DSC250: Advanced Data Mining

Topic Models

Zhiting Hu Lecture 7, October 19, 2023

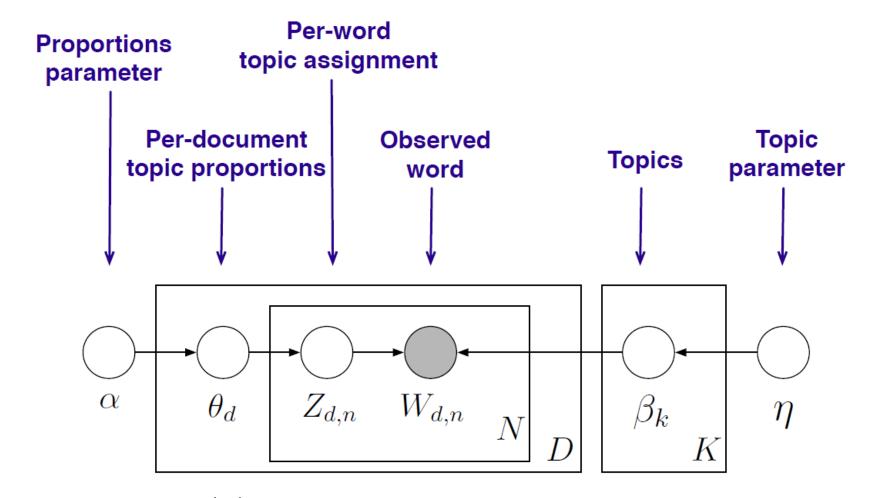
Outline

- Topic Model v3: Latent Dirichlet Allocation (LDA)
- Learning of Topic Model: Expectation Maximization (EM)

Slides adapted from:

- Y. Sun, CS 247: Advanced Data Mining
- M. Gormley, 10-701 Introduction to Machine Learning

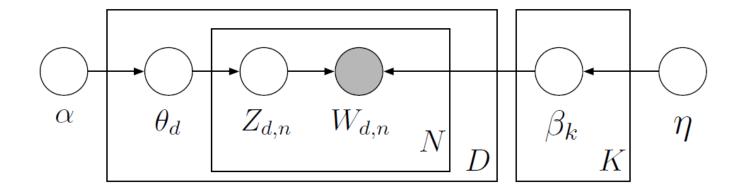
Topic Model v3: Latent Dirichlet Allocation (LDA)

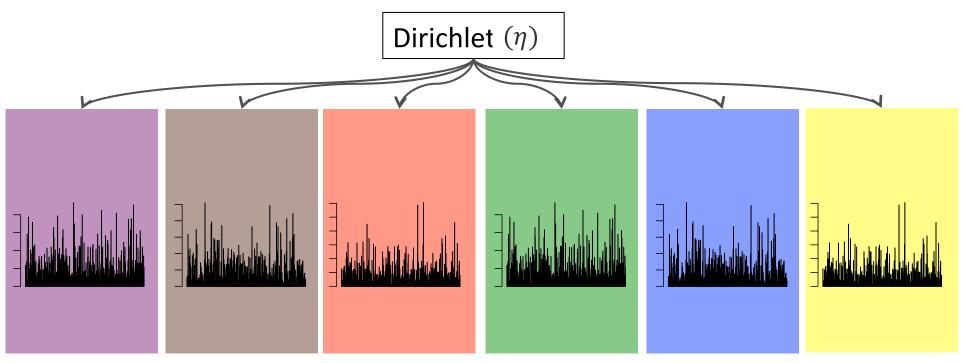


 $\theta_d \sim Dirichlet(\alpha)$: address topic distribution for unseen documents $\beta_k \sim Dirichlet(\eta)$: smoothing over words

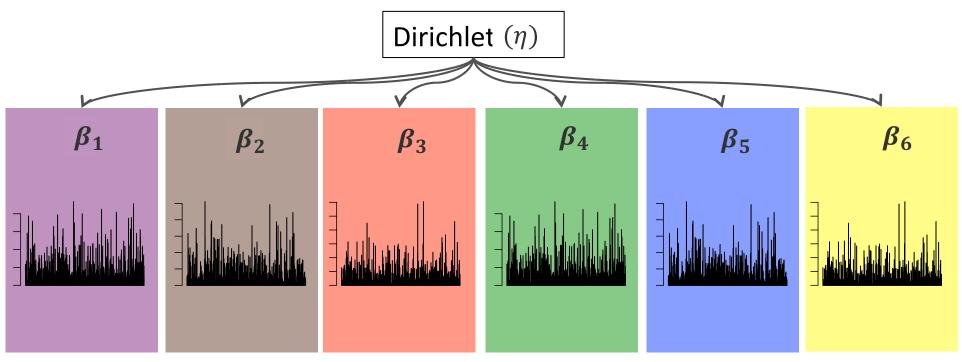
Generative Model for LDA

```
For each topic k \in \{1, \dots, K\}:
\beta_k \sim \operatorname{Dir}(\mathfrak{I}) \qquad [draw \ distribution \ over \ words]
For each document d \in \{1, \dots, D\}
\theta_d \sim \operatorname{Dir}(\alpha) \qquad [draw \ distribution \ over \ topics]
For each word n \in \{1, \dots, N_d\}
z_{d,n} \sim \operatorname{Mult}(1, \theta_d) \qquad [draw \ topic \ assignment]
w_{d,n} \sim \theta_{z_{d,n}} \qquad [draw \ word]
```

