1}, y\right)
$$

The classifier is applied to each x_{1}, x_{2}, \ldots in turn. Each one depends on the outputs of preceding iterations.

Drawback: "downstream" effects of a mistake can be catastrophic.
There is much literature on methods for training, and for decoding, with models like this. Important decoding method in NLP: beam search.

Beam Search for Sequential Classifiers

Input: \boldsymbol{x} (length n), a sequential classifier's scoring function score, and beam width k

Let H_{0} score hypotheses at position 0 , defining only $H_{0}(\langle \rangle)=0$.
For $i \in\{1, \ldots, n\}$:

- Empty C.
- For each hypothesis $\hat{\boldsymbol{y}}_{1: i-1}$ scored by H_{i-1} :
- For each $y \in \mathcal{L}$, place new hypothesis

$$
\hat{\boldsymbol{y}}_{1: i} y \rightarrow H_{i-1}\left(\hat{\boldsymbol{y}}_{1: i-1}\right)+\operatorname{score}\left(\boldsymbol{x}, i, \hat{\boldsymbol{y}}_{1: i-1}, y\right) \text { into } C .
$$

- Let H_{i} be the k-best scored elements of C.

Output: best scored element of H_{n}.

Beam Search for Sequential Classifiers

- Runtime is $O\left(n^{2} k L\right)$, space is $O\left(n^{2} k\right)$.
- You can improve runtime (e.g., to $O(n k L)$) if computation is shared across different i (often true with neural networks).
- Special cases:
- $k=1$ is greedy left-to-right decoding.
- At $k=L^{n}$, you're doing brute force, exhaustive search.

A Generative Approach

- The next approach should remind you of language models. It assumes that labeled sequences are generated according to the following story:

$$
y_{1}
$$

$$
y_{1} \sim p_{\text {start }}(Y)
$$

A Generative Approach

- The next approach should remind you of language models. It assumes that labeled sequences are generated according to the following story:

```
    X1
    \uparrow
    y1
l}\begin{array}{l}{\mp@subsup{x}{1}{}~\mp@subsup{p}{\mathrm{ emission ( }}{(X}}\\{\mp@subsup{y}{1}{})}
```


A Generative Approach

- The next approach should remind you of language models. It assumes that labeled sequences are generated according to the following story:

```
X1
\uparrow
y1 }->\quad\mp@subsup{y}{2}{
y2~ ptransition (Y | y )
```


A Generative Approach

- The next approach should remind you of language models. It assumes that labeled sequences are generated according to the following story:

x_{1}		x_{2}
\uparrow		\uparrow
y_{1}	\rightarrow	y_{2}

$$
x_{2} \sim p_{\text {emission }}\left(x \quad \mid y_{2}\right)
$$

A Generative Approach

- The next approach should remind you of language models. It assumes that labeled sequences are generated according to the following story:

$$
\begin{array}{cccc}
x_{1} & & x_{2} \\
\uparrow & & \\
y_{1} & \rightarrow & \\
& \\
& y_{2} & \\
& & \\
y_{3} & \sim y_{3} & \\
\text { transition }\left(Y \mid y_{2}\right)
\end{array}
$$

A Generative Approach

- The next approach should remind you of language models. It assumes that labeled sequences are generated according to the following story:

x_{1}		x_{2}		x_{3}
\uparrow		\uparrow		\uparrow
y_{1}	\rightarrow	y_{2}	\rightarrow	y_{3}

$$
x_{3} \sim p_{\text {emission }}\left(X \mid y_{3}\right)
$$

A Generative Approach

- The next approach should remind you of language models. It assumes that labeled sequences are generated according to the following story:

$$
\begin{array}{cccccc}
x_{1} & & x_{2} & & x_{3} \\
\uparrow & & \uparrow & & \uparrow & \\
y_{1} & \rightarrow & y_{2} & \rightarrow & y_{3} & \rightarrow 0 \\
& & & & \\
& y_{4} & \sim p_{\text {transition }}(y \mid y & \left.\mid y_{3}\right)
\end{array}
$$

Sequence Labeling v. 2: Hidden Markov Models

By convention, $y_{n+1}=\bigcirc$ is always the "stop label."

