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Outline
● Classification
! Weakly supervised learning

● Sequence Tagging/Labeling
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Classification



Classification with few labels
● Data augmentation
● Zero-/few-shot learning via prompting
● Weak supervision 
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The difficulty with supervised learning 

● Annotated data is expensive and costs increase when... 

! A task requires specialized expertise

E.g. “Only a trained linguist or a board certified radiologist can label my data”

! Labeling examples involves making multiple decisions 

E.g. “Annotate this sentence with a parse tree”

(instead of a single binary decision)

5Credit: https://svivek.com/teaching/lectures/slides/weak-supervision/weak-supervision.pdf



6Credit: https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/



Example (I): labeling with heuristics+RZ�DERXW�QRZ"
7DVN��%XLOG�D�FKHVW�[�UD\�FODVVLILHU

&DQ�\RX�XVH�WKH�DFFRPSDQ\LQJ�PHGLFDO�UHSRUW��WH[W�
PRGDOLW\��WR�ODEHO�WKH�[�UD\��LPDJH�PRGDOLW\�"

7KLV�VHWWLQJ�LV�ZKDW�ZH�FDOO�³FURVV�PRGDO´�

7[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

(normal/abnormal)



Example (I): labeling with heuristics

8[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

&URVV�0RGDO�:HDN�6XSHUYLVLRQ
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How do we obtain Y?



Example (I): labeling with heuristics

&URVV�0RGDO�:HDN�6XSHUYLVLRQ

1RUPDO�5HSRUW /)V

6RXUFH��.KDQGZDOD�HW��DO�������&URVV�0RGDO�'DWD�3URJUDPPLQJ�IRU�0HGLFDO�,PDJHV

9

(labeling functions)

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]



Example (II): Labeling with knowledge bases
Task: relation extraction from text

● Hypothesis: If two entities belong to a certain relation, any sentence 
containing those two entities is likely to express that relation 

● Key idea: use a knowledge base of relations to get lots of noisy training 
examples 

10Adapted from https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf



Example (II): Labeling with knowledge bases

11Adapted from https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf

Frequent Freebase relations 



Example (II): Labeling with knowledge bases
Collecting training data 

Bill Gates founded Microsoft in 1975. 
Bill Gates, founder of Microsoft, … 
Bill Gates attended Harvard from… 
Google was founded by Larry Page … 

Founder: (Bill Gates, Microsoft) 
Founder: (Larry Page, Google) 
CollegeAttended: (Bill Gates, Harvard) 

Corpus text 

Freebase 

Training data 

12Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf



Example (II): Labeling with knowledge bases
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Collecting training data 

Bill Gates founded Microsoft in 1975. 
Bill Gates, founder of Microsoft, … 
Bill Gates attended Harvard from… 
Google was founded by Larry Page … 

Founder: (Bill Gates, Microsoft) 
Founder: (Larry Page, Google) 
CollegeAttended: (Bill Gates, Harvard) 

Corpus text 

Freebase 

(Bill Gates, Microsoft) 
Label:  Founder 
Feature:  X founded Y 

Training data 

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf



Example (II): Labeling with knowledge bases
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Collecting training data 

Bill Gates founded Microsoft in 1975. 
Bill Gates, founder of Microsoft, … 
Bill Gates attended Harvard from… 
Google was founded by Larry Page … 

Founder: (Bill Gates, Microsoft) 
Founder: (Larry Page, Google) 
CollegeAttended: (Bill Gates, Harvard) 

Corpus text 

Freebase 

(Bill Gates, Microsoft) 
Label:  Founder 
Feature:  X founded Y 
Feature:  X, founder of Y 

Training data 

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf



Example (II): Labeling with knowledge bases

15

Collecting training data 

Bill Gates founded Microsoft in 1975. 
Bill Gates, founder of Microsoft, … 
Bill Gates attended Harvard from… 
Google was founded by Larry Page … 

Founder: (Bill Gates, Microsoft) 
Founder: (Larry Page, Google) 
CollegeAttended: (Bill Gates, Harvard) 