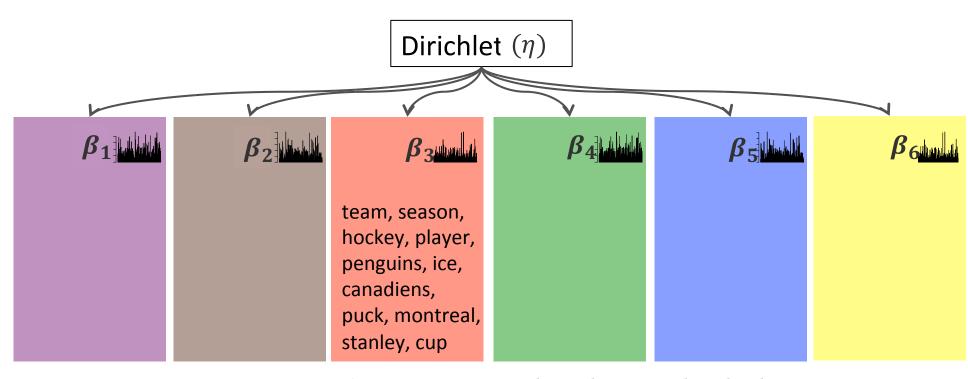




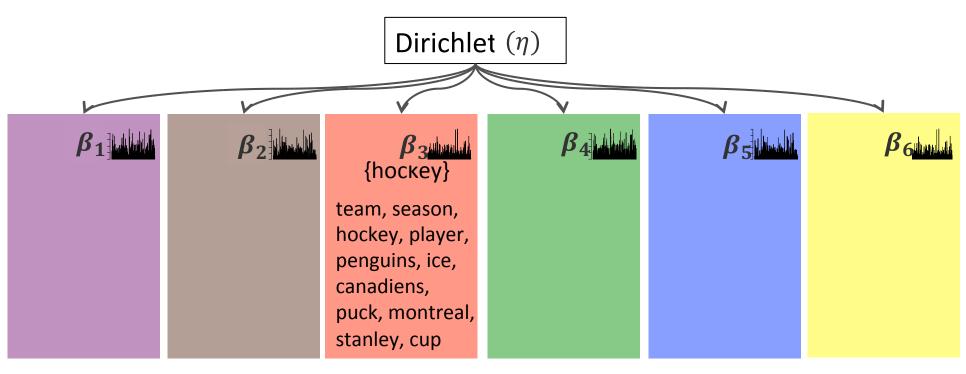
- The **generative story** begins with only a **Dirichlet prior** over the topics.
- Each **topic** is defined as a **Multinomial distribution** over the vocabulary, parameterized by β_k



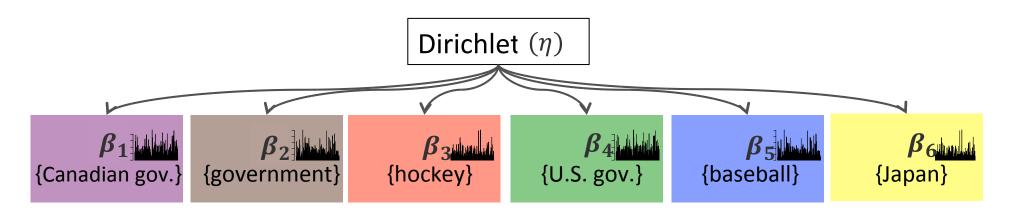
- The generative story begins with only a Dirichlet prior over the topics.
- Each **topic** is defined as a **Multinomial distribution** over the vocabulary, parameterized by β_k



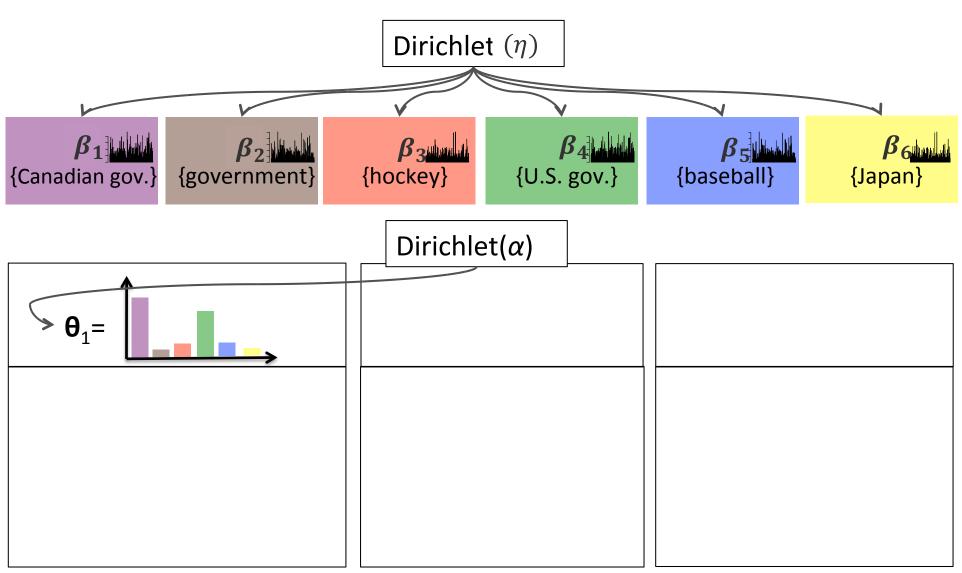
 A topic is visualized as its high probability words.