$$
\begin{aligned}
& p(\boldsymbol{X}=\boldsymbol{x}, \boldsymbol{Y}=\boldsymbol{y})= \\
& \qquad \begin{aligned}
& p_{\text {start }}\left(y_{1}\right) \\
& \prod_{i=1}^{n} p_{\text {emission }}\left(x_{i} \mid y_{i}\right) \cdot p_{\text {transition }}\left(y_{i+1} \mid y_{i}\right) \\
\hat{\boldsymbol{y}} & =\underset{\boldsymbol{y} \in \mathcal{L}^{n}}{\operatorname{argmax}} p(\boldsymbol{Y}=\boldsymbol{y} \mid \boldsymbol{X}=\boldsymbol{x}) \\
= & \underset{\boldsymbol{y} \in \mathcal{L}^{n}}{\operatorname{argmax}} p(\boldsymbol{X}=\boldsymbol{x}, \boldsymbol{Y}=\boldsymbol{y}) \\
= & \underset{\boldsymbol{y} \in \mathcal{L}^{n}}{\operatorname{argmax}} \log p(\boldsymbol{X}=\boldsymbol{x}, \boldsymbol{Y}=\boldsymbol{y})
\end{aligned}
\end{aligned}
$$

We can solve the global decoding problem exactly (i.e., find the model-optimal $\hat{\boldsymbol{y}})$ in $O\left(n L^{2}\right)$ time and $O(n L)$ space using the Viterbi algorithm (more later).

HMM Parameters

Classical HMM parameters are all interpretable as probabilities of events.
$p_{\text {start }}$ is a distribution over \mathcal{L}. We estimate it by counting how often sequences start with each label in the training data, and normalizing.
$p_{\text {emission }}$ is a distribution over words, for each label. Many people find this counterintuitive! Estimation: counting occurrences of labels with words, and normalizing (per label, not per word).
$p_{\text {transition }}$ is exactly a bigram (first-order Markov) model over labels.

Parameterized version

- Replace the "lookup" probabilities ($p_{\text {transition }}, p_{\text {emission }}, p_{\text {start }}$) with scoring functions

Classical HMM (v. 2):

$$
\hat{\boldsymbol{y}}=\underset{\boldsymbol{y} \in \mathcal{L}^{n}}{\operatorname{argmax}} \log p_{\text {start }}\left(y_{1}\right)+\sum_{i=1}^{n}\binom{\log p_{\text {emission }}\left(x_{i} \mid y_{i}\right)}{+\log p_{\text {transition }}\left(y_{i+1} \mid y_{i}\right)}
$$

This approach (v. 3):

$$
\hat{\boldsymbol{y}}=\underset{\boldsymbol{y} \in \mathcal{L}^{n}}{\operatorname{argmax}} s_{\text {start }}\left(y_{1}\right)+\sum_{i=1}^{n} s_{\text {emission }}\left(x_{i}, y_{i}\right)+s_{\text {transition }}\left(y_{i}, y_{i+1}\right)
$$

Parameterized version: Note

- Decoding is essentially the same as the classical HMM: Viterbi algorithm.
- Learning is now complicated and depends on the form of each " s " (but is still efficient as we will see later)
- No part of the the scoring function looks at neighboring words.

Parameterized version (cont'd)

Let each scoring component (" s ") "see" the whole input. By convention, $y_{0}=\bigcirc$ is always the "start label."

$$
\hat{\boldsymbol{y}}=\underset{\boldsymbol{y} \in \mathcal{L}^{n}}{\operatorname{argmax}} \overbrace{\sum_{i=0}^{n} s\left(\boldsymbol{x}, i, y_{i}, y_{i+1}\right)}^{\operatorname{Score}(\boldsymbol{x}, \boldsymbol{y})}
$$

Note that \boldsymbol{x} can have arbitrary length, so we need " s " functions that are capable of adapting to variable-length input.

Summary so far

Model	0	1	2	3	4
Score decomp.	$s\left(\boldsymbol{x}, i, y_{i}\right)$	$s\left(\boldsymbol{x}, i, \boldsymbol{y}_{1: i}\right)$	emission/ transition	$s\left(x_{i}, y_{i}\right)+$	
$s\left(y_{i}, y_{i+1}\right)$	$s\left(\boldsymbol{x}, i, y_{i}, y_{i+1}\right)$				
learn	SGD	$?$	 normalize	$?$	$?$
decode	local	beam search	Viterbi	Viterbi	Viterbi

Two Problems to Solve

1. Decoding: the Viterbi algorithm for choosing $\hat{\boldsymbol{y}}$.

- Usually taught for classical HMMs (v. 2); I will teach it for v. 4, abstracting away " s."

2. Learning: estimating the parameters of each s function.

- Depending on your choices here, you arrive at the structured perceptron, the classical conditional random field (CRF), neural CRFs, and more.

A Data Structure

The cell at row j, column i will hold information pertaining to choosing $\hat{y}_{i}=\ell_{j}$.

