
DSC291: Advanced Statistical Natural
Language Processing

Classification
Sequence Tagging

Zhiting Hu
Lecture 10, April 28, 2022

Outline
● Classification
! Weakly supervised learning

● Sequence Tagging/Labeling

2

3

Classification

Classification with few labels
● Data augmentation
● Zero-/few-shot learning via prompting
● Weak supervision

4

The difficulty with supervised learning

● Annotated data is expensive and costs increase when...

! A task requires specialized expertise

E.g. “Only a trained linguist or a board certified radiologist can label my data”

! Labeling examples involves making multiple decisions

E.g. “Annotate this sentence with a parse tree”

(instead of a single binary decision)

5Credit: https://svivek.com/teaching/lectures/slides/weak-supervision/weak-supervision.pdf

6Credit: https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/

Example (I): labeling with heuristics+RZ�DERXW�QRZ"
7DVN��%XLOG�D�FKHVW�[�UD\�FODVVLILHU

&DQ�\RX�XVH�WKH�DFFRPSDQ\LQJ�PHGLFDO�UHSRUW��WH[W�
PRGDOLW\��WR�ODEHO�WKH�[�UD\��LPDJH�PRGDOLW\�"

7KLV�VHWWLQJ�LV�ZKDW�ZH�FDOO�³FURVV�PRGDO´�

7[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

(normal/abnormal)

Example (I): labeling with heuristics

8[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

&URVV�0RGDO�:HDN�6XSHUYLVLRQ

&11

<

How do we obtain Y?

Example (I): labeling with heuristics

&URVV�0RGDO�:HDN�6XSHUYLVLRQ

1RUPDO�5HSRUW /)V

6RXUFH��.KDQGZDOD�HW��DO�������&URVV�0RGDO�'DWD�3URJUDPPLQJ�IRU�0HGLFDO�,PDJHV

9

(labeling functions)

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

Example (II): Labeling with knowledge bases
Task: relation extraction from text

● Hypothesis: If two entities belong to a certain relation, any sentence
containing those two entities is likely to express that relation

● Key idea: use a knowledge base of relations to get lots of noisy training
examples

10Adapted from https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf

Example (II): Labeling with knowledge bases

11Adapted from https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf

Frequent Freebase relations

Example (II): Labeling with knowledge bases
Collecting training data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from…
Google was founded by Larry Page …

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Corpus text

Freebase

Training data

12Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf

Example (II): Labeling with knowledge bases

13

Collecting training data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from…
Google was founded by Larry Page …

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Corpus text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y

Training data

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf

Example (II): Labeling with knowledge bases

14

Collecting training data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from…
Google was founded by Larry Page …

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Corpus text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y

Training data

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf

Example (II): Labeling with knowledge bases

15

Collecting training data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from…
Google was founded by Larry Page …

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Corpus text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y

Training data

(Bill Gates, Harvard)
Label: CollegeAttended
Feature: X attended Y

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf

Example (II): Labeling with knowledge bases

16

Collecting training data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from…
Google was founded by Larry Page …

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Corpus text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y

Training data

(Larry Page, Google)
Label: Founder
Feature: Y was founded by X

(Bill Gates, Harvard)
Label: CollegeAttended
Feature: X attended Y

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf

Example (II): Labeling with knowledge bases

17

Negative training data

Larry Page took a swipe at Microsoft...
...after Harvard invited Larry Page to...
Google is Bill Gates' worst fear ...

Corpus text

(Larry Page, Microsoft)
Label: NO_RELATION
Feature: X took a swipe at Y

Training data

(Bill Gates, Google)
Label: NO_RELATION
Feature: Y is X's worst fear

(Larry Page, Harvard)
Label: NO_RELATION
Feature: Y invited X

Can’t train a classifier with only positive data!
Need negative training data too!

Solution?
Sample 1% of unrelated pairs of entities.

