
DSC250: Advanced Data Mining

Language Models

Zhiting Hu
Lecture 8, October 24, 2023

Outline

● Variational Inference (quick overview)

● Language Models

2

Recap: EM Algorithm
● Observed variables 𝒙, latent variables 𝒛
● To learn a model 𝑝 𝒙, 𝒛|𝜃 , we want to maximize the marginal log-

likelihood

! But it’s too difficult
● EM algorithm:
! maximize a lower bound of ℓ 𝜃; 𝒙
! Or equivalently, minimize an upper bound of −ℓ 𝜃; 𝒙

● Key equation:

3

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

ℓ 𝜃; 𝒙 = log	𝑝 𝒙 𝜃 = 	log5
'
𝑝(𝒙, 𝒛|𝜃)

Evidence Lower Bound (ELBO)

Variational free energy

Recap: EM Algorithm
● The EM algorithm is coordinate-decent on 𝐹(𝑞, 𝜃)

! E-step:

§ the posterior distribution over the latent variables given the data and the
current parameters

! M-step:

4

= 𝑝(𝒛|𝒙, 𝜃!)

ℓ 𝜃; 𝒙 = 𝔼!(𝒛|𝒙) log
𝑝 𝒙, 𝒛|𝜃
𝑞 𝒛 𝒙

	+ KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

 = −𝐹 𝑞, 𝜃 + KL 𝑞 𝒛 𝒙 	||	𝑝 𝒛 𝒙, 𝜃

= argmax(5
'
𝑞)*+ 𝒛 𝒙 	log	𝑝(𝒙, 𝒛|𝜃)

Example: Gaussian Mixture Models (GMMs)
● Start: “guess” the centroid 𝜇, and covariance Σ, of each of the K clusters
● Loop:

5

6

Variational Inference
(quick overview)

Content adapted from CMU 10-708 Spring 2017

Inference
● Given a model, the goals of inference can include:

! Computing the likelihood of observed data 𝑝(𝒙∗)

! Computing the marginal distribution over a given subset of variables in the
model 𝑝(𝒙")

! Computing the conditional distribution over a subsets of nodes given a
disjoint subset of nodes 𝑝(𝒙"|𝒙#)

! Computing a mode of the density (for the above distributions) argmax𝒙	𝑝 𝒙

! ….

7

Variational Inference
● Observed variables 𝒙, latent variables 𝒛
● Variational (Bayesian) inference, a.k.a. variational Bayes, is most often

used to approximately infer the conditional distribution over the latent
variables given the observations (and parameters)
! i.e., the posterior distribution over the latent variables

8

𝑝 𝒛 𝒙, 𝜃 =
𝑝(𝒛, 𝒙|𝜃)

∑! 𝑝(𝒛, 𝒙|𝜃)

Motivating Example
● Why do we often need to use an approximate inference methods (such

as variational Bayes) to compute the posterior distribution?

● It’s because we cannot directly compute the posterior distribution for
many interesting models
! I.e. the posterior density is in an intractable form (often involving integrals)

which cannot be easily analytically solved.

9

Variational Inference

13

The main idea behind variational inference:

14

Language Models

Outline
● N-gram language models
● Neural language models
● Neural architectures (in general)

15

Motivations of Language Models
● Generation

Email auto-completion

Motivations of Language Models
● Generation

Motivations of Language Models
● Evaluation of language fluency
! Ex:

[Courtesy: UW CSE 447 by Noah Smith]

Motivations of Language Models
● Evaluation of language fluency
! Ex:

[Courtesy: UW CSE 447 by Noah Smith]

Motivations of Language Models
● Few-shot prediction

(e.g., GPT3)

[Nurecas.com]

Brown et al., 2020 "Language Models Are Few-Shot Learners”

Notations

23[Courtesy: UW CSE 447 by Noah Smith]

Notations

24[Courtesy: UW CSE 447 by Noah Smith]

The Language Modeling Problem
● Input: training data 𝒙 = (𝑥+, 𝑥-, … , 𝑥.) in 𝒱/
! (assuming one instance 𝒙 for simplicity of notations)

● Output: 𝑝:	𝒱/ → 	ℝ

● Think of 𝑝 as a measure of plausibility

25[Courtesy: UW CSE 447 by Noah Smith]

Probabilistic Language Model
● We let 𝑝 be a probability distribution, which means that

● Advantages:
! Interpretability
! We can apply the maximum likelihood principle to build a language model

from data

26[Courtesy: UW CSE 447 by Noah Smith]

Decomposing using the Chain Rule

27[Courtesy: UW CSE 447 by Noah Smith]

𝒙 = (I, like, this, movie, …)

𝑝 𝒙 =	⋅⋅⋅ 𝑝(𝑙𝑖𝑘𝑒	 𝐼)	𝑝(𝑡ℎ𝑖𝑠	 𝐼, 𝑙𝑖𝑘𝑒) ⋅⋅⋅

Example: Predict each word based on the “history”