The End of the Sequence

$$
\begin{aligned}
& \qquad \\
& \hat{y}_{n}=\underset{y_{n} \in \mathcal{L}}{\operatorname{argmax}} \sum_{i=0}^{n} s\left(\boldsymbol{x}, i, y_{i}, y_{i+1}\right) \\
& =\underset{y_{n} \in \mathcal{L}}{\operatorname{argmax}} s\left(\boldsymbol{x}, i, y_{n-1}, y_{n}\right)+s\left(\boldsymbol{x}, i, y_{n}, O\right)
\end{aligned}
$$

The decision about \hat{y}_{n} is a function of y_{n-1}, \boldsymbol{x}, and nothing else!

High-Level View of the Viterbi Algorithm

- The decision about \hat{y}_{n} is a function of y_{n-1}, \boldsymbol{x}, and nothing else!

High-Level View of the Viterbi Algorithm

- The decision about \hat{y}_{n} is a function of y_{n-1}, \boldsymbol{x}, and nothing else!
- If, for each value of y_{n-1}, we knew the best $(n-1)$-length label prefix $\boldsymbol{y}_{1: n-1}$, then picking \hat{y}_{n} (and \hat{y}_{n-1}) would be easy.

High-Level View of the Viterbi Algorithm

- The decision about \hat{y}_{n} is a function of y_{n-1}, \boldsymbol{x}, and nothing else!
- If, for each value of y_{n-1}, we knew the best $(n-1)$-length label prefix $\boldsymbol{y}_{1: n-1}$, then picking \hat{y}_{n} (and \hat{y}_{n-1}) would be easy.
- Idea: for each position i, calculate the score of the best label prefix $\boldsymbol{y}_{1: i}$ ending in each possible value for the i th label.
- We'll call this value $\nabla_{i}(\ell)$ for $y_{i}=\ell$.

High-Level View of the Viterbi Algorithm

- The decision about \hat{y}_{n} is a function of y_{n-1}, \boldsymbol{x}, and nothing else!
- If, for each value of y_{n-1}, we knew the best $(n-1)$-length label prefix $\boldsymbol{y}_{1: n-1}$, then picking \hat{y}_{n} (and \hat{y}_{n-1}) would be easy.
- Idea: for each position i, calculate the score of the best label prefix $\boldsymbol{y}_{1: i}$ ending in each possible value for the i th label.
- We'll call this value $\nabla_{i}(\ell)$ for $y_{i}=\ell$.
- With a little bookkeeping, we can then trace backwards and recover the best label sequence.

Recurrence

First, think about the score of the best sequence.

Let $\bigcirc_{i}(y)$ be the score of the best label sequence for $\boldsymbol{x}_{1: i}$ that ends in y. It is defined recursively:

$$
\nabla_{n+1}(\bigcirc)=\max _{y_{n} \in \mathcal{L}} s\left(\boldsymbol{x}, n, y_{n}, \bigcirc\right)+\Theta_{n}\left(y_{n}\right)
$$

Recurrence

First, think about the score of the best sequence.

Let $\Upsilon_{i}(y)$ be the score of the best label sequence for $\boldsymbol{x}_{1: i}$ that ends in y. It is defined recursively:

$$
\begin{aligned}
\nabla_{n+1}(\bigcirc) & =\max _{y_{n} \in \mathcal{L}} s\left(\boldsymbol{x}, n, y_{n}, \bigcirc\right)+\wp_{n}\left(y_{n}\right) \\
\nabla_{n}(y) & =\max _{y_{n-1} \in \mathcal{L}} s\left(\boldsymbol{x}, n-1, y_{n-1}, y\right)+\wp_{n-1}\left(y_{n-1}\right)
\end{aligned}
$$

Recurrence

First, think about the score of the best sequence.

Let $\Upsilon_{i}(y)$ be the score of the best label sequence for $\boldsymbol{x}_{1: i}$ that ends in y. It is defined recursively:

$$
\begin{aligned}
\nabla_{n+1}(\bigcirc) & =\max _{y_{n} \in \mathcal{L}} s\left(\boldsymbol{x}, n, y_{n}, \bigcirc\right)+\wp_{n}\left(y_{n}\right) \\
\nabla_{n}(y) & =\max _{y_{n-1} \in \mathcal{L}} s\left(\boldsymbol{x}, n-1, y_{n-1}, y\right)+\Omega_{n-1}\left(y_{n-1}\right) \\
\nabla_{n-1}(y) & =\max _{y_{n-2} \in \mathcal{L}} s\left(\boldsymbol{x}, n-2, y_{n-2}, y\right)+\Theta_{n-2}\left(y_{n-2}\right)
\end{aligned}
$$