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf

Integrating multiple noisy labels

6RXUFH��$��5DWQHU�HW��DO�KWWSV���GDZQ�FV�VWDQIRUG�HGX������������ZHDN�VXSHUYLVLRQ�

:HDN�6XSHUYLVLRQ�)RUPXODWLRQ

18[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

Integrating multiple noisy labels

19

'DWD�3URJUDPPLQJ

8QODEHOHG�
'DWD��;
�1�SRLQWV�

/DEHOLQJ�IXQFWLRQV
�0�IXQFWLRQV�

/DEHO�0DWUL[
/��1�[�0� Ӻ

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

Integrating multiple noisy labels

20

'DWD�3URJUDPPLQJ

8QODEHOHG�
'DWD��;
�1�SRLQWV�

/DEHOLQJ�IXQFWLRQV
�0�IXQFWLRQV�

/DEHO�0DWUL[
/��1�[�0� Ӻ"

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

Integrating multiple noisy labels
How do we obtain probabilistic labels, Ỹ, from the label matrix, L?

Approach 1 - Majority Vote

21[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

'DWD�3URJUDPPLQJ
+RZ�GR�ZH�REWDLQ�SUREDELOLVWLF�ODEHOV��Ӻ��IURP�WKH�ODEHO�PDWUL[��/"

$SSURDFK�����0DMRULW\�9RWH

7DNH�WKH�PDMRULW\�YRWH�RI�WKH�ODEHOOLQJ�IXQFWLRQV��/)V��

/HW¶V�VD\�/� �>>�������������@��>�������������@@�

���������������Ӻ� �>����@

%XW�WKLV�DSSURDFK�PDNHV�VHYHUDO�VWURQJ�DVVXPSWLRQV�DERXW�WKH�/)V����

Integrating multiple noisy labels
How do we obtain probabilistic labels, Ỹ, from the label matrix, L?

Approach 1 - Majority Vote

22[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

'DWD�3URJUDPPLQJ
+RZ�GR�ZH�REWDLQ�SUREDELOLVWLF�ODEHOV��Ӻ��IURP�WKH�ODEHO�PDWUL[��/"

$SSURDFK�����0DMRULW\�9RWH

7DNH�WKH�PDMRULW\�YRWH�RI�WKH�ODEHOOLQJ�IXQFWLRQV��/)V��

/HW¶V�VD\�/� �>>�������������@��>�������������@@�

���������������Ӻ� �>����@

%XW�WKLV�DSSURDFK�PDNHV�VHYHUDO�VWURQJ�DVVXPSWLRQV�DERXW�WKH�/)V����

&URVV�0RGDO�:HDN�6XSHUYLVLRQ

1RUPDO�5HSRUW /)V

6RXUFH��.KDQGZDOD�HW��DO�������&URVV�0RGDO�'DWD�3URJUDPPLQJ�IRU�0HGLFDO�,PDJHV

Majority vote fails:

Integrating multiple noisy labels
How do we obtain probabilistic labels, Ỹ, from the label matrix, L?

Approach 2
Train a generative model over P(L, Y) where Y are the (unknown) true labels

23[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

'DWD�3URJUDPPLQJ
3XWWLQJ�LW�DOO�WRJHWKHU���

6RXUFH��$��5DWQHU�HW��DO�KWWSV���KD]\UHVHDUFK�JLWKXE�LR�VQRUNHO�EORJ�ZHDNBVXSHUYLVLRQ�KWPO

Summary: Weak/distant supervision

24

25

Sequence Labeling

[Slides adapted from UW CSE 447 by Noah Smith]

Many tasks in NLP can be cast as sequence labeling, where each token
(usually, word) gets its own label. Compare:

► Text classification: ⟨x1, x2, . . . , xn ⟩ ›→ y ∈ L
► Sequence labeling: ⟨x1 ›→ y1, x2 ›→ y2, . . . , xn ›→ yn⟩, each

► Translation: x ›→ y

Motivation

26 / 109

yi ∈ L

Many to One Many to Many Many to Many

!! !" !#

" "! "" "#

!! !" !#

"! "" "#

!! !" !#

Problems Typically Cast as Sequence Labeling

27 / 109

► supersense tagging (Ciaramita and Johnson, 2003)
► part-of-speech tagging (Church, 1988)
► morphosyntactic tagging (Habash and Rambow, 2005)
► segmentation into words (Sproat et al., 1996) or multiword

expressions (Schneider et al., 2014)
► code switching (Solorio and Liu, 2008)
► dialogue acts (Stolcke et al., 2000)
► spelling correction (Kernighan et al., 1990)

► word alignment (Vogel et al., 1996)
► named entity recognition (Bikel et al., 1999)
► compression (Conroy and O’Leary, 2001)

Supersense Tagging Example

Clara Harris , one of the guests in the box , stood up and demanded water .

