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Last lecture

e Neural language models:
o Embedding: one-hot vectors -> embedding vectors

o Neural networks



Neural Architectures of LMs



Outline

e Recurrent Networks (RNNs)

o Long-range dependency, vanishing gradients

o LSTM
o RNNs in different forms

e Attention Mechanisms
o (Query, Key, Value)
o Attention on Text and Images

e Transformers: Multi-head Attention

o Transformer
o BERT



Outline

e Recurrent Networks (RNNs)
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ConvNets v.s. Recurrent Networks (RNNs)

e

The output depends ONLY The hidden layers and the output
on the current input additionally depend on previous states
of the hidden layers

e Spatial Modeling vs. Sequential Modeling
e Fixed vs. variable number of computation steps.




RNNSs in Various Forms

One to One One to Many Many to One Many to Many
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classification Image
captioning

Sentence sentiment analysis /
Video recognition
Machine Translation

Many to Many
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Named Entity Recognition

(Sequence-to-sequence) (Sequence tagging)



Vanishing / Exploding Gradients in RNNs

ht — tanh(Whhht_l + thxt)
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Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficylt”
fPascanu et al., 2013 “On the difficulty of training recurrent neural networks”



Vanishing / Exploding Gradients in RNNs
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Vanishing / Exploding Gradients in RNNs

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

ht — tanh(Whhht_l + thxt)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

= Grac.iient. glipping:.Scale |
gradient if its norm is too big
grad_norm = np.sum(grad *

if grad_norm > threshold:
grad *= (tk(2shold / arad_rorm)

grad)

Bengio et al., 1994 “Learning long-term dependencies with gradient descent is difficglt”
fPascanu et al., 2013 “On the difficulty of training recurrent neural networks”



Long-term Dependency Problem
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| live in France and | know

Example courtesy: Manik Soni
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Long-term Dependency Problem

DEOROBNONTES
D~~~
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| live in France and | know  French

| live in France, a beautiful country, and | know _ French

Example courtesy: Manik Soni



Long Short Term Memory (LSTM)

e LSTMs are designed to explicitly alleviate the long-term dependency
problem [Horchreiter & Schmidhuber (1997)]
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Long Short Term Memory (LSTM)

e Gate functions make decisions of reading, writing, and resetting
information

Forget gate: whether to erase cell (reset)
Input gate: whether to write to cell (write)

Output gate: how much to reveal cell (read)




Long Short Term Memory (LSTM)

o Forget gate: decides what must be removed from h;_;

ftl ft=0Wg- [he—q,x¢] + by)



Long Short Term Memory (LSTM)

o Forget gate: decides what must be removed from h;_;

ft=0Wg- [he—q,x¢] + by)

e Input gate: decides what new information to store in the cell

iy =0(W;-|h—q1,x¢] + by)

Ecg% C, = tanh(W¢ - [hy_q,x,] + b¢)




Long Short Term Memory (LSTM)

o Update cell state:

Co=fe*Coq+ ip*C

C
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®
fT | % forgetting unneeded things
s scaling the new candidate values by how

much we decided to update each state
value.

18



Long Short Term Memory (LSTM)

o Update cell state:

Co=fe*Coq+ ip*C

>
fT | % forgetting unneeded things
t ¢ ét

scaling the new candidate values by how
much we decided to update each state
value.

o Output gate: decides what to output from our cell state

"4 0 =0(Wy - [hi_1, %] + b,)
D ht — O * tanh(Ct)
04 (X)
(0 B sigmoid decides what parts of the cell

he—1

19

T > state we’re going to output



Backpropagation in LSTM

Uninterrupted gradient flow!
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e No multiplication with matrix W during backprop

e Multiplied by different values of forget gate -> less prone to
vanishing/exploding gradient

Source: CS231N Stanford



RNNSs in Various Forms

One to One One to Many Many to One Many to Many
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Named Entity Recognition

(Sequence-to-sequence) (Sequence tagging)
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RNNSs in Various Forms

e Bi-directional RNN

e Hidden state is the concatenation of both
forward and backward hidden states. o

¢ Al |OWS the hldden S.tate to ca pture bOth paSt [Speech Recognition with Deep Recurrent Neural Networks, Alex Graves]
and future information.