Unigram Model: Empty History

28[Courtesy: UW CSE 447 by Noah Smith]

Multinomial distribution

Unigram Model: Empty History

29[Courtesy: UW CSE 447 by Noah Smith]

Multinomial distribution

Example
● Example

30[Courtesy: UW CSE 447 by Noah Smith]

Example

The probability of

Presidents tell lies .

is:

p(X1 = Presidents) · p(X2 = tell) · p(X3 = lies) · p(X4 = .) · p(X5 = 8)

In unigram model notation:

✓Presidents · ✓tell · ✓lies · ✓. · ✓8
Using the maximum likelihood estimate for ✓, we could calculate:

countx(Presidents)

N
· countx(tell)

N
· · · countx(8)

N

42 / 149

Unigram Models: Assessment

Unigram Models: Assessment

Pros:

I Easy to understand

I Cheap

I Good enough for
information retrieval
(maybe)

Cons:

I Fixed, known vocabulary
assumption

I “Bag of words” assumption
is linguistically inaccurate
I p(the the the the) �

p(I want ice cream)

44 / 149

31[Courtesy: UW CSE 447 by Noah Smith]

n-gram Models

Aperitif: Markov Models ⌘ n-gram Models

p(X = x) =
NY

i=1

p(Xi = xi | X1:i�1 = x1:i�1)

assumption
=

NY

i=1

p(Xi = xi | Xi�n+1:i�1 = xi�n+1:i�1;✓)

=
NY

i=1

✓xi|xi�n+1:i�1

(n� 1)th-order Markov assumption ⌘ n-gram model

I Unigram model is the n = 1 case

I For a long time, trigram models (n = 3) were widely used

I 5-gram models (n = 5) were common in MT for a time

45 / 149

32[Courtesy: UW CSE 447 by Noah Smith]

n-gram Models

Aperitif: Markov Models ⌘ n-gram Models

p(X = x) =
NY

i=1

p(Xi = xi | X1:i�1 = x1:i�1)

assumption
=

NY

i=1

p(Xi = xi | Xi�n+1:i�1 = xi�n+1:i�1;✓)

=
NY

i=1

✓xi|xi�n+1:i�1

(n� 1)th-order Markov assumption ⌘ n-gram model

I Unigram model is the n = 1 case

I For a long time, trigram models (n = 3) were widely used

I 5-gram models (n = 5) were common in MT for a time

45 / 149

33[Courtesy: UW CSE 447 by Noah Smith]

n-gram Models

34

● Maximum likelihood estimate for the n-gram model’s probability of 𝑣
given a (𝑛	 − 	1)-length history 𝒉

Solution

✓v|h = p(Xi = v | Xi�n+1:i�1 = h)

=
p(Xi = v,Xi�n+1:i�1 = h)

p(Xi�n+1:i�1 = h)

=
countx(hv)

N

�
countx(h)

N

=
countx(hv)

countx(h)

A common mistake is to forget that ✓v|h is a conditional
probability and estimate the joint probability p(hv) instead.

47 / 149

[Courtesy: UW CSE 447 by Noah Smith]

Choosing n is a Balancing Act

35

Choosing n is a Balancing Act

If n is too small, your model can’t learn very much about language.

As n gets larger:

I The number of parameters grows with O(V n).

I Most n-grams will never be observed, so you’ll have lots of
zero probability n-grams. This is an example of data sparsity.

I Your model depends increasingly on the training data; you
need (lots) more data to learn to generalize well.

This is a beautiful illustration of the bias-variance tradeo↵.

49 / 149

[Courtesy: UW CSE 447 by Noah Smith]

Other “tricks”
● Smoothing

● Dealing with Out-of-Vocabulary Terms
! Define a special OOV or “unknown” symbol unk. Transform some (or all) rare

words in the training data to unk.
! Build a language model at the character level.
! Some new methods use data-driven, deterministic tokenization schemes that

segment some words into smaller parts to reduce the effective vocabulary size
(Sennrich et al., 2016; Wu et al., 2016).

36[Courtesy: UW CSE 447 by Noah Smith]

Smoothing: Attempts to Improve Inductive Bias

The game: prevent ✓v|h = 0 for any v and h, while keepingP
x p(x) = 1 so that perplexity stays meaningful.

I Simple method: add � > 0 to every count (including counts
of zero) before normalizing (the textbook calls this “Lidstone”
smoothing)

I Longstanding champion: modified Kneser-Ney smoothing
(Chen and Goodman, 1998)

I Reasonable, easy solution when you don’t care about
perplexity: stupid backo↵ (Brants et al., 2007)

51 / 149

n-gram Models: Assessment

n-gram Models: Assessment

Pros:
I Easy to understand
I Cheap (with modern

hardware; Lin and Dyer,
2010)

I Fine in some applications
and when training data is
scarce

Cons:

I Fixed, known vocabulary
assumption

I Markov assumption is
linguistically inaccurate
I (But not as bad as

unigram models!)