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

N
.PERSO

N

N
.PERSO

N

N
.A

R
TIFA

C
T V.M

O
TIO

N

V
.CO

M
M

U
N

I-
C

A
TIO

N

N
.SU

BSTA
N

CE

B-N
.PERSO

N

I-N
.PERSO

N

B-N
.PERSO

N

B-N
.A

RTIFA
CT

B-V
.M

O
TIO

N

I-V.M
O

TIO
N

B-V
.CO

M
M

U
N

I-
C

A
TIO

N

B-N
.SU

BSTA
N

CE

O O O O O O O O O

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17

labeled spans

BIO encoding

input tokens

Observations
► Lots of subproblems: Which words have supersenses? Which words group together to

form a multiword expression? For those that do, which supersense?
► Every word’s label depends on the words around it, and their labels.
► Segmentation problems can be cast as sequence labeling (Ramshaw and Marcus,

1995):
► Two labels, B and I, if every word must be in some segment
► Three labels, B, I, and O, if some words are to be “discarded”
► Variants for five labels (E for end, S for singleton), gaps/noncontiguous spans,

and nesting, exist.
Concatenate B, I, etc., with labels to get labeled segmentation.

► Some sequences of labels might be invalid under your theory/label semantics.
► Evaluation: usually precision, recall, and F1 on labeled segments.

Sequence Labeling
Sequence Labeling

Problem statement: given a sequence of n words x, assign each a
label from L. Let L = |L|.

Every approach we see today will cast the problem as:

ŷ = argmax
y2Ln

Score(x,y;✓)

Näıvely, that’s a classification problem where the number of
possible ‘labels” (output sequences) depends on the input and is
O(Ln) in size!

13 / 109

Sequence Labeling v. 0: Local ClassifiersSequence Labeling v. 0: Local Classifiers

Define score of a word xi getting label y 2 L in context:
score(x, i, y;✓), for example through a feature vector, f(x, i, y).
(Here, “i”’ indicates the position of the input word to be
classified.)

Train a classifier to decode locally, i.e.,

ŷi = argmax
y2L

score(x, i, y;✓)

MLR
= argmax

y2L
✓>f(x, i, y)

The classifier is applied to each x1, x2, . . . in turn, but all the
words can be made available at each position.

Sometimes this works! E.g., one or two-layer neural network on
top of contextual word vectors (which are features of the whole
input x).

15 / 109

Sequence Labeling v. 0: Local Classifiers

33

Sequence Labeling v. 0: Local Classifiers

We can do better when there are predictable relationships among labels.

34

Sequence Labeling

Problem statement: given a sequence of n words x, assign each a
label from L. Let L = |L|.

Every approach we see today will cast the problem as:

ŷ = argmax
y2Ln

Score(x,y;✓)

Näıvely, that’s a classification problem where the number of
possible ‘labels” (output sequences) depends on the input and is
O(Ln) in size!

13 / 109

Sequence Labeling v. 1: Sequential ClassifiersSequence Labeling v. 1: Sequential Classifiers

Define score of a word xi getting label y in context, including
previous labels: score(x, i, ŷ1:i�1, y;✓). (From here, we won’t
always write ✓, but the dependence remains.)

Train a classifier, e.g.,

ŷi = argmax
y2L

score(x, i, ŷ1:i�1, y)

The classifier is applied to each x1, x2, . . . in turn. Each one
depends on the outputs of preceding iterations.

19 / 109

Sequence Labeling v. 1: Sequential ClassifiersSequence Labeling v. 1: Sequential Classifiers

Define score of a word xi getting label y in context, including
previous labels: score(x, i, ŷ1:i�1, y;✓). (From here, we won’t
always write ✓, but the dependence remains.)

Train a classifier, e.g.,

ŷi = argmax
y2L

score(x, i, ŷ1:i�1, y)

The classifier is applied to each x1, x2, . . . in turn. Each one
depends on the outputs of preceding iterations.

Drawback: “downstream” e↵ects of a mistake can be catastrophic.