Recurrence

First, think about the score of the best sequence.
Let $\nabla_{i}(y)$ be the score of the best label sequence for $\boldsymbol{x}_{1: i}$ that ends in y. It is defined recursively:

$$
\begin{aligned}
\nabla_{n+1}(\bigcirc) & =\max _{y_{n} \in \mathcal{L}} s\left(\boldsymbol{x}, n, y_{n}, \bigcirc\right)+\wp_{n}\left(y_{n}\right) \\
\nabla_{n}(y) & =\max _{y_{n-1} \in \mathcal{L}} s\left(\boldsymbol{x}, n-1, y_{n-1}, y\right)+\wp_{n-1}\left(y_{n-1}\right) \\
\nabla_{n-1}(y) & =\max _{y_{n-2} \in \mathcal{L}} s\left(\boldsymbol{x}, n-2, y_{n-2}, y\right)+\wp_{n-2}\left(y_{n-2}\right) \\
\vdots & \\
\nabla_{i}(y) & =\max _{y_{i-1} \in \mathcal{L}} s\left(\boldsymbol{x}, i-1, y_{i-1}, y\right)+\wp_{i-1}\left(y_{i-1}\right)
\end{aligned}
$$

Recurrence

First, think about the score of the best sequence.
Let $\bigcirc_{i}(y)$ be the score of the best label sequence for $\boldsymbol{x}_{1: i}$ that ends in y. It is defined recursively:

$$
\begin{aligned}
\wp_{n+1}(\bigcirc) & =\max _{y_{n} \in \mathcal{L}} s\left(\boldsymbol{x}, n, y_{n}, \bigcirc\right)+\wp_{n}\left(y_{n}\right) \\
\bigcirc_{n}(y) & =\max _{y_{n-1} \in \mathcal{L}} s\left(\boldsymbol{x}, n-1, y_{n-1}, y\right)+\wp_{n-1}\left(y_{n-1}\right) \\
\wp_{n-1}(y) & =\max _{y_{n-2} \in \mathcal{L}} s\left(\boldsymbol{x}, n-2, y_{n-2}, y\right)+\wp_{n-2}\left(y_{n-2}\right) \\
\vdots & \\
\wp_{i}(y) & =\max _{y_{i-1} \in \mathcal{L}} s\left(\boldsymbol{x}, i-1, y_{i-1}, y\right)+\wp_{i-1}\left(y_{i-1}\right) \\
\vdots & \\
\wp_{1}(y) & =s(\boldsymbol{x}, 0, \bigcirc, y)
\end{aligned}
$$

Viterbi Procedure (Part I: Prefix Scores)

input sequence					
\mathcal{L}	x_{1}	x_{2}	\ldots	x_{n}	
ℓ_{1}					
ℓ_{2}					
\vdots					
ℓ_{L}					
\square					

Viterbi Procedure (Part I: Prefix Scores)

input sequence					
	x_{1}	x_{2}	\ldots	x_{n}	
$\mathcal{L} \ell_{1}$	$\Omega_{1}\left(\ell_{1}\right)$				
ℓ_{2}	$\Theta_{1}\left(\ell_{2}\right)$				
\vdots					
ℓ_{L}	$O_{1}\left(\ell_{L}\right)$				
\bigcirc					

$$
\bigcirc_{1}(y)=s(\boldsymbol{x}, 0, \bigcirc, y)
$$

Viterbi Procedure (Part I: Prefix Scores)

input sequence

	x_{1}	x_{2}	\ldots	x_{n}
ℓ_{1}	$\bigcirc_{1}\left(\ell_{1}\right)$	$\mathrm{O}_{2}\left(\ell_{1}\right)$		
$\mathcal{L}{ }^{\ell_{2}}$	$\bigcirc_{1}\left(\ell_{2}\right)$	$\mathrm{O}_{2}\left(\ell_{2}\right)$		
\mathcal{L})				
ℓ_{L}	$\bigcirc_{1}\left(\ell_{L}\right)$	$\bigcirc_{2}\left(\ell_{L}\right)$		
\bigcirc				

$$
\wp_{i}(y)=\max _{y_{i-1} \in \mathcal{L}} s\left(\boldsymbol{x}, i-1, y_{i-1}, y\right)+\wp_{i-1}\left(y_{i-1}\right)
$$

Viterbi Procedure (Part I: Prefix Scores)

input sequence

\mathcal{L}| | x_{1} | x_{2} | \cdots | x_{n} | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ℓ_{1} | $\nabla_{1}\left(\ell_{1}\right)$ | $\nabla_{2}\left(\ell_{1}\right)$ | | $\nabla_{n}\left(\ell_{1}\right)$ | |
| ℓ_{2} | $\nabla_{1}\left(\ell_{2}\right)$ | $\nabla_{2}\left(\ell_{2}\right)$ | | $\nabla_{n}\left(\ell_{2}\right)$ | |
| \vdots | | | | | |
| ℓ_{L} | $\nabla_{1}\left(\ell_{L}\right)$ | $\nabla_{2}\left(\ell_{L}\right)$ | | $\nabla_{n}\left(\ell_{L}\right)$ | |
| \square | | | | | |

$$
\nabla_{n}(y)=\max _{y_{n-1} \in \mathcal{L}} s\left(\boldsymbol{x}, n-1, y_{n-1}, y\right)+\wp_{n-1}\left(y_{n-1}\right)
$$