Corpus text 

Freebase 

(Bill Gates, Microsoft) 
Label:  Founder 
Feature:  X founded Y 
Feature:  X, founder of Y 

Training data 

(Bill Gates, Harvard) 
Label:  CollegeAttended 
Feature:  X attended Y 

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf



Example (II): Labeling with knowledge bases
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Collecting training data 

Bill Gates founded Microsoft in 1975. 
Bill Gates, founder of Microsoft, … 
Bill Gates attended Harvard from… 
Google was founded by Larry Page … 

Founder: (Bill Gates, Microsoft) 
Founder: (Larry Page, Google) 
CollegeAttended: (Bill Gates, Harvard) 

Corpus text 

Freebase 

(Bill Gates, Microsoft) 
Label:  Founder 
Feature:  X founded Y 
Feature:  X, founder of Y 

Training data 

(Larry Page, Google) 
Label:  Founder 
Feature:  Y was founded by X 

(Bill Gates, Harvard) 
Label:  CollegeAttended 
Feature:  X attended Y 

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf



Example (II): Labeling with knowledge bases

17

Negative training data 

Larry Page took a swipe at Microsoft... 
...after Harvard invited Larry Page to... 
Google is Bill Gates' worst fear ... 

Corpus text 

(Larry Page, Microsoft) 
Label:  NO_RELATION 
Feature:  X took a swipe at Y 

Training data 

(Bill Gates, Google) 
Label:  NO_RELATION 
Feature:  Y is X's worst fear 

(Larry Page, Harvard) 
Label:  NO_RELATION 
Feature:  Y invited X 

Can’t train a classifier with only positive data! 
Need negative training data too! 
 
Solution? 
Sample 1% of unrelated pairs of entities. 

Credit: https://courses.cs.washington.edu/courses/cse517/13wi/slides/cse517wi13-RelationExtractionII.pdf



Integrating multiple noisy labels

6RXUFH��$��5DWQHU�HW��DO�KWWSV���GDZQ�FV�VWDQIRUG�HGX������������ZHDN�VXSHUYLVLRQ�

:HDN�6XSHUYLVLRQ�)RUPXODWLRQ

18[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]



Integrating multiple noisy labels

19

'DWD�3URJUDPPLQJ

8QODEHOHG�
'DWD��;
�1�SRLQWV�

/DEHOLQJ�IXQFWLRQV
�0�IXQFWLRQV�

/DEHO�0DWUL[
/��1�[�0� Ӻ

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]



Integrating multiple noisy labels

20

'DWD�3URJUDPPLQJ

8QODEHOHG�
'DWD��;
�1�SRLQWV�

/DEHOLQJ�IXQFWLRQV
�0�IXQFWLRQV�

/DEHO�0DWUL[
/��1�[�0� Ӻ"

[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]



Integrating multiple noisy labels
How do we obtain probabilistic labels, Ỹ, from the label matrix, L? 

Approach 1 - Majority Vote

21[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

'DWD�3URJUDPPLQJ
+RZ�GR�ZH�REWDLQ�SUREDELOLVWLF�ODEHOV��Ӻ��IURP�WKH�ODEHO�PDWUL[��/"

$SSURDFK�����0DMRULW\�9RWH

7DNH�WKH�PDMRULW\�YRWH�RI�WKH�ODEHOOLQJ�IXQFWLRQV��/)V��

/HW¶V�VD\�/� �>>�������������@��>�������������@@�
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Integrating multiple noisy labels
How do we obtain probabilistic labels, Ỹ, from the label matrix, L? 