There is much literature on methods for training, and for decoding,
with models like this. Important decoding method in NLP: beam
search.

21 / 109

Beam Search for Sequential Classifiers Beam Search for Sequential Classifiers

Input: x (length n), a sequential classifier’s scoring function score,
and beam width k

Let H0 score hypotheses at position 0, defining only H0(hi) = 0.
For i 2 {1, . . . , n}:
I Empty C.
I For each hypothesis ŷ1:i�1 scored by Hi�1:

I For each y 2 L, place new hypothesis
ŷ1:iy ! Hi�1(ŷ1:i�1) + score(x, i, ŷ1:i�1, y) into C.

I Let Hi be the k-best scored elements of C.

Output: best scored element of Hn.

22 / 109

37

Beam Search for Sequential Classifiers

38

Notes on Beam Search for Sequential Classifiers

I Runtime is O(n2kL), space is O(n2k).

I You can improve runtime (e.g., to O(nkL)) if computation is
shared across di↵erent i (often true with neural networks).

I Special cases:
I k = 1 is greedy left-to-right decoding.
I At k = Ln, you’re doing brute force, exhaustive search.

I Generally: no guarantee.

23 / 109

A Generative Approach
● The next approach should remind you of language models. It assumes

that labeled sequences are generated according to the following story:

39 / 109

y1

y1 ∼ pstart (Y)

A Generative Approach
● The next approach should remind you of language models. It assumes

that labeled sequences are generated according to the following story:

40 / 109

x1

↑
y1

x 1 ∼ pemission (X |
y1)

A Generative Approach
● The next approach should remind you of language models. It assumes

that labeled sequences are generated according to the following story:

41 / 109

y2 ∼ ptransition (Y | y1)

x1

↑
y1 → y2

A Generative Approach
● The next approach should remind you of language models. It assumes

that labeled sequences are generated according to the following story:

42 / 109

x 2 ∼ pemission (X | y2)

x1 x2

↑ ↑
y1 → y2

A Generative Approach
● The next approach should remind you of language models. It assumes

that labeled sequences are generated according to the following story:

43 / 109

y3 ∼ ptransition (Y | y2)

x1 x2

↑ ↑
y1 → y2 → y3

A Generative Approach
● The next approach should remind you of language models. It assumes

that labeled sequences are generated according to the following story:

44 / 109

x 3 ∼ pemission (X | y3)

x1 x2 x3

↑ ↑ ↑
y1 → y2 → y3

A Generative Approach
● The next approach should remind you of language models. It assumes

that labeled sequences are generated according to the following story:

45 / 109

x1 x2 x3

↑ ↑ ↑
y1 → y2 → y3 →

y4 ∼ ptransition (Y | y3)

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3 x4
" " " "
y1 ! y2 ! y3 ! y4 ! 8

y5 ⇠ ptransition(Y | y4)

35 / 109

Sequence Labeling v. 2: Hidden Markov ModelsSequence Labeling v. 2: Hidden Markov Models

By convention, yn+1 = 8 is always the “stop label.”

p(X = x,Y = y) = pstart(y1)·
nY

i=1

pemission(xi | yi) · ptransition(yi+1 | yi)

ŷ = argmax
y2Ln

p(Y = y | X = x)

= argmax
y2Ln

p(X = x,Y = y)

= argmax
y2Ln

log p(X = x,Y = y)

We can solve the global decoding problem exactly (i.e., find the
model-optimal ŷ) in O(nL2) time and O(nL) space using the
Viterbi algorithm (more later).

36 / 109

HMM ParametersHMM Parameters

Classical HMM parameters are all interpretable as probabilities of
events.

pstart is a distribution over L. We estimate it by counting how
often sequences start with each label in the training data, and
normalizing.

pemission is a distribution over words, for each label. Many people
find this counterintuitive! Estimation: counting occurrences of
labels with words, and normalizing (per label, not per word).

ptransition is exactly a bigram (first-order Markov) model over
labels.