22



RNNSs in Various Forms

e Y Ui Yit1 -« -
e Bi-directional RNN

GGG
e Hidden state is the concatenation of both

forward and backward hidden states. e

¢ Al |OWS the hlddeﬂ S.tate to ca pture bOth paSt [Speech Recognition with Deep Recurrent Neural Networks, Alex Graves]
and future information.

3! Y2 Y3 Y

! 4
e Tree-structured RNN A A A
. . . T N S
e Hidden states condition on both an input vector t ' ¥ '
and the hidden states of arbitrarily many child "
units.
e Standard LSTM = a special case of tree-LSTM I )
where each internal node has exactly one child. 5 y4/ X e
N e e R
o
T4 5 rg

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, Tai. et al.
23



RNNSs in Various Forms

e RNN for 2-D sequences

Pixel CNN Row LSTM
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[Pixel Recurrent Neural Networks, van den Oord. et al. 2016]



RNNs in Various Forms
e RNN for Graph Structures

o Used in, e.g., image segmentation O

Structure-evolving
LSTM

@® Current node

- Neighboring nodes
® Starting node

z 2 ol =
skit W scarf W r-shoe W e B ram pants [l Ishoe = - & hat W face dress W obet B bag EM har [] nul

[Semantic Object Parsing with Graph LSTM. Liang et al. 2016] 2



Outline

e Recurrent Networks (RNNs)

o Long-range dependency, vanishing gradients

o LSTM
o RNNs in different forms

e Attention Mechanisms
o (Query, Key, Value)
o Attention on Text and Images

e Transformers: Multi-head Attention

o Transformer
o BERT



Attention: Examples

e Chooses which features to pay attention to

A stop sign is on a road with a
mountain in the background.

A I|ttle girl sitting on a bed with A group of Eeogle sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Image captioning [Show, attend and tell. Xu et al. 15] 2



Attention: Examples

e Chooses which features to pay attention to

E accord sur la zone économique européenne a
B —| BmMH—| BmMH—| BrMH—| Br—| BrF—| BrF—| B}
! % \
1

A — A —_— A — A —_— A —_— A — A —_—
| | | | | | |

the agreement on the European Economic Area

Machine Translation
Figure courtesy: Olah & Carter, 2016
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https://distill.pub/2016/augmented-rnns/

Why Attention?

Figure courtesy:


http://mlexplained.com/author/admin/

Why Attention?

e Long-range dependencies
o Dealing with gradient vanishing problem

30

Figure courtesy: keitakurita



http://mlexplained.com/author/admin/

Why Attention?

e Long-range dependencies
o Dealing with gradient vanishing problem

e Fine-grained representation instead of a single global representation
o Attending to smaller parts of data: patches in images, words in sentences

Encoder She — is > eating—> a > green — apple

Context vector (length: 5)

———(10.1,-0.2,08,15,-03] )=

Decoder W o> E P M =N F O ER

Figure courtesy: Lilian Weng



Why Attention?

e Long-range dependencies
o Dealing with gradient vanishing problem

e Fine-grained representation instead of a single global representation
o Attending to smaller parts of data: patches in images, words in sentences

e Improved Interpretability

I’ accord sur la zone économique européenne a
I I I I I I [ I
BFH—| BpmM—|BI—| B B B—| BpF—| B}
| | |
\
|
A |e—=| A || A|e—| A |e—| A |e—| A |e—| A |—
I I I I | I 1
the agreement on the European Economic Area

Figure courtesy:
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https://distill.pub/2016/augmented-rnns/

Attention Computation

: . Encoder Key Vectors
e ENncode each token in the input

sentence into vectors

o« When decoding, perform a linear
combination of these vectors,
weighted by “attention weights”

o a = softmax(alignment_scores)

al=0.5 a2=0.3 a3=0.1 a4=0.1

33

Figure courtesy: MARTAR. COSTA-JUSSPeCOder



Attention Computation (cont’d)