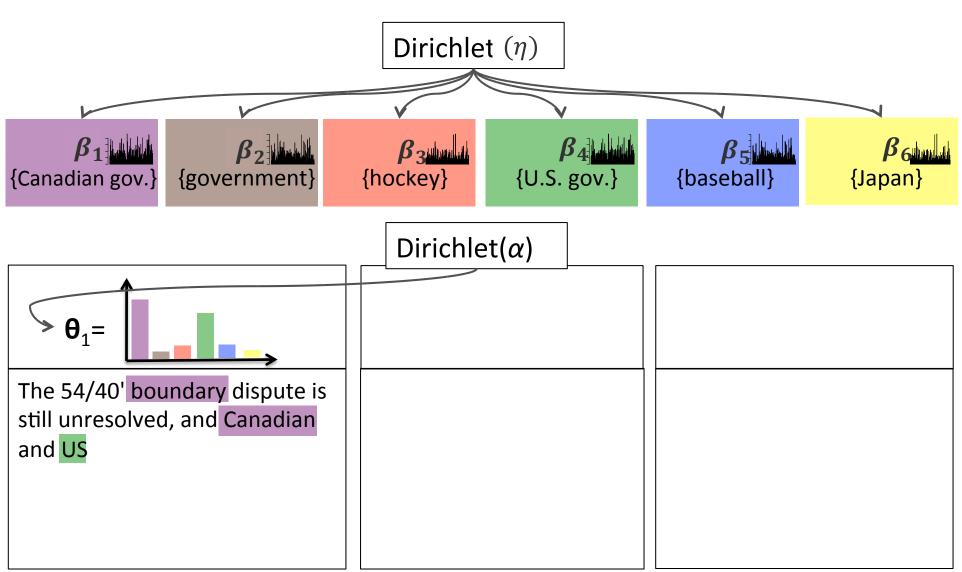


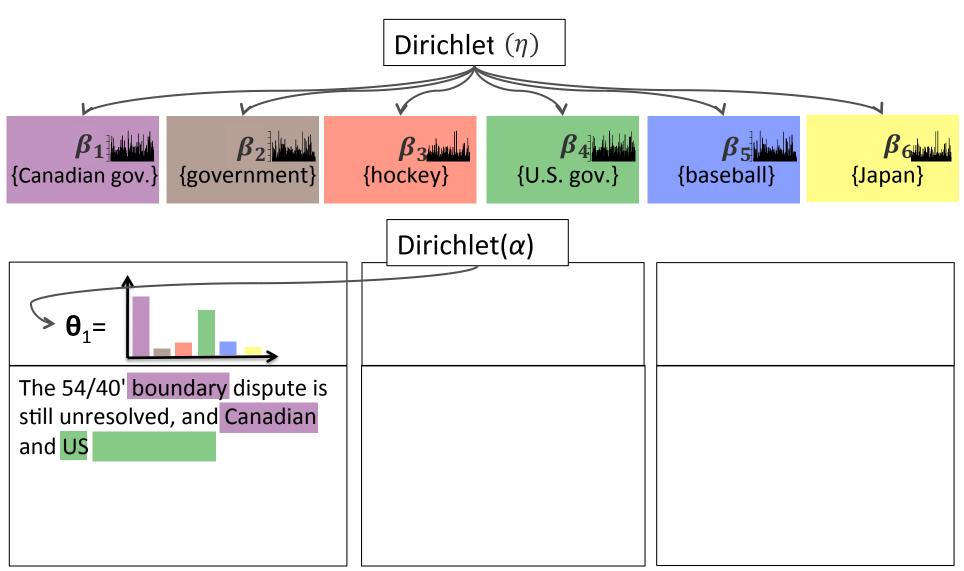
- A topic is visualized as its high probability words.
- A pedagogical **label** is used to identify the topic.