Approach 1 - Majority Vote

22[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

'DWD�3URJUDPPLQJ
+RZ�GR�ZH�REWDLQ�SUREDELOLVWLF�ODEHOV��Ӻ��IURP�WKH�ODEHO�PDWUL[��/"

$SSURDFK�����0DMRULW\�9RWH

7DNH�WKH�PDMRULW\�YRWH�RI�WKH�ODEHOOLQJ�IXQFWLRQV��/)V��

/HW¶V�VD\�/� �>>�������������@��>�������������@@�

���������������Ӻ� �>����@

%XW�WKLV�DSSURDFK�PDNHV�VHYHUDO�VWURQJ�DVVXPSWLRQV�DERXW�WKH�/)V����

&URVV�0RGDO�:HDN�6XSHUYLVLRQ

1RUPDO�5HSRUW /)V

6RXUFH��.KDQGZDOD�HW��DO�������&URVV�0RGDO�'DWD�3URJUDPPLQJ�IRU�0HGLFDO�,PDJHV

Majority vote fails:



Integrating multiple noisy labels
How do we obtain probabilistic labels, Ỹ, from the label matrix, L? 

Approach 2
Train a generative model over P(L, Y) where Y are the (unknown) true labels 

23[Credit: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds07.pdf]

'DWD�3URJUDPPLQJ
3XWWLQJ�LW�DOO�WRJHWKHU���

6RXUFH��$��5DWQHU�HW��DO�KWWSV���KD]\UHVHDUFK�JLWKXE�LR�VQRUNHO�EORJ�ZHDNBVXSHUYLVLRQ�KWPO



Summary: Weak/distant supervision

24
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Sequence Labeling

[Slides adapted from UW CSE 447 by Noah Smith]



Many tasks in NLP can be cast as sequence labeling, where each token
(usually, word) gets its own label. Compare:

► Text classification: ⟨x1, x2, . . . , xn ⟩ ›→ y ∈ L
► Sequence labeling: ⟨x1 ›→ y1, x2 ›→ y2, . . . , xn ›→ yn⟩, each

► Translation: x ›→ y

Motivation

26 / 109

yi ∈ L

Many to One Many to Many Many to Many

!! !" !#

" "! "" "#

!! !" !#

"! "" "#

!! !" !#



Problems Typically Cast as Sequence Labeling

27 / 109

► supersense tagging (Ciaramita and Johnson, 2003)
► part-of-speech tagging (Church, 1988)
► morphosyntactic tagging (Habash and Rambow, 2005)
► segmentation into words (Sproat et al., 1996) or multiword 

expressions (Schneider et al., 2014)
► code switching (Solorio and Liu, 2008)
► dialogue acts (Stolcke et al., 2000)
► spelling correction (Kernighan et al., 1990)

► word alignment (Vogel et al., 1996)
► named entity recognition (Bikel et al., 1999)
► compression (Conroy and O’Leary, 2001)



Supersense Tagging Example

Clara Harris , one of the guests in the box , stood up and demanded water .
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y1 y2      y3        y4     y5      y6 y7 y8   y9 y10    y11    y12     y13 y14 y15 y16       y17

labeled spans

BIO encoding

input tokens



Observations
► Lots of subproblems: Which words have supersenses? Which words group together to

form a multiword expression? For those that do, which supersense?
► Every word’s label depends on the words around it, and their labels.
► Segmentation problems can be cast as sequence labeling (Ramshaw and Marcus,

1995):
► Two labels, B and I, if every word must be in some segment
► Three labels, B, I, and O, if some words are to be “discarded”
► Variants for five labels (E for end, S for singleton), gaps/noncontiguous spans,

and nesting, exist.
Concatenate B, I, etc., with labels to get labeled segmentation.

► Some sequences of labels might be invalid under your theory/label semantics.
► Evaluation: usually precision, recall, and F1 on labeled segments.



Sequence Labeling
Sequence Labeling

Problem statement: given a sequence of n words x, assign each a
label from L. Let L = |L|.

Every approach we see today will cast the problem as:

ŷ = argmax
y2Ln

Score(x,y;✓)

Näıvely, that’s a classification problem where the number of
possible ‘labels” (output sequences) depends on the input and is
O(Ln) in size!