I Data sparseness problem

56 / 149

37[Courtesy: UW CSE 447 by Noah Smith]

38

Neural Language Models

Neural Language Models

Neural Language Models

Instead of a lookup for a word and fixed-length history (✓v|h),
define a vector function:

p(Xi | X1:i�1 = x1:i�1) = NN(enc(x1:i�1);✓)

where ✓ do the work of encoding the history and transforming it
into a distribution over the next word.
The transformation is described as a composed series of simple
transformations or “layers.”

58 / 149

39[Courtesy: UW CSE 447 by Noah Smith]

Neural Language Models

Neural Language Models

Instead of a lookup for a word and fixed-length history (✓v|h),
define a vector function:

p(Xi | X1:i�1 = x1:i�1) = NN(enc(x1:i�1);✓)

where ✓ do the work of encoding the history and transforming it
into a distribution over the next word.
The transformation is described as a composed series of simple
transformations or “layers.”

58 / 149

40[Courtesy: UW CSE 447 by Noah Smith]

Neural Network

41[Courtesy: UW CSE 447 by Noah Smith]

What is a Neural Network?

Like many things from machine learning, the name invites
confusion.

Formally, it’s a function NN from ✓ (learned parameters) and
inputs to outputs, all of which are real-valued vectors (or matrices,
or tensors, or collections of them).

Almost always, NN is di↵erentiable with respect to ✓ and
nonlinear with respect to the data input.

I “Nonlinear” means there does not exist a matrix A such that
NN(v;✓) = Av, for all v.

60 / 149

What is a Neural Network?

Like many things from machine learning, the name invites
confusion.

Formally, it’s a function NN from ✓ (learned parameters) and
inputs to outputs, all of which are real-valued vectors (or matrices,
or tensors, or collections of them).

Almost always, NN is di↵erentiable with respect to ✓ and
nonlinear with respect to the data input.

I “Nonlinear” means there does not exist a matrix A such that
NN(v;✓) = Av, for all v.

For a neural language model:

I We need an encoder that maps word histories h to
vectors/matrices.

I We interpret the output as p(Xi | X1:i�1 = h).

62 / 149

Neural Language Models

Neural Language Models

Instead of a lookup for a word and fixed-length history (✓v|h),
define a vector function:

p(Xi | X1:i�1 = x1:i�1) = NN(enc(x1:i�1);✓)

where ✓ do the work of encoding the history and transforming it
into a distribution over the next word.
The transformation is described as a composed series of simple
transformations or “layers.”

58 / 149

42[Courtesy: UW CSE 447 by Noah Smith]

! We first map word histories 𝒉 to vectors/matrices
! We interpret the output as

Two Key Components
● “Embedding” words as vectors
● Layering to increase capacity (i.e., the set of distributions that can be

represented).

43

“One Hot” Vectors

44

“One Hot” Vectors

Let ei 2 RV be the ith column of the identity matrix I.

e1 =

2

666664

1
0
...
0
0

3

777775
; e2 =

2

666664

0
1
...
0
0

3

777775
; . . . ; eV =

2

666664

0
0
...
0
1

3

777775

ei is the “one hot” vector for the ith word in V.

A neural language model starts by “looking up” each word by
multiplying its one hot vector by a matrix M

V ⇥ d

; e>v M = mv, the

“embedding” of v.

M becomes part of the parameters (✓).

76 / 149

Sequences of Word Vectors

45

Sequences of Word Vectors

Given a word sequence hv1, v2, . . . , vki, we transform it into a
sequence of word vectors,

mv1 ,mv2 , . . . ,mvk

Using neural networks in NLP requires decisions about how to deal
with variable-length input.

77 / 149

Adding Layers
● Neural networks are built by composing functions, a mix of
! Affine, 𝒗′	 = 	𝑾𝒗	 + 	𝒃	(note that the dimensionality of 𝒗 and 𝒗′ might be

different)

! Nonlinearity, e.g.,
§ rectified linear (“relu”) units 𝑣!" = max 0, 𝑣!

§ elementwise hyperbolic tangent

§ softmax 𝑣!" = exp 	𝑣!	 /	∑# exp{	𝑣#	}

! More complex components (composed of the above operations):
§ Convolutional layers
§ Recurrent NNs
§ Attention

46

Summary so far

● language models utilities

! Generation, evaluation of fluency, few-shot prediction (GPT3), …

● N-gram language models

! Unigram LM

! N-gram LM

● Neural language models:

! Embedding: one-hot vectors -> embedding vectors

! Neural networks

47

Questions?