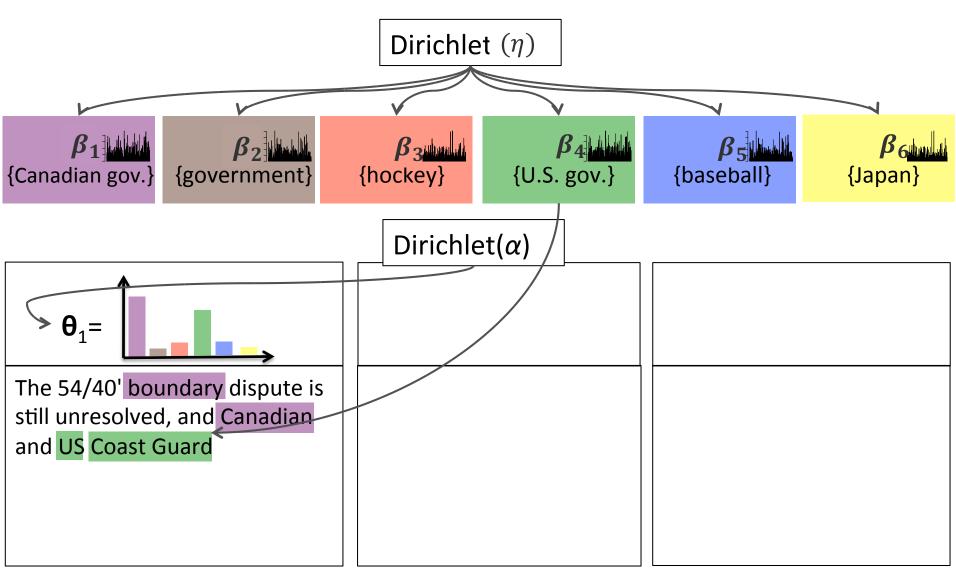


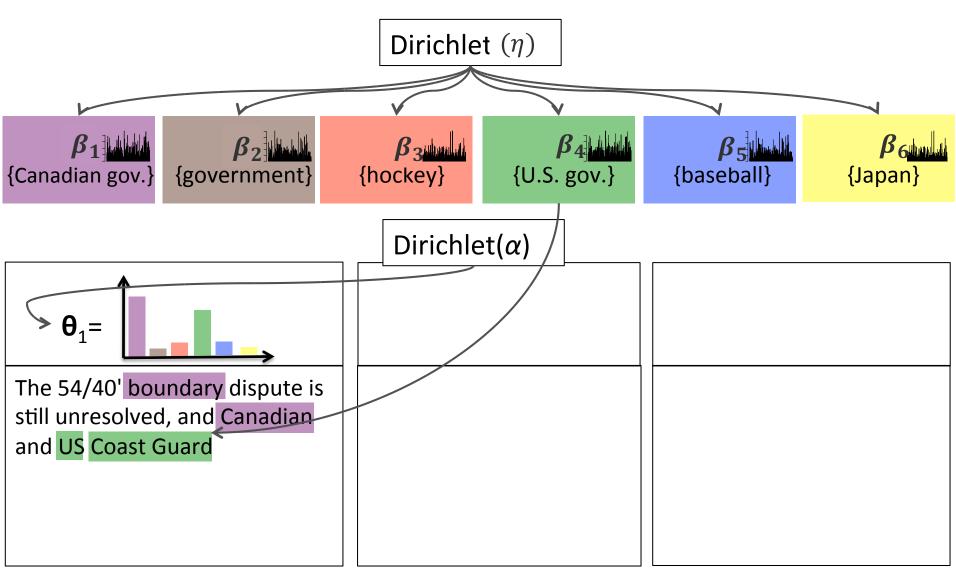
- A topic is visualized as its high probability words.
- A pedagogical label is used to identify the topic.