Viterbi Procedure (Part I: Prefix Scores)

input sequence

	x_{1}	x_{2}	\ldots	x_{n}	
ℓ_{1}	$\bigcirc_{1}\left(\ell_{1}\right)$	$\bigcirc_{2}\left(\ell_{1}\right)$		$\bigcirc_{n}\left(\ell_{1}\right)$	
	$\bigcirc_{1}\left(\ell_{2}\right)$	$\bigcirc_{2}\left(\ell_{2}\right)$		$\bigcirc_{n}\left(\ell_{2}\right)$	
\mathcal{L}					
ℓ_{L}	$V_{1}\left(\ell_{L}\right)$	$\bigcirc_{2}\left(\ell_{L}\right)$		$\nabla_{n}\left(\ell_{L}\right)$	
\bigcirc					$\bigcirc_{n+1}(\bigcirc)$

$$
\nabla_{n+1}(\bigcirc)=\max _{y_{n} \in \mathcal{L}} s\left(\boldsymbol{x}, n, y_{n}, \bigcirc\right)+\Omega_{n}\left(y_{n}\right)
$$

High-Level View of the Viterbi Algorithm

- The decision about \hat{y}_{n} is a function of y_{n-1}, \boldsymbol{x}, and nothing else!
- If, for each value of y_{n-1}, we knew the best $(n-1)$-length label prefix $\boldsymbol{y}_{1: n-1}$, then picking \hat{y}_{n} (and \hat{y}_{n-1}) would be easy.
- Idea: for each position i, calculate the score of the best label prefix $\boldsymbol{y}_{1: i}$ ending in each possible value for the i th label.
- We'll call this value $\nabla_{i}(\ell)$ for $y_{i}=\ell$.
- With a little bookkeeping, we can then trace backwards and recover the best label sequence.

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence					
	x_{1}	x_{2}	\ldots	x_{n}	
ℓ_{1}					
ℓ_{2}					
\vdots					
ℓ_{L}					
\square					

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
$\left.\begin{array}{c|c|c|c|c|c|} & x_{1} & x_{2} & \ldots & x_{n} & \\ \hline \ell_{1} & \Theta_{1}\left(\ell_{1}\right) \\ \mathrm{bp}_{1}\left(\ell_{1}\right)\end{array}\right)$

$$
\begin{aligned}
\bigcirc_{1}(y) & =s(\boldsymbol{x}, 0, \bigcirc, y) \\
\operatorname{bp}_{1}(y) & =\bigcirc
\end{aligned}
$$

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence

	x_{1}	x_{2}	\ldots	x_{n}
ℓ_{1}	$\begin{gathered} \sigma_{1}\left(\ell_{1}\right) \\ \operatorname{bp}_{1}\left(\ell_{1}\right) \end{gathered}$	$\begin{gathered} \rho_{2}\left(\ell_{1}\right) \\ \operatorname{bp}_{2}\left(\ell_{1}\right) \end{gathered}$		
ℓ_{2}	$\begin{gathered} \sigma_{1}\left(\ell_{2}\right) \\ \operatorname{bp}_{1}\left(\ell_{2}\right) \end{gathered}$	$\begin{gathered} \sigma_{2}\left(\ell_{2}\right) \\ \operatorname{bp}_{2}\left(\ell_{2}\right) \end{gathered}$		
$\mathcal{L} \quad \vdots$				
ℓ_{L}	$\begin{array}{r} \rho_{1}\left(\ell_{L}\right) \\ \operatorname{bp}_{1}\left(\ell_{L}\right) \\ \hline \end{array}$	$\begin{gathered} \rho_{2}\left(\ell_{L}\right) \\ \mathrm{bp}_{2}\left(\ell_{L}\right) \\ \hline \end{gathered}$		
\bigcirc				

$$
\begin{aligned}
\Omega_{i}(y) & =\max _{y_{i-1} \in \mathcal{L}} s\left(\boldsymbol{x}, i-1, y_{i-1}, y\right)+\wp_{i-1}\left(y_{i-1}\right) \\
\operatorname{bp}_{i}(y) & =\underset{y_{i-1} \in \mathcal{L}}{\operatorname{argmax}} s\left(\boldsymbol{x}, i-1, y_{i-1}, y\right)+\wp_{i-1}\left(y_{i-1}\right)
\end{aligned}
$$