13 / 109



Sequence Labeling v. 0: Local ClassifiersSequence Labeling v. 0: Local Classifiers

Define score of a word xi getting label y 2 L in context:
score(x, i, y;✓), for example through a feature vector, f(x, i, y).
(Here, “i”’ indicates the position of the input word to be
classified.)

Train a classifier to decode locally, i.e.,

ŷi = argmax
y2L

score(x, i, y;✓)

MLR
= argmax

y2L
✓>f(x, i, y)

The classifier is applied to each x1, x2, . . . in turn, but all the
words can be made available at each position.

Sometimes this works! E.g., one or two-layer neural network on
top of contextual word vectors (which are features of the whole
input x).

15 / 109



Sequence Labeling v. 0: Local Classifiers

33



Sequence Labeling v. 0: Local Classifiers

We can do better when there are predictable relationships among labels. 

34

Sequence Labeling

Problem statement: given a sequence of n words x, assign each a
label from L. Let L = |L|.

Every approach we see today will cast the problem as:

ŷ = argmax
y2Ln

Score(x,y;✓)

Näıvely, that’s a classification problem where the number of
possible ‘labels” (output sequences) depends on the input and is
O(Ln) in size!

13 / 109



Sequence Labeling v. 1: Sequential ClassifiersSequence Labeling v. 1: Sequential Classifiers

Define score of a word xi getting label y in context, including
previous labels: score(x, i, ŷ1:i�1, y;✓). (From here, we won’t
always write ✓, but the dependence remains.)

Train a classifier, e.g.,

ŷi = argmax
y2L

score(x, i, ŷ1:i�1, y)

The classifier is applied to each x1, x2, . . . in turn. Each one
depends on the outputs of preceding iterations.

19 / 109



Sequence Labeling v. 1: Sequential ClassifiersSequence Labeling v. 1: Sequential Classifiers

Define score of a word xi getting label y in context, including
previous labels: score(x, i, ŷ1:i�1, y;✓). (From here, we won’t
always write ✓, but the dependence remains.)

Train a classifier, e.g.,

ŷi = argmax
y2L

score(x, i, ŷ1:i�1, y)

The classifier is applied to each x1, x2, . . . in turn. Each one
depends on the outputs of preceding iterations.

Drawback: “downstream” e↵ects of a mistake can be catastrophic.

There is much literature on methods for training, and for decoding,
with models like this. Important decoding method in NLP: beam
search.

21 / 109



Beam Search for Sequential Classifiers Beam Search for Sequential Classifiers

Input: x (length n), a sequential classifier’s scoring function score,
and beam width k

Let H0 score hypotheses at position 0, defining only H0(hi) = 0.
For i 2 {1, . . . , n}:
I Empty C.
I For each hypothesis ŷ1:i�1 scored by Hi�1:

I For each y 2 L, place new hypothesis
ŷ1:iy ! Hi�1(ŷ1:i�1) + score(x, i, ŷ1:i�1, y) into C.

I Let Hi be the k-best scored elements of C.

Output: best scored element of Hn.

22 / 109
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Beam Search for Sequential Classifiers 

38

Notes on Beam Search for Sequential Classifiers

I Runtime is O(n2kL), space is O(n2k).

I You can improve runtime (e.g., to O(nkL)) if computation is
shared across di↵erent i (often true with neural networks).

I Special cases:
I k = 1 is greedy left-to-right decoding.
I At k = Ln, you’re doing brute force, exhaustive search.

I Generally: no guarantee.