40 / 109

• Quadratic complexity on the size of ℒ
• For some problems the label set can be large

Parameterized version
● Replace the “lookup” probabilities (!!"#$%&!&'$, !()&%%&'$, !%!#"!) with

scoring functions

48

Sequence Labeling v. 3

To endow HMMs with features, we can replace the “lookup”
probabilities (ptransition , pemission , pstart) with scoring functions.
This idea was explored by Berg-Kirkpatrick et al. (2010).
Classical HMM (v. 2):

ŷ = argmax
y2Ln

log pstart(y1) +
nX

i=1

✓
log pemission(xi | yi)
+ log ptransition(yi+1 | yi)

◆

This approach (v. 3):

ŷ = argmax
y2Ln

sstart(y1) +
nX

i=1

semission(xi, yi) + stransition(yi, yi+1)

Each “s” could be a linear scoring function (like in MLR), perhaps
using word or label vectors. For now, I’m hiding the parameters of
each s.

47 / 109

Parameterized version: Note
● Decoding is essentially the same as the classical HMM: Viterbi algorithm.

● Learning is now complicated and depends on the form of each “#” (but
is still efficient as we will see later)

● No part of the the scoring function looks at neighboring words.

49

Parameterized version (cont’d)

50

Sequence Labeling v. 4

Let each scoring component (“s”) “see” the whole input. By
convention, y0 = � is always the “start label.”

ŷ = argmax
y2Ln

Score(x,y)
z }| {
nX

i=0

s(x, i, yi, yi+1)

Note that x can have arbitrary length, so we need “s” functions
that are capable of adapting to variable-length input.

52 / 109

Summary so far

Where We Are

0 1 2 3 4
Score

s(x, i, yi) s(x, i,y1:i)
emission/ s(xi, yi)+ s(x, i, yi, yi+1)decomp. transition s(yi, yi+1)

learn
SGD ? count & ? ?

normalize

decode local
beam

Viterbi Viterbi Viterbi
search

60 / 109

51

Model

Two Problems to Solve

1. Decoding: the Viterbi algorithm for choosing ŷ.
I Usually taught for classical HMMs (v. 2); I will teach it for

v. 4, abstracting away “s.”

2. Learning: estimating the parameters of each s function.
I Depending on your choices here, you arrive at the structured

perceptron, the classical conditional random field (CRF),
neural CRFs, and more.

62 / 109

A Data Structure

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

The cell at row j, column i will hold information pertaining to
choosing ŷi = `j .

63 / 109

The End of the Sequence

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

ŷn = argmax
yn2L

nX

i=0

s(x, i, yi, yi+1)

= argmax
yn2L

s(x, i, yn�1, yn) + s(x, i, yn,8)

The decision about ŷn is a function of yn�1, x, and nothing else!

64 / 109

High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn�1, x, and nothing
else!

I If, for each value of yn�1, we knew the best (n� 1)-length
label prefix y1:n�1, then picking ŷn (and ŷn�1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ~i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

65 / 109

High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn�1, x, and nothing
else!

I If, for each value of yn�1, we knew the best (n� 1)-length
label prefix y1:n�1, then picking ŷn (and ŷn�1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ~i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

66 / 109

High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn�1, x, and nothing
else!

I If, for each value of yn�1, we knew the best (n� 1)-length
label prefix y1:n�1, then picking ŷn (and ŷn�1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ~i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

67 / 109

High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn�1, x, and nothing
else!

I If, for each value of yn�1, we knew the best (n� 1)-length
label prefix y1:n�1, then picking ŷn (and ŷn�1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ~i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

68 / 109

Recurrence

First, think about the score of the best sequence.

Let ~i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

69 / 109

Recurrence

First, think about the score of the best sequence.

Let ~i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

70 / 109

Recurrence

First, think about the score of the best sequence.

Let ~i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

~n�1(y) = max
yn�22L

s(x, n� 2, yn�2, y) + ~n�2(yn�2)

71 / 109

Recurrence

First, think about the score of the best sequence.

Let ~i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

~n�1(y) = max
yn�22L

s(x, n� 2, yn�2, y) + ~n�2(yn�2)

...

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) + ~i�1(yi�1)

72 / 109

Recurrence
First, think about the score of the best sequence.

Let ~i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

~n�1(y) = max
yn�22L

s(x, n� 2, yn�2, y) + ~n�2(yn�2)

...

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) + ~i�1(yi�1)

...