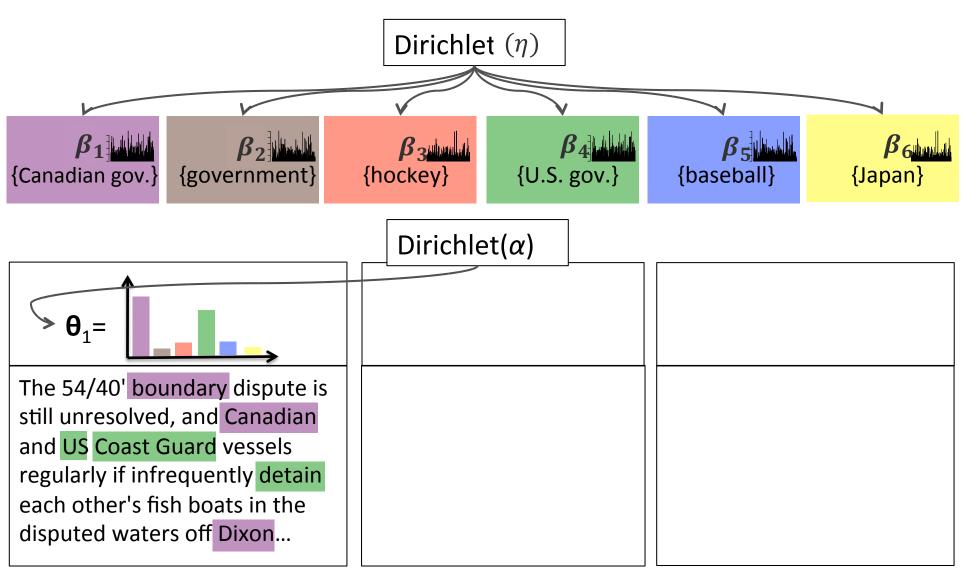


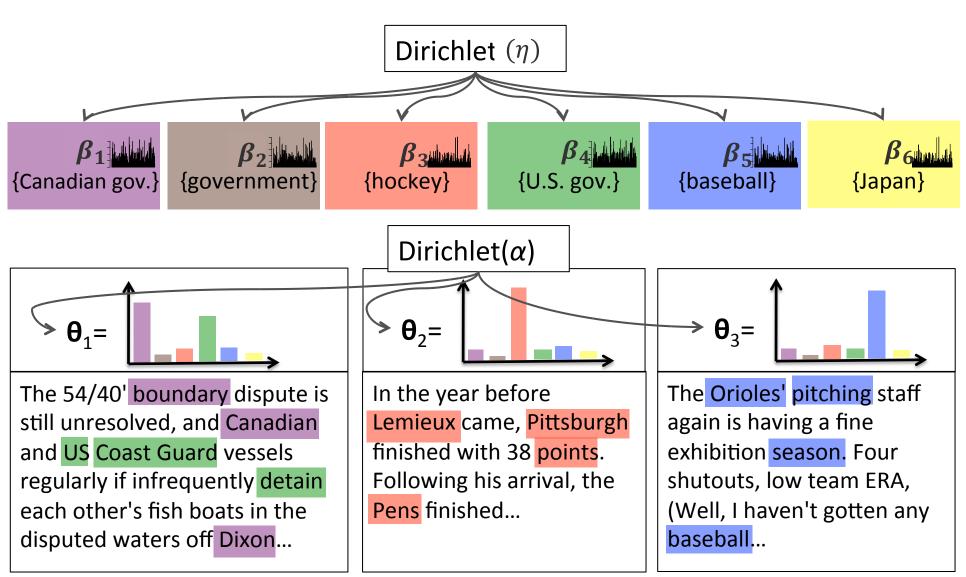


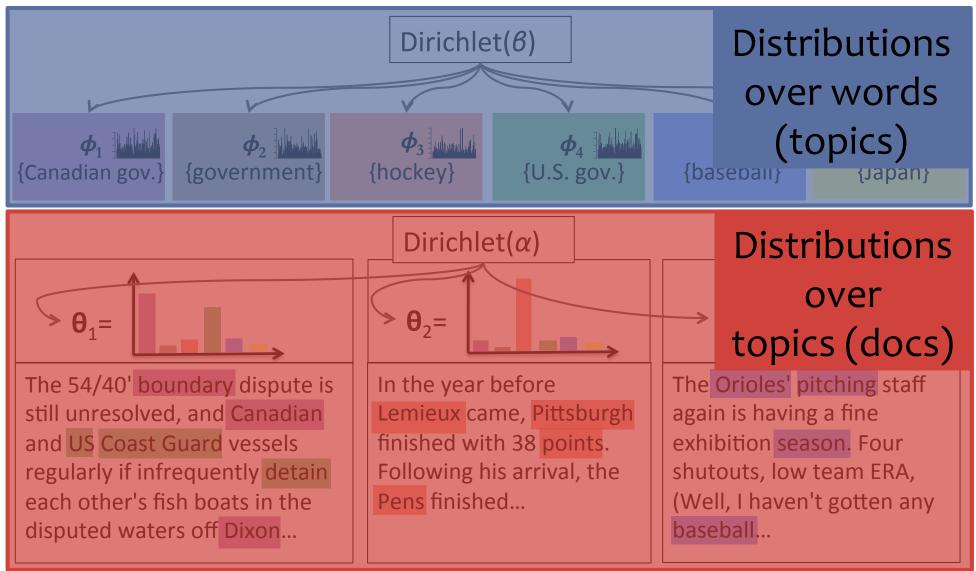




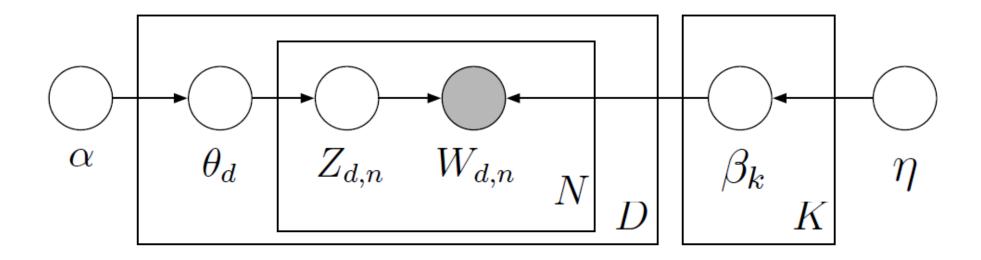








Joint Distribution for LDA

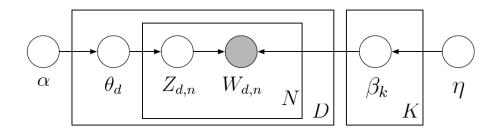


 Joint distribution of latent variables and documents is:

$$p(\boldsymbol{\beta}_{1:K}, \boldsymbol{z}_{1:D}, \boldsymbol{\theta}_{1:D}, \boldsymbol{w}_{1:D} | \alpha, \eta) =$$

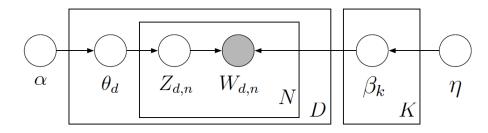
$$\prod_{i=1}^{K} p(\beta_{i} | \eta) \prod_{d=1}^{D} p(\theta_{d} | \alpha) \left(\prod_{n=1}^{N} p(z_{d,n} | \theta_{d}) p(w_{d,n} | \beta_{1:K}, z_{d,n}) \right)$$

Likelihood Function for LDA



$$p(\boldsymbol{\beta}_{1:K}, \boldsymbol{z}_{1:D}, \boldsymbol{\theta}_{1:D}, \boldsymbol{w}_{1:D} | \alpha, \eta) = \prod_{i=1}^{K} p(\beta_{i} | \eta) \prod_{d=1}^{D} p(\theta_{d} | \alpha) \left(\prod_{n=1}^{N} p(z_{d,n} | \theta_{d}) p(w_{d,n} | \beta_{1:K}, z_{d,n}) \right)$$