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

 input sequence

$$
\begin{aligned}
\wp_{n}(y) & =\max _{y_{n-1} \in \mathcal{L}} s\left(\boldsymbol{x}, n-1, y_{n-1}, y\right)+\wp_{n-1}\left(y_{n-1}\right) \\
\operatorname{bp}_{n}(y) & =\underset{y_{n-1} \in \mathcal{L}}{\operatorname{argmax}} s\left(\boldsymbol{x}, n-1, y_{n-1}, y\right)+\wp_{n-1}\left(y_{n-1}\right)
\end{aligned}
$$

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence

	x_{1}	x_{2}	\ldots	x_{n}	
ℓ_{1}	$\begin{gathered} O_{1}\left(\ell_{1}\right) \\ \operatorname{bp}_{1}\left(\ell_{1}\right) \end{gathered}$	$\begin{gathered} \mathcal{O}_{2}\left(\ell_{1}\right) \\ \mathrm{bp}_{2}\left(\ell_{1}\right) \end{gathered}$		$\begin{gathered} \rho_{n}\left(\ell_{1}\right) \\ \operatorname{bp}_{n}\left(\ell_{1}\right) \end{gathered}$	
ℓ_{2}	$\begin{gathered} \mathcal{O}_{1}\left(\ell_{2}\right) \\ \operatorname{bp}_{1}\left(\ell_{2}\right) \end{gathered}$	$\begin{gathered} \Theta_{2}\left(\ell_{2}\right) \\ \mathrm{bp}_{2}\left(\ell_{2}\right) \end{gathered}$		$\begin{gathered} O_{n}\left(\ell_{2}\right) \\ \operatorname{bp}_{n}\left(\ell_{2}\right) \end{gathered}$	
\mathcal{L}					
ℓ_{L}	$\begin{gathered} \rho_{1}\left(\ell_{L}\right) \\ \operatorname{bp}_{1}\left(\ell_{L}\right) \end{gathered}$	$\begin{array}{r} \sigma_{2}\left(\ell_{L}\right) \\ \operatorname{bp}_{2}\left(\ell_{L}\right) \\ \hline \end{array}$		$\begin{gathered} Q_{n}\left(\ell_{L}\right) \\ \operatorname{bp}_{n}\left(\ell_{L}\right) \end{gathered}$	
\bigcirc					$\begin{array}{r} \bigcirc_{n+1}(\bigcirc) \\ \mathrm{bp}_{n+1}(\bigcirc) \\ \hline \end{array}$

$$
\begin{aligned}
\Upsilon_{n+1}(\bigcirc) & =\max _{y_{n} \in \mathcal{L}} s\left(\boldsymbol{x}, n, y_{n}, \bigcirc\right)+\varrho_{n}\left(y_{n}\right) \\
\operatorname{bp}_{n+1}(\bigcirc) & =\underset{y_{n} \in \mathcal{L}}{\operatorname{argmax}} s\left(\boldsymbol{x}, n, y_{n}, \bigcirc\right)+\varrho_{n}\left(y_{n}\right)
\end{aligned}
$$

Full Viterbi Procedure

Input: scores $s\left(\boldsymbol{x}, i, y, y^{\prime}\right)$, for all $i \in\{0, \ldots, n\}, y, y^{\prime} \in \mathcal{L}$
Output: $\hat{\boldsymbol{y}}$

1. Base case: $\bigcirc_{1}(y)=s(\boldsymbol{x}, 0, \bigcirc, y)$
2. For $i \in\{2, \ldots, n+1\}$:

- Solve for $\bigcirc_{i}(*)$ and $\mathrm{bp}_{i}(*)$.

$$
\begin{aligned}
\wp_{i}(y) & =\max _{y_{i-1} \in \mathcal{L}} s\left(\boldsymbol{x}, i-1, y_{i-1}, y\right)+\wp_{i-1}\left(y_{i-1}\right) \\
\operatorname{bp}_{i}(y) & =\underset{y_{i-1} \in \mathcal{L}}{\operatorname{argmax}} s\left(\boldsymbol{x}, i-1, y_{i-1}, y\right)+\wp_{i-1}\left(y_{i-1}\right)
\end{aligned}
$$

(At $n+1$ we're only interested in $y=\bigcirc$.)
3. $\hat{y}_{i+1} \leftarrow \bigcirc$
4. For $i \in\{n, \ldots, 1\}$:

- $\hat{y}_{i} \leftarrow \mathrm{bp}_{i+1}\left(\hat{y}_{i+1}\right)$

Viterbi Asymptotics

Viterbi Asymptotics

labels in \mathcal{L}| input sequence | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | x_{1} | x_{2} | \ldots | x_{n} |
| ℓ_{1} | | | | |
| ℓ_{2} | | | | |
| \vdots | | | | |
| ℓ_{L} | | | | |

Space: need to store s, and fill in the cells above.