~1(y) = s(x, 0,�, y)

73 / 109

Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1
`2
...
`L
8

74 / 109

Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ~1(`1)
`2 ~1(`2)
...
`L ~1(`L)
8

~1(y) = s(x, 0,�, y)

75 / 109

Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ~1(`1) ~2(`1)
`2 ~1(`2) ~2(`2)
...
`L ~1(`L) ~2(`L)
8

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) + ~i�1(yi�1)

76 / 109

Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ~1(`1) ~2(`1) ~n(`1)
`2 ~1(`2) ~2(`2) ~n(`2)
...
`L ~1(`L) ~2(`L) ~n(`L)
8

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

77 / 109

Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ~1(`1) ~2(`1) ~n(`1)
`2 ~1(`2) ~2(`2) ~n(`2)
...
`L ~1(`L) ~2(`L) ~n(`L)
8 ~n+1(8)

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

78 / 109

High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn�1, x, and nothing
else!

I If, for each value of yn�1, we knew the best (n� 1)-length
label prefix y1:n�1, then picking ŷn (and ŷn�1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ~i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

79 / 109

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1

`2

...

`L

8

80 / 109

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1
~1(`1)
bp1(`1)

`2
~1(`2)
bp1(`2)

...

`L
~1(`L)
bp1(`L)

8

~1(y) = s(x, 0,�, y)

bp1(y) =�

81 / 109

Viterbi Procedure (Part I: Prefix Scores and Backpointers)
input sequence

x1 x2 . . . xn

L

`1
~1(`1) ~2(`1)
bp1(`1) bp2(`1)

`2
~1(`2) ~2(`2)
bp1(`2) bp2(`2)

...

`L
~1(`L) ~2(`L)
bp1(`L) bp2(`L)

8

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) + ~i�1(yi�1)

bpi(y) = argmax
yi�12L

s(x, i� 1, yi�1, y) + ~i�1(yi�1)

82 / 109

Viterbi Procedure (Part I: Prefix Scores and Backpointers)
input sequence

x1 x2 . . . xn

L

`1
~1(`1) ~2(`1) ~n(`1)
bp1(`1) bp2(`1) bpn(`1)

`2
~1(`2) ~2(`2) ~n(`2)
bp1(`2) bp2(`2) bpn(`2)

...

`L
~1(`L) ~2(`L) ~n(`L)
bp1(`L) bp2(`L) bpn(`L)

8

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

bpn(y) = argmax
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

83 / 109

Viterbi Procedure (Part I: Prefix Scores and Backpointers)
input sequence

x1 x2 . . . xn

L

`1
~1(`1) ~2(`1) ~n(`1)
bp1(`1) bp2(`1) bpn(`1)

`2
~1(`2) ~2(`2) ~n(`2)
bp1(`2) bp2(`2) bpn(`2)

...

`L
~1(`L) ~2(`L) ~n(`L)
bp1(`L) bp2(`L) bpn(`L)

8 ~n+1(8)
bpn+1(8)

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

bpn+1(8) = argmax
yn2L

s(x, n, yn,8) + ~n(yn)

84 / 109

Full Viterbi Procedure

Input: scores s(x, i, y, y0), for all i 2 {0, . . . , n}, y, y0 2 L

Output: ŷ

1. Base case: ~1(y) = s(x, 0,�, y)

2. For i 2 {2, . . . , n+ 1}:
I Solve for ~i(⇤) and bpi(⇤).

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) +~i�1(yi�1),

bpi(y) = argmax
yi�12L

s(x, i� 1, yi�1, y) +~i�1(yi�1)

(At n+ 1 we’re only interested in y = 8.)

3. ŷi+1 8
4. For i 2 {n, . . . , 1}:

I ŷi bpi+1(ŷi+1)

85 / 109

Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

86 / 109

Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above.

87 / 109

Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells

88 / 109

Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells

Runtime: each cell requires an “argmax.”

89 / 109

Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells

Runtime: each cell requires an “argmax.” O(nL2)

90 / 109

Why it Works

Viterbi exploits the distributivity property:

max
y1:n

nX

i=0

s(x, i, yi, yi+1) = max
yn

s(x, i, yn,8) + max
y1:n�1

n�1X

i=0

s(x, i, yi, yi+1)

= max
yn

s(x, i, yn,8) + max
yn�1

s(x, i, yn � 1, yn)

+ max
y1:n�2

n�2X

i=0

s(x, i, yi, yi+1)

Max plus max plus max plus max plus . . .