23 / 109



A Generative Approach
● The next approach should remind you of language models. It assumes 

that labeled sequences are generated according to the following story: 

39 / 109

y1

y1 ∼ pstart (Y )



A Generative Approach
● The next approach should remind you of language models. It assumes 

that labeled sequences are generated according to the following story: 

40 / 109

x1

↑
y1

x 1 ∼ pemission (X |
y1)



A Generative Approach
● The next approach should remind you of language models. It assumes 

that labeled sequences are generated according to the following story: 

41 / 109

y2 ∼ ptransition (Y | y1)

x1

↑
y1 → y2



A Generative Approach
● The next approach should remind you of language models. It assumes 

that labeled sequences are generated according to the following story: 

42 / 109

x 2 ∼ pemission (X | y2)

x1 x2

↑ ↑
y1 → y2



A Generative Approach
● The next approach should remind you of language models. It assumes 

that labeled sequences are generated according to the following story: 

43 / 109

y3 ∼ ptransition (Y | y2)

x1 x2

↑ ↑
y1 → y2 → y3



A Generative Approach
● The next approach should remind you of language models. It assumes 

that labeled sequences are generated according to the following story: 

44 / 109

x 3 ∼ pemission (X | y3)

x1 x2 x3

↑ ↑ ↑
y1 → y2 → y3



A Generative Approach
● The next approach should remind you of language models. It assumes 

that labeled sequences are generated according to the following story: 

45 / 109

x1 x2 x3

↑ ↑ ↑
y1 → y2 → y3 →  

y4 ∼ ptransition (Y | y3)

A Generative Approach

The next approach should remind you of language models. It
assumes that labeled sequences are generated according to the
following story:

x1 x2 x3 x4
" " " "
y1 ! y2 ! y3 ! y4 ! 8

y5 ⇠ ptransition(Y | y4)

35 / 109



Sequence Labeling v. 2: Hidden Markov ModelsSequence Labeling v. 2: Hidden Markov Models

By convention, yn+1 = 8 is always the “stop label.”

p(X = x,Y = y) = pstart(y1)·
nY

i=1

pemission(xi | yi) · ptransition(yi+1 | yi)

ŷ = argmax
y2Ln

p(Y = y | X = x)

= argmax
y2Ln

p(X = x,Y = y)

= argmax
y2Ln

log p(X = x,Y = y)

We can solve the global decoding problem exactly (i.e., find the
model-optimal ŷ) in O(nL2) time and O(nL) space using the
Viterbi algorithm (more later).

36 / 109



HMM ParametersHMM Parameters

Classical HMM parameters are all interpretable as probabilities of
events.

pstart is a distribution over L. We estimate it by counting how
often sequences start with each label in the training data, and
normalizing.

pemission is a distribution over words, for each label. Many people
find this counterintuitive! Estimation: counting occurrences of
labels with words, and normalizing (per label, not per word).

ptransition is exactly a bigram (first-order Markov) model over
labels.

40 / 109

• Quadratic complexity on the size of ℒ
• For some problems the label set can be large



Parameterized version
● Replace the “lookup” probabilities (!!"#$%&!&'$ , !()&%%&'$, !%!#"! ) with 

scoring functions 

48

Sequence Labeling v. 3

To endow HMMs with features, we can replace the “lookup”
probabilities (ptransition , pemission , pstart) with scoring functions.
This idea was explored by Berg-Kirkpatrick et al. (2010).
Classical HMM (v. 2):

ŷ = argmax
y2Ln

log pstart(y1) +
nX

i=1

✓
log pemission(xi | yi)
+ log ptransition(yi+1 | yi)

◆

This approach (v. 3):

ŷ = argmax
y2Ln

sstart(y1) +
nX

i=1

semission(xi, yi) + stransition(yi, yi+1)

Each “s” could be a linear scoring function (like in MLR), perhaps
using word or label vectors. For now, I’m hiding the parameters of
each s.

47 / 109



Parameterized version: Note
● Decoding is essentially the same as the classical HMM: Viterbi algorithm. 

● Learning is now complicated and depends on the form of each “#” (but 
is still efficient as we will see later)

● No part of the the scoring function looks at neighboring words. 

49



Parameterized version (cont’d) 

50

Sequence Labeling v. 4

Let each scoring component (“s”) “see” the whole input. By
convention, y0 = � is always the “start label.”

ŷ = argmax
y2Ln

Score(x,y)
z }| {
nX

i=0

s(x, i, yi, yi+1)

Note that x can have arbitrary length, so we need “s” functions
that are capable of adapting to variable-length input.