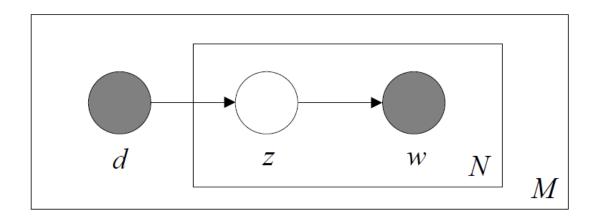
Likelihood Function for LDA



$$p(\boldsymbol{\beta}_{1:K}, \boldsymbol{z}_{1:D}, \boldsymbol{\theta}_{1:D}, \boldsymbol{w}_{1:D} | \alpha, \eta) = \prod_{i=1}^{K} p(\beta_{i} | \eta) \prod_{d=1}^{D} p(\theta_{d} | \alpha) \left(\prod_{n=1}^{N} p(z_{d,n} | \theta_{d}) p(w_{d,n} | \beta_{1:K}, z_{d,n}) \right)$$

Learning of Topic Models

Recap: pLSA Topic Model



- Observed variables:
- Latent variables:
- Parameters:

The General Unsupervised Learning Problem

- Each data instance is partitioned into two parts:
 - \circ observed variables x
 - latent (unobserved) variables z
- Want to learn a model $p_{\theta}(x, z)$

Latent (unobserved) variables

- A variable can be unobserved (latent) because:
 - imaginary quantity: meant to provide some simplified and abstractive view of the data generation process
 - e.g., topic model, speech recognition models, ...

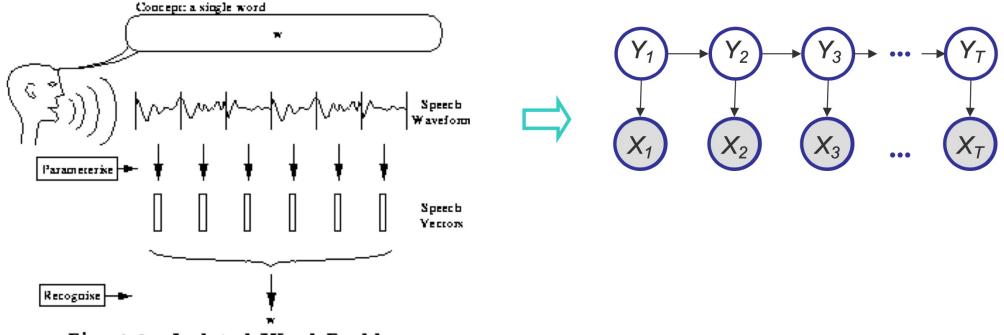


Fig. 1.2 Isolated Word Problem

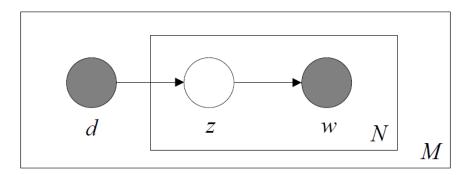
Latent (unobserved) variables

- A variable can be unobserved (latent) because:
 - imaginary quantity: meant to provide some simplified and abstractive view of the data generation process
 - e.g., topic model, speech recognition models, ...

Latent (unobserved) variables

- A variable can be unobserved (latent) because:
 - imaginary quantity: meant to provide some simplified and abstractive view of the data generation process
 - e.g., topic model, speech recognition models, ...
 - o a real-world object (and/or phenomena), but difficult or impossible to measure
 - e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
 - a real-world object (and/or phenomena), but sometimes wasn't measured, because of faulty sensors, etc.
- Discrete latent variables can be used to partition/cluster data into subgroups
- Continuous latent variables (factors) can be used for dimensionality reduction (e.g., factor analysis, etc.)

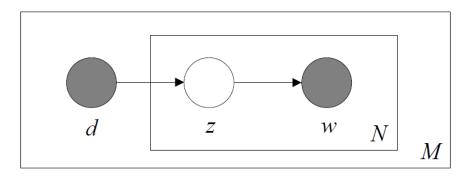
Recap: pLSA Topic Model



Likelihood function of a word w:

$$p(w|d,\theta,\beta) = \sum_{k} p(w,z = k|d,\theta,\beta)$$
$$= \sum_{k} p(w|z = k,d,\theta,\beta)p(z = k|d,\theta,\beta) = \sum_{k} \beta_{kw}\theta_{dk}$$

Recap: pLSA Topic Model



Likelihood function of a word w:

$$p(w|d,\theta,\beta) = \sum_{k} p(w,z = k|d,\theta,\beta)$$
$$= \sum_{k} p(w|z = k,d,\theta,\beta)p(z = k|d,\theta,\beta) = \sum_{k} \beta_{kw}\theta_{dk}$$

Learning by maximizing the log likelihood:

Why is Learning Harder?

Why is Learning Harder?

• Complete log likelihood: if both x and z can be observed, then

$$\ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z}|\theta) = \log p(\mathbf{z}|\theta_z) + \log p(\mathbf{x}|\mathbf{z}, \theta_x)$$

- Decomposes into a sum of factors, the parameter for each factor can be estimated separately
- But given that z is not observed, $\ell_c(\theta; x, z)$ is a random quantity, cannot be maximized directly

Why is Learning Harder?