Encoder Value Vectors

e Combine together value by taking

the weighted sum

|
|
|

‘-——--

» oo - - -
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Attention Computation (cont’d)

Encoder Value Vectors |

e Combine together value by taking

the weighted sum

|
l
1

‘-——--
* A==

e Query: decoder state
e Key: all encoder states s v .
e Value: all encoder states o NS LT



Attention Variants

e Popular attention mechanisms with different alignment score functions

Alignment score = f(Query, Keys)

Query: decoder state s;
Key: all encoder states h;

Value: all encoder states h;

Courtesy: Lilian Weng

Name

Content-base
attention

Additive(*)

Location-Base

General

Dot-Product

Scaled Dot-
Product(?)

Alignment score function

score(s;, h;) = cosinels;, h;]

score(s;, h;) = v, tanh(W,[s; ;)

a,; = softmax(W,s;)

Note: This simplifies the softmax alignment to only depend on the target
position.

score(s;, k;) = s/ W, h;

where W, is a trainable weight matrix in the attention layer.

score(s;, h;) = s h;

sTh;

v

Note: very similar to the dot-product attention except for a scaling factor;
where n is the dimension of the source hidden state.

score(s;, h;) =

Citation

Graves2014

Bahdanau2015

Luong2015

Luong2015

Luong2015
Vaswani2017




Attention on Images — Image Captioning

A
bird

flying
over

14x14 Feature Map

=

a
body
of
water
L. Input 2. Convolutional 3, RNN with attention 4. Word by

Image  Feature Extraction over the image word
generation

* Query: decoder state
« Key: visual feature maps

» Value: visual feature maps
[Show, attend and tell. Xu et al. 15]



Attention on Images — Image Captioning

Hard attention vs Soft attention

Aflylng over a body of water. /{4 ard
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annotations ‘ ' N
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A variational lower bound of 2y =<
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Computes the expected attention
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Attention on Images — Image Captioning

Hard attention vs Soft attention




Attention on Images — Image Paragraph Generation

e Generate a long paragraph to
describe an image

o Long-term visual and language
reasoning

o Contentful descriptions -- ground
sentences on visual features

- - -

N

This picture is taken for three baseball players on a
field. The man on the left is wearing a blue
baseball cap. The man has a red shirt and white
£y pants. The man in the middle is in a wheelchair and

S Mg

\

holding a baseball bat. Two men are bending down
behind a fence. There are words band on the fence.

[ P ————

- -
S ———————————— -

A tennis player is attempting to hit the tennis ball
with his left foot hand. He is holding a tennis racket.
He is wearing a white shirt and white shorts. He has
his right arm extended up. There is a crowd of
people watching the game. A man is sitting on the
o chair.

o e e
[ ————

___________________________________________________________________
-

~

- N
B A couple of zebra are standing next to each other on *

By dirt ground near rocks. There are trees behind the
zebras. There is a large log on the ground in front of
the zebra. There is a large rock formation to the left
" of the zebra. There is a small hill near a small pond
and a wooden log. There are green leaves on the
tree.

o —
L P ———_

40 v
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Attention on Images — Image Paragraph Generation

Semantic Regions

Attentive /

Reasomng

[ Generator

Sentence

-7
Rl

Sentence {

AW

Sentence

Sentence
Discriminator

Topic-Transition
Discriminator

[Recurrent Topic-Transition GAN for Visual Paragraph Generation. Liang et al. 2017]

Paragraph
description Corpus

|

M



Attention on Images — Image Paragraph Generation

Semantic Regions

i o I - S

S,

Semantic region
detection & captioning

* people playing baseball
* a man wearing white shirt and pants

Local
Phrases

e person wearing a helmet in the field
* aman bending over



Attention on Images — Image Paragraph Generation

Sentence ..
Sentence
%/ Discriminator %
Sentence [ v Paragraph
A , o description Corpus
/4 Topic-Transition [f
Discriminator
Sentence |
Semantic region ‘
detection & captioning !