91 / 109

Back to “s”

We haven’t said much about the function that scores candidate
label pairs at di↵erent positions, s(x, i, y, y0).

This function is very important; two common choices are:

I Expert-designed, task-specific features f(x, i, y, y0) and
weights ✓

I A neural network that encodes xi in context, yi, and yi+1 and
gives back a goodness score

Either way, let ✓ denote the parameters of s. From now on, we’ll
use s(x, i, y, y0;✓) and Score(x,y;✓) to emphasize that “s” is a
function of parameters ✓ we need to estimate.

92 / 109

Probabilistic View of Learning

As we’ve done before, we start with the principle of maximum
likelihood to estimate ✓:

✓⇤ = argmax
✓2Rd

TY

i=1

p(Y = yi | X = xi;✓)

= arg max
✓2Rd

TX

i=1

log p(Y = yi | X = xi;✓)

= arg min
✓2Rd

TX

i=1

� log p(Y = yi | X = xi;✓)| {z }
sometimes called “log loss” or “cross entropy”

Next, we’ll drill down into “p(Y = yi | X = xi;✓).”

93 / 109

Conditional Random Fields
La↵erty et al. (2001)

CRFs are a tremendously influential model that generalizes
multinomial logistic regression to structured outputs like sequences.

pCRF(y | x;✓) = exp Score(x,y;✓)

Z(x;✓)

Z(x;✓) =
X

y02Y(x)

exp Score(x,y0;✓)

� log pCRF(y | x;✓) = � Score(x,y;✓)| {z }
“hope”

+ logZ(x;✓)| {z }
“fear”

So, our“CRF”:

I Uses Viterbi for decoding (our v. 4 sequence labeler)

I Trains parameters to maximize likelihood (like MLR and NNs)

94 / 109

Sequence-Level Log Loss

Here’s the maximum likelihood learning problem (equivalently,
sequence-level log loss):

✓⇤ = argmin
✓2Rd

TX

i=1

�Score(xi,yi;✓) + logZ(xi;✓)

If we can calculate and di↵erentiate (w.r.t. ✓) the Score and Z
functions, we can use SGD to learn.

96 / 109

Reflection

Given a training instance hxi,yii, what do you need to do to
calculate Score(xi,yi;✓)?

97 / 109

Calculating Z(x;✓)

Good news! The algorithm that gives us Z is almost exactly like
the Viterbi algorithm.

Forward algorithm: sums the exp Score values for all label
sequences, given x, in the same asymptotic time and space as
Viterbi.

Let ↵i(y) be the sum of all (exponentiated) scores of label prefixes
of length i, ending in y.

98 / 109

Some Algebra

Given the decomposition

Score(x,y;✓) =
nX

i=0

s(x, i, yi, yi+1;✓),

it holds that

exp Score(x,y;✓) =
nY

i=0

es(x,i,yi,yi+1;✓),

and therefore

Z(x;✓) =
X

y02Y(x)

nY

i=0

es(x,i,y
0
i,y

0
i+1;✓)

99 / 109

Forward Algorithm

Input: scores s(x, i, y, y0;✓), for all i 2 {0, . . . , n}, y, y0 2 L

Output: Z(x;✓)

1. Base case: ↵1(y) = es(x,0,�,y;✓)

2. For i 2 {2, . . . , n+ 1}:
I Solve for ↵i(⇤).

↵i(y) =
X

yi�12L
es(x,i�1,yi�1,y;✓) ⇥ ↵i�1(yi�1)

(At n+ 1 we’re only interested in y = 8.)

3. Return ↵n+1(8), which is equal to Z(x;✓).

100 / 109

Intuitions about the Forward Algorithm

Just as Viterbi changes “scary max over big sum” to “max plus
max plus max plus . . . ,”
the Forward algorithm changes “scary sum over big product” to
“plus times plus times plus times”

If you organize the operations in the other direction, you get the
Backward algorithm.

You can di↵erentiate Z with respect to s, because it’s all just exp,
addition, and multiplication. If you mechanically derive the partial
derivatives, you will rediscover the Backward algorithm.

101 / 109

Questions?