• Complete log likelihood: if both x and z can be observed, then

$$\ell_c(\theta; \mathbf{x}, \mathbf{z}) = \log p(\mathbf{x}, \mathbf{z}|\theta) = \log p(\mathbf{z}|\theta_z) + \log p(\mathbf{x}|\mathbf{z}, \theta_x)$$

- Decomposes into a sum of factors, the parameter for each factor can be estimated separately
- But given that z is not observed, $\ell_c(\theta; x, z)$ is a random quantity, cannot be maximized directly
- Incomplete (or marginal) log likelihood: with z unobserved, our objective becomes the log of a marginal probability:

$$\ell(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta) = \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}|\theta)$$

- All parameters become coupled together
- In other models when z is complex (continuous) variables, marginalization over z is intractable.

• For any distribution $q(\mathbf{z}|\mathbf{x})$, define expected complete log likelihood:

$$\mathbb{E}_{q}[\ell_{c}(\theta; \mathbf{x}, \mathbf{z})] = \sum_{\mathbf{z}} q(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{z}|\theta)$$

- \circ A deterministic function of θ
- Inherit the factorizability of $\ell_c(\theta; \mathbf{x}, \mathbf{z})$
- Use this as the surrogate objective

• For any distribution q(z|x), define expected complete log likelihood:

$$\mathbb{E}_{q}[\ell_{c}(\theta; \mathbf{x}, \mathbf{z})] = \sum_{z} q(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{z}|\theta)$$

- \circ A deterministic function of θ
- Inherit the factorizability of $\ell_c(\theta; x, z)$
- Use this as the surrogate objective
- Does maximizing this surrogate yield a maximizer of the likelihood?

• For any distribution $q(\mathbf{z}|\mathbf{x})$, define expected complete log likelihood:

$$\mathbb{E}_{q}[\ell_{c}(\theta; \mathbf{x}, \mathbf{z})] = \sum_{z} q(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{z}|\theta)$$

• For any distribution q(z|x), define expected complete log likelihood:

$$\mathbb{E}_{q}[\ell_{c}(\theta; \mathbf{x}, \mathbf{z})] = \sum_{z} q(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{z}|\theta)$$

Jensen's inequality

$$= \log \sum_{z} p(x, z \mid \theta)$$

$$= \log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

$$\geq \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

 $\ell(\theta; \mathbf{X}) = \log \mathbf{p}(\mathbf{X} \mid \theta)$

• For any distribution $q(\mathbf{z}|\mathbf{x})$, define expected complete log likelihood:

$$\mathbb{E}_{q}[\ell_{c}(\theta; \mathbf{x}, \mathbf{z})] = \sum_{z} q(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{z}|\theta)$$

Jensen's inequality

$$\ell(\theta; x) = \log p(x | \theta)$$

$$= \log \sum_{z} p(x, z | \theta)$$

$$= \log \sum_{z} q(z | x) \frac{p(x, z | \theta)}{q(z | x)}$$

$$= \log \sum_{z} q(z | x) \frac{p(x, z | \theta)}{q(z | x)}$$

$$\ge \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

Evidence Lower Bound (ELBO)

Expectation Maximization (EM)

• For any distribution q(z|x), define expected complete log likelihood:

$$\mathbb{E}_{q}[\ell_{c}(\theta; \mathbf{x}, \mathbf{z})] = \sum_{z} q(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{z}|\theta)$$

Jensen's inequality

$$\ell(\theta; x) = \log p(x \mid \theta)$$

$$= \log \sum_{z} p(x, z \mid \theta)$$

$$= \log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

$$\geq \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)}$$
 Evidence Lower Bound (ELBO)

$$= \sum_{z} q(z \mid x) \log p(x, z \mid \theta) - \sum_{z} q(z \mid x) \log q(z \mid x)$$

$$= \mathbb{E}_{q} [\ell_{c}(\theta; x, z)] + H(q)$$
₃₇

Expectation Maximization (EM)

• For any distribution q(z|x), define expected complete log likelihood:

$$\mathbb{E}_{q}[\ell_{c}(\theta; \mathbf{x}, \mathbf{z})] = \sum_{z} q(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{z}|\theta)$$

Jensen's inequality

$$\ell(\theta; x) = \log p(x | \theta)$$

$$= \log \sum_{z} p(x, z | \theta)$$

$$= \log \sum_{z} q(z | x) \frac{p(x, z | \theta)}{q(z | x)}$$

$$\geq \sum_{z} q(z | x) \log \frac{p(x, z | \theta)}{q(z | x)}$$

Indeed we have

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \text{KL} \left(q(\mathbf{z}|\mathbf{x}) \mid\mid p(\mathbf{z}|\mathbf{x}, \theta) \right)$$

Lower Bound and Free Energy

• For fixed data x, define a functional called the (variational) free energy:

$$F(q,\theta) = -\mathbb{E}_q[\ell_c(\theta; \mathbf{x}, \mathbf{z})] - H(q) \ge \ell(\theta; \mathbf{x})$$

- The EM algorithm is coordinate-decent on *F*
 - At each step *t*:
 - $\quad \text{E-step:} \quad q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right)$
 - M-step: $\theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^{t}\right)$