52 / 109



Summary so far

Where We Are

0 1 2 3 4
Score

s(x, i, yi) s(x, i,y1:i)
emission/ s(xi, yi)+ s(x, i, yi, yi+1)decomp. transition s(yi, yi+1)

learn
SGD ? count & ? ?

normalize

decode local
beam

Viterbi Viterbi Viterbi
search

60 / 109

51

Model



Two Problems to Solve

1. Decoding: the Viterbi algorithm for choosing ŷ.
I Usually taught for classical HMMs (v. 2); I will teach it for

v. 4, abstracting away “s.”

2. Learning: estimating the parameters of each s function.
I Depending on your choices here, you arrive at the structured

perceptron, the classical conditional random field (CRF),
neural CRFs, and more.

62 / 109



A Data Structure

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

The cell at row j, column i will hold information pertaining to
choosing ŷi = `j .

63 / 109



The End of the Sequence

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

ŷn = argmax
yn2L

nX

i=0

s(x, i, yi, yi+1)

= argmax
yn2L

s(x, i, yn�1, yn) + s(x, i, yn,8)

The decision about ŷn is a function of yn�1, x, and nothing else!

64 / 109



High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn�1, x, and nothing
else!

I If, for each value of yn�1, we knew the best (n� 1)-length
label prefix y1:n�1, then picking ŷn (and ŷn�1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ~i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

65 / 109



High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn�1, x, and nothing
else!

I If, for each value of yn�1, we knew the best (n� 1)-length
label prefix y1:n�1, then picking ŷn (and ŷn�1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ~i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.
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High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn�1, x, and nothing
else!

I If, for each value of yn�1, we knew the best (n� 1)-length
label prefix y1:n�1, then picking ŷn (and ŷn�1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ~i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.
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High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn�1, x, and nothing
else!

I If, for each value of yn�1, we knew the best (n� 1)-length
label prefix y1:n�1, then picking ŷn (and ŷn�1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ~i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.

68 / 109



Recurrence

First, think about the score of the best sequence.

Let ~i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

69 / 109



Recurrence

First, think about the score of the best sequence.

Let ~i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)
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Recurrence

First, think about the score of the best sequence.

Let ~i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

~n�1(y) = max
yn�22L

s(x, n� 2, yn�2, y) + ~n�2(yn�2)
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Recurrence

First, think about the score of the best sequence.

Let ~i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

~n�1(y) = max
yn�22L

s(x, n� 2, yn�2, y) + ~n�2(yn�2)

...

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) + ~i�1(yi�1)
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Recurrence
First, think about the score of the best sequence.

Let ~i(y) be the score of the best label sequence for x1:i that ends
in y. It is defined recursively:

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

~n�1(y) = max
yn�22L

s(x, n� 2, yn�2, y) + ~n�2(yn�2)

...

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) + ~i�1(yi�1)

...

~1(y) = s(x, 0,�, y)
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1
`2
...
`L
8
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ~1(`1)
`2 ~1(`2)
...
`L ~1(`L)
8

~1(y) = s(x, 0,�, y)
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ~1(`1) ~2(`1)
`2 ~1(`2) ~2(`2)
...
`L ~1(`L) ~2(`L)
8

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) + ~i�1(yi�1)
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ~1(`1) ~2(`1) ~n(`1)
`2 ~1(`2) ~2(`2) ~n(`2)
...
`L ~1(`L) ~2(`L) ~n(`L)
8

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)
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Viterbi Procedure (Part I: Prefix Scores)

input sequence
x1 x2 . . . xn

L

`1 ~1(`1) ~2(`1) ~n(`1)
`2 ~1(`2) ~2(`2) ~n(`2)
...
`L ~1(`L) ~2(`L) ~n(`L)
8 ~n+1(8)

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)
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High-Level View of the Viterbi Algorithm

I The decision about ŷn is a function of yn�1, x, and nothing
else!