Viterbi Asymptotics

labels in \mathcal{L}| input sequence | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | x_{1} | x_{2} | \ldots | x_{n} |
| ℓ_{1} | | | | |
| ℓ_{2} | | | | |
| \vdots | | | | |
| ℓ_{L} | | | | |

Space: need to store s, and fill in the cells above. $O\left(n L^{2}\right)$ for s (in the most general case, often less), $O(n L)$ for cells

Viterbi Asymptotics

labels in \mathcal{L}| | input sequence | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | x_{1} | x_{2} | \ldots | x_{n} | |
| ℓ_{1} | | | | | |
| ℓ_{2} | | | | | |
| \vdots | | | | | |
| ℓ_{L} | | | | | |

Space: need to store s, and fill in the cells above. $O\left(n L^{2}\right)$ for s (in the most general case, often less), $O(n L)$ for cells

Runtime: each cell requires an "argmax."

Viterbi Asymptotics

labels in \mathcal{L}| | input sequence | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | x_{1} | x_{2} | \ldots | x_{n} | |
| ℓ_{1} | | | | | |
| ℓ_{2} | | | | | |
| \vdots | | | | | |
| ℓ_{L} | | | | | |

Space: need to store s, and fill in the cells above. $O\left(n L^{2}\right)$ for s (in the most general case, often less), $O(n L)$ for cells

Runtime: each cell requires an "argmax." $O\left(n L^{2}\right)$

Why it Works

Viterbi exploits the distributivity property:

$$
\begin{aligned}
\max _{\boldsymbol{y}_{1: n}} \sum_{i=0}^{n} s\left(\boldsymbol{x}, i, y_{i}, y_{i+1}\right)= & \max _{y_{n}} s\left(\boldsymbol{x}, i, y_{n}, \bigcirc\right)+\max _{\boldsymbol{y}_{1: n-1}} \sum_{i=0}^{n-1} s\left(\boldsymbol{x}, i, y_{i}, y_{i+1}\right) \\
= & \max _{y_{n}} s\left(\boldsymbol{x}, i, y_{n}, \bigcirc\right)+\max _{y_{n-1}} s\left(\boldsymbol{x}, i, y_{n}-1, y_{n}\right) \\
& +\max _{\boldsymbol{y}_{1: n-2}} \sum_{i=0}^{n-2} s\left(\boldsymbol{x}, i, y_{i}, y_{i+1}\right)
\end{aligned}
$$

Max plus max plus max plus max plus...

Back to " s "

We haven't said much about the function that scores candidate label pairs at different positions, $s\left(\boldsymbol{x}, i, y, y^{\prime}\right)$.

This function is very important; two common choices are:

- Expert-designed, task-specific features $\mathbf{f}\left(\boldsymbol{x}, i, y, y^{\prime}\right)$ and weights $\boldsymbol{\theta}$
- A neural network that encodes x_{i} in context, y_{i}, and y_{i+1} and gives back a goodness score

Either way, let $\boldsymbol{\theta}$ denote the parameters of s. From now on, we'll use $s\left(\boldsymbol{x}, i, y, y^{\prime} ; \boldsymbol{\theta}\right)$ and $\operatorname{Score}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{\theta})$ to emphasize that " s " is a function of parameters $\boldsymbol{\theta}$ we need to estimate.

Probabilistic View of Learning

As we've done before, we start with the principle of maximum likelihood to estimate $\boldsymbol{\theta}$:

$$
\begin{aligned}
\boldsymbol{\theta}^{*} & =\arg \max _{\boldsymbol{\theta} \in \mathbb{R}^{d}} \prod_{i=1}^{T} p\left(\boldsymbol{Y}=\boldsymbol{y}_{i} \mid \boldsymbol{X}=\boldsymbol{x}_{i} ; \boldsymbol{\theta}\right) \\
& =\arg \max _{\boldsymbol{\theta} \in \mathbb{R}^{d}} \sum_{i=1}^{T} \log p\left(\boldsymbol{Y}=\boldsymbol{y}_{i} \mid \boldsymbol{X}=\boldsymbol{x}_{i} ; \boldsymbol{\theta}\right) \\
& =\arg \min _{\boldsymbol{\theta} \in \mathbb{R}^{d}} \sum_{i=1}^{T} \underbrace{-\log p\left(\boldsymbol{Y}=\boldsymbol{y}_{i} \mid \boldsymbol{X}=\boldsymbol{x}_{i} ; \boldsymbol{\theta}\right)}_{\text {sometimes called "log loss" or "cross entropy" }}
\end{aligned}
$$

Next, we'll drill down into " $p\left(\boldsymbol{Y}=\boldsymbol{y}_{i} \mid \boldsymbol{X}=\boldsymbol{x}_{i} ; \boldsymbol{\theta}\right)$."