Attention on both visual

regions and text
phrases

43



Attention on Images — Image Paragraph Generation

Sentence -

! Sentence
\y;"/ Discriminator %
1

Sentence .

Paragraph
description Corpus

Topic-Transition
Discriminator

Sentence |

Semantic region | Hierarchical text
detection & captioning $ generation

Attention on both visual
regions and text
phrases



Attention on Images — Image Paragraph Generation

Sentence }.

Sentence

Discriminator ]%

Topic-Transition
Discriminator

Sentence {

Sentence |

Paragraph
description Corpus | !

S _ _ '.‘ _ _ Multi-level
emantic region '\ Hierarchical text adversarial learning

detection & captioning $ generation

Attention on both visual
regions and text
phrases

45



Attention on Images — Image Paragraph Generation

_w 1) people riding a bike

__—72 a bicycle parked on the sidewalk

AR % & 3) man wearing a black shirt

5) a red and black bike
6) a woman wearing a shirt

-
g
-
SR L
b
S
-
-

)
)
)
4) a woman wearing a yellow shirt
)
)

Paragraph: A group of people are riding bikes. There are two people
riding bikes parked on the sidewalk. He is wearing a black shirt and
Jjeans. A woman Is wearing a short sleeve yellow shirt and shorts.
There are many other people on the red and black bikes. A woman
wearing a shirt is riding a bicycle.

l
I
I
I
I
I
I
I
I
i

~_----'

\



Outline

e Recurrent Networks (RNNs)

o Long-range dependency, vanishing gradients

o LSTM
o RNNs in different forms

e Attention Mechanisms
o (Query, Key, Value)
o Attention on Text and Images

e Transformers: Multi-head Attention



Transformers — Multi-head (Self-)Attention

e State-of-the-art Results by Transformers

o [Vaswani et al., 2017] Attention Is All You Need
= Machine Translation

o [Devlin et al., 2018] BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding

= Pre-trained Text Representation

o [Radford et al., 2019] Language Models are Unsupervised Multitask
Learners

= Language Models



Multi-head Attention

| MatMul |
A

I SoftMax |
| Mask (opt.) I

)
[ Scale ]

I MatMul I

t 1
Q K V

Scaled Dot-Product Attention

Image source: Vaswani, et al., 2017



http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head Attention

\
MatMul \
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Scaled Dot-Product Attention Multi-head Attention

Image source: Vaswani, et al., 2017
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Multi-head Attention
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Image source: Vaswani, et al., 2017



http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head Attention in Encoders and Decoders

Add & Norm

Feed
Forward

—

f_>| Add & Norm |

Multi-Head
Attention

At
1

(shifted right)

Output
Transformer
( (Ao Mo
Feed
Forward
Encoder N m— Decoder
s | ~\ Add & Norm
—>{Add 8 Norm J Multi-Head
Feed Attention
Forward 7 7 Nx
) —
Nix Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At LN
— J —' )
Positional Positional
Encodi ¥ & -
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
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Multi-head Attention in Encoders and Decoders

om;,m | | | encoder self attention
Transformer i

Softmax 1. Multi-head Attention

‘__G%E , 2. Query:Key:Value

(e Nom ) |
Feed
Forv‘vard
PRiEss) | = Av decoder self attention
Feed Attention
Forward 7 7 ,-} N x
| i 1. Masked Multi-head Attention
Nx Add & Norm ) —
Multi-Head Mﬁ?ﬁiﬂd 2. Query= Key=Va|ue
Attention Attention ;
AT A AT
& J \_ ——,
Positional & 4 Positional
Encodi & i 5
T = Feodng encoder-decoder attention
Embedding Embedding
| Tt 5 J t 1. Multi-head Attention
e (shiﬁtégﬁgm) 2. Encoder Self attention:Key:VaIue

Figure 1: The Transformer - model architecture. 3. Decoder Self aﬂentlon:Query

Image source:Bgg | | | ”