I If, for each value of yn�1, we knew the best (n� 1)-length
label prefix y1:n�1, then picking ŷn (and ŷn�1) would be easy.

I Idea: for each position i, calculate the score of the best label
prefix y1:i ending in each possible value for the ith label.
I We’ll call this value ~i(`) for yi = `.

I With a little bookkeeping, we can then trace backwards and
recover the best label sequence.
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1

`2

...

`L

8
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

input sequence
x1 x2 . . . xn

L

`1
~1(`1)
bp1(`1)

`2
~1(`2)
bp1(`2)

...

`L
~1(`L)
bp1(`L)

8

~1(y) = s(x, 0,�, y)

bp1(y) =�
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)
input sequence

x1 x2 . . . xn

L

`1
~1(`1) ~2(`1)
bp1(`1) bp2(`1)

`2
~1(`2) ~2(`2)
bp1(`2) bp2(`2)

...

`L
~1(`L) ~2(`L)
bp1(`L) bp2(`L)

8

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) + ~i�1(yi�1)

bpi(y) = argmax
yi�12L

s(x, i� 1, yi�1, y) + ~i�1(yi�1)
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)
input sequence

x1 x2 . . . xn

L

`1
~1(`1) ~2(`1) ~n(`1)
bp1(`1) bp2(`1) bpn(`1)

`2
~1(`2) ~2(`2) ~n(`2)
bp1(`2) bp2(`2) bpn(`2)

...

`L
~1(`L) ~2(`L) ~n(`L)
bp1(`L) bp2(`L) bpn(`L)

8

~n(y) = max
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)

bpn(y) = argmax
yn�12L

s(x, n� 1, yn�1, y) + ~n�1(yn�1)
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)
input sequence

x1 x2 . . . xn

L

`1
~1(`1) ~2(`1) ~n(`1)
bp1(`1) bp2(`1) bpn(`1)

`2
~1(`2) ~2(`2) ~n(`2)
bp1(`2) bp2(`2) bpn(`2)

...

`L
~1(`L) ~2(`L) ~n(`L)
bp1(`L) bp2(`L) bpn(`L)

8 ~n+1(8)
bpn+1(8)

~n+1(8) = max
yn2L

s(x, n, yn,8) + ~n(yn)

bpn+1(8) = argmax
yn2L

s(x, n, yn,8) + ~n(yn)
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Full Viterbi Procedure

Input: scores s(x, i, y, y0), for all i 2 {0, . . . , n}, y, y0 2 L

Output: ŷ

1. Base case: ~1(y) = s(x, 0,�, y)

2. For i 2 {2, . . . , n+ 1}:
I Solve for ~i(⇤) and bpi(⇤).

~i(y) = max
yi�12L

s(x, i� 1, yi�1, y) +~i�1(yi�1),

bpi(y) = argmax
yi�12L

s(x, i� 1, yi�1, y) +~i�1(yi�1)

(At n+ 1 we’re only interested in y = 8.)

3. ŷi+1  8
4. For i 2 {n, . . . , 1}:

I ŷi  bpi+1(ŷi+1)
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Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L
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Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above.
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Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells
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Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells

Runtime: each cell requires an “argmax.”
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Viterbi Asymptotics

input sequence
x1 x2 . . . xn

labels in L

`1
`2
...
`L

Space: need to store s, and fill in the cells above. O(nL2) for s (in
the most general case, often less), O(nL) for cells

Runtime: each cell requires an “argmax.” O(nL2)
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Why it Works

Viterbi exploits the distributivity property:

max
y1:n

nX

i=0

s(x, i, yi, yi+1) = max
yn

s(x, i, yn,8) + max
y1:n�1

n�1X

i=0

s(x, i, yi, yi+1)

= max
yn

s(x, i, yn,8) + max
yn�1

s(x, i, yn � 1, yn)

+ max
y1:n�2

n�2X

i=0

s(x, i, yi, yi+1)

Max plus max plus max plus max plus . . .
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Back to “s”

We haven’t said much about the function that scores candidate
label pairs at di↵erent positions, s(x, i, y, y0).