Conditional Random Fields

Lafferty et al. (2001)
CRFs are a tremendously influential model that generalizes multinomial logistic regression to structured outputs like sequences.

$$
\begin{aligned}
p_{\mathrm{CRF}}(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta}) & =\frac{\exp \operatorname{Score}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{\theta})}{Z(\boldsymbol{x} ; \boldsymbol{\theta})} \\
Z(\boldsymbol{x} ; \boldsymbol{\theta}) & =\sum_{\boldsymbol{y}^{\prime} \in \mathcal{Y}(\boldsymbol{x})} \exp \operatorname{Score}\left(\boldsymbol{x}, \boldsymbol{y}^{\prime} ; \boldsymbol{\theta}\right) \\
-\log p_{\mathrm{CRF}}(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta}) & =-\underbrace{\operatorname{Score}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{\theta})}_{\text {"hope" }}+\underbrace{\log Z(\boldsymbol{x} ; \boldsymbol{\theta})}_{\text {"fear" }}
\end{aligned}
$$

So, our "CRF":

- Uses Viterbi for decoding (our v. 4 sequence labeler)
- Trains parameters to maximize likelihood (like MLR and NNs)

Sequence-Level Log Loss

Here's the maximum likelihood learning problem (equivalently, sequence-level log loss):

$$
\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta} \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1}^{T}-\operatorname{Score}\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i} ; \boldsymbol{\theta}\right)+\log Z\left(\boldsymbol{x}_{i} ; \boldsymbol{\theta}\right)
$$

If we can calculate and differentiate (w.r.t. $\boldsymbol{\theta}$) the Score and Z functions, we can use SGD to learn.

Reflection

Given a training instance $\left\langle\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\rangle$, what do you need to do to calculate $\operatorname{Score}\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i} ; \boldsymbol{\theta}\right)$?

Calculating $Z(\boldsymbol{x} ; \boldsymbol{\theta})$

Good news! The algorithm that gives us Z is almost exactly like the Viterbi algorithm.

Forward algorithm: sums the exp Score values for all label sequences, given \boldsymbol{x}, in the same asymptotic time and space as Viterbi.

Let $\alpha_{i}(y)$ be the sum of all (exponentiated) scores of label prefixes of length i, ending in y.

Some Algebra

Given the decomposition

$$
\operatorname{Score}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{\theta})=\sum_{i=0}^{n} s\left(\boldsymbol{x}, i, y_{i}, y_{i+1} ; \boldsymbol{\theta}\right)
$$

it holds that

$$
\exp \operatorname{Score}(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{\theta})=\prod_{i=0}^{n} e^{s\left(\boldsymbol{x}, i, y_{i}, y_{i+1} ; \boldsymbol{\theta}\right)}
$$

and therefore

$$
Z(\boldsymbol{x} ; \boldsymbol{\theta})=\sum_{\boldsymbol{y}^{\prime} \in \mathcal{Y}(\boldsymbol{x})} \prod_{i=0}^{n} e^{s\left(\boldsymbol{x}, i, y_{i}^{\prime}, y_{i+1}^{\prime} ; \boldsymbol{\theta}\right)}
$$

Forward Algorithm

Input: scores $s\left(\boldsymbol{x}, i, y, y^{\prime} ; \boldsymbol{\theta}\right)$, for all $i \in\{0, \ldots, n\}, y, y^{\prime} \in \mathcal{L}$

Output: $Z(\boldsymbol{x} ; \boldsymbol{\theta})$

1. Base case: $\alpha_{1}(y)=e^{s(\boldsymbol{x}, 0, \bigcirc, y ; \boldsymbol{\theta})}$
2. For $i \in\{2, \ldots, n+1\}$:

- Solve for $\alpha_{i}(*)$.

$$
\alpha_{i}(y)=\sum_{y_{i-1} \in \mathcal{L}} e^{s\left(\boldsymbol{x}, i-1, y_{i-1}, y ; \boldsymbol{\theta}\right)} \times \alpha_{i-1}\left(y_{i-1}\right)
$$

(At $n+1$ we're only interested in $y=\bigcirc$.)
3. Return $\alpha_{n+1}(\bigcirc)$, which is equal to $Z(\boldsymbol{x} ; \boldsymbol{\theta})$.

Intuitions about the Forward Algorithm

Just as Viterbi changes "scary max over big sum" to "max plus max plus max plus ...,"
the Forward algorithm changes "scary sum over big product" to "plus times plus times plus times"

If you organize the operations in the other direction, you get the Backward algorithm.

You can differentiate Z with respect to s, because it's all just exp, addition, and multiplication. If you mechanically derive the partial derivatives, you will rediscover the Backward algorithm.

Questions?