This function is very important; two common choices are:

I Expert-designed, task-specific features f(x, i, y, y0) and
weights ✓

I A neural network that encodes xi in context, yi, and yi+1 and
gives back a goodness score

Either way, let ✓ denote the parameters of s. From now on, we’ll
use s(x, i, y, y0;✓) and Score(x,y;✓) to emphasize that “s” is a
function of parameters ✓ we need to estimate.
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Probabilistic View of Learning

As we’ve done before, we start with the principle of maximum
likelihood to estimate ✓:

✓⇤ = argmax
✓2Rd

TY

i=1

p(Y = yi | X = xi;✓)

= arg max
✓2Rd

TX

i=1

log p(Y = yi | X = xi;✓)

= arg min
✓2Rd

TX

i=1

� log p(Y = yi | X = xi;✓)| {z }
sometimes called “log loss” or “cross entropy”

Next, we’ll drill down into “p(Y = yi | X = xi;✓).”
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Conditional Random Fields
La↵erty et al. (2001)

CRFs are a tremendously influential model that generalizes
multinomial logistic regression to structured outputs like sequences.

pCRF(y | x;✓) = exp Score(x,y;✓)

Z(x;✓)

Z(x;✓) =
X

y02Y(x)

exp Score(x,y0;✓)

� log pCRF(y | x;✓) = � Score(x,y;✓)| {z }
“hope”

+ logZ(x;✓)| {z }
“fear”

So, our“CRF”:

I Uses Viterbi for decoding (our v. 4 sequence labeler)

I Trains parameters to maximize likelihood (like MLR and NNs)
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Sequence-Level Log Loss

Here’s the maximum likelihood learning problem (equivalently,
sequence-level log loss):

✓⇤ = argmin
✓2Rd

TX

i=1

�Score(xi,yi;✓) + logZ(xi;✓)

If we can calculate and di↵erentiate (w.r.t. ✓) the Score and Z
functions, we can use SGD to learn.
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Reflection

Given a training instance hxi,yii, what do you need to do to
calculate Score(xi,yi;✓)?
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Calculating Z(x;✓)

Good news! The algorithm that gives us Z is almost exactly like
the Viterbi algorithm.

Forward algorithm: sums the exp Score values for all label
sequences, given x, in the same asymptotic time and space as
Viterbi.

Let ↵i(y) be the sum of all (exponentiated) scores of label prefixes
of length i, ending in y.
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Some Algebra

Given the decomposition

Score(x,y;✓) =
nX

i=0

s(x, i, yi, yi+1;✓),

it holds that

exp Score(x,y;✓) =
nY

i=0

es(x,i,yi,yi+1;✓),

and therefore

Z(x;✓) =
X

y02Y(x)

nY

i=0

es(x,i,y
0
i,y

0
i+1;✓)
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Forward Algorithm

Input: scores s(x, i, y, y0;✓), for all i 2 {0, . . . , n}, y, y0 2 L

Output: Z(x;✓)

1. Base case: ↵1(y) = es(x,0,�,y;✓)

2. For i 2 {2, . . . , n+ 1}:
I Solve for ↵i(⇤).

↵i(y) =
X

yi�12L
es(x,i�1,yi�1,y;✓) ⇥ ↵i�1(yi�1)

(At n+ 1 we’re only interested in y = 8.)

3. Return ↵n+1(8), which is equal to Z(x;✓).
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Intuitions about the Forward Algorithm

Just as Viterbi changes “scary max over big sum” to “max plus
max plus max plus . . . ,”
the Forward algorithm changes “scary sum over big product” to
“plus times plus times plus times . . . .”

If you organize the operations in the other direction, you get the
Backward algorithm.

You can di↵erentiate Z with respect to s, because it’s all just exp,
addition, and multiplication. If you mechanically derive the partial
derivatives, you will rediscover the Backward algorithm.
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Questions?