E-step: minimization of $F(q, \theta)$ w.r.t q

• Claim:

$$q^{t+1} = \operatorname{argmin}_q F(q, \theta^t) = p(\mathbf{z} | \mathbf{x}, \theta^t)$$

- This is the posterior distribution over the latent variables given the data and the current parameters.
- Proof (easy): recall

$$\ell(\theta^t; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta^t)}{q(\mathbf{z}|\mathbf{x})} \right] + \text{KL} \left(q(\mathbf{z}|\mathbf{x}) \mid\mid p(\mathbf{z}|\mathbf{x}, \theta^t) \right)$$
Independent of q

$$-F(q, \theta^t) \geq 0$$

• $F(q, \theta^t)$ is minimized when $KL(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta^t)) = 0$, which is achieved only when $q(\mathbf{z}|\mathbf{x}) = p(\mathbf{z}|\mathbf{x}, \theta^t)$

M-step: minimization of $F(q, \theta)$ w.r.t θ

Note that the free energy breaks into two terms:

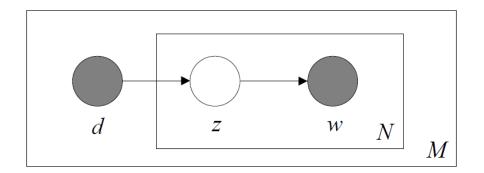
$$F(q,\theta) = -\mathbb{E}_q[\ell_c(\theta; \mathbf{x}, \mathbf{z})] - H(q) \ge \ell(\theta; \mathbf{x})$$

- The first term is the expected complete log likelihood and the second term, which does not depend on q, is the entropy.
- Thus, in the M-step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$\theta^{t+1} = \operatorname{argmax}_{\theta} \mathbb{E}_{q}[\ell_{c}(\theta; \boldsymbol{x}, \boldsymbol{z})] = \operatorname{argmax}_{\theta} \sum_{z} q^{t+1}(\boldsymbol{z}|\boldsymbol{x}) \log p(\boldsymbol{x}, \boldsymbol{z}|\theta)$$

• Under optimal q^{t+1} , this is equivalent to solving a standard MLE of fully observed model $p(\mathbf{x}, \mathbf{z}|\theta)$, with z replaced by its expectation w.r.t $p(\mathbf{z}|\mathbf{x}, \theta^t)$

Learning pLSA with EM

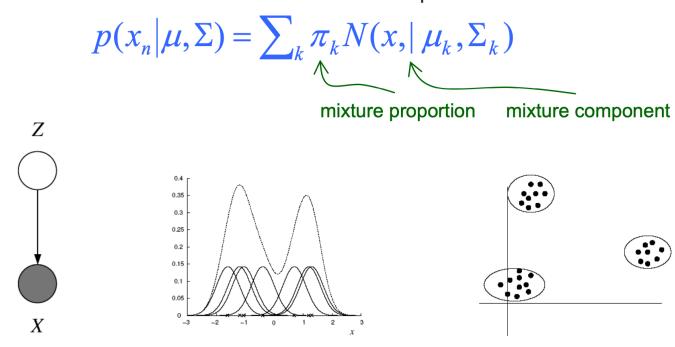


• E-step:

$$p(z|w,d,\theta^t,\beta^t) = \frac{p(w|z,d,\beta^t)p(z|d,\theta^t)}{\sum_{z'} p(w|z',d,\beta^t)p(z'|d,\theta^t)} = \frac{\beta_{zw}^t \theta_{dz}^t}{\sum_{z'} \beta_{z'w}^t \theta_{dz'}^t}$$

• M-step:

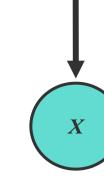
Consider a mixture of K Gaussian components:



- This model can be used for unsupervised clustering.
 - This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

- Consider a mixture of K Gaussian components:
 - Z is a latent class indicator vector:

$$p(z_n) = \text{multi}(z_n : \pi) = \prod_k (\pi_k)^{z_n^k}$$



Z

X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(x_n \mid z_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2} (x_n - \mu_k)^T \Sigma_k^{-1} (x_n - \mu_k)\right\}$$

Parameters to be learned:

The likelihood of a sample:

 $p(x_n|\mu,\Sigma) = \sum_k p(z^k = 1 \mid \pi) p(x, \mid z^k = 1, \mu, \Sigma)$ $= \sum_{z_n} \prod_k \left((\pi_k)^{z_n^k} N(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_k \pi_k N(x, \mid \mu_k, \Sigma_k)$ mixture component

- Consider a mixture of K Gaussian components
- The expected complete log likelihood

$$\mathbb{E}_{q} \left[\ell_{c}(\boldsymbol{\theta}; x, z) \right] = \sum_{n} \mathbb{E}_{q} \left[\log p \left(z_{n} \mid \pi \right) \right] + \sum_{n} \mathbb{E}_{q} \left[\log p \left(x_{n} \mid z_{n}, \mu, \Sigma \right) \right]$$

$$= \sum_{n} \sum_{k} \mathbb{E}_{q} \left[z_{n}^{k} \right] \log \pi_{k} - \frac{1}{2} \sum_{n} \sum_{k} \mathbb{E}_{q} \left[z_{n}^{k} \right] \left(\left(x_{n} - \mu_{k} \right)^{T} \Sigma_{k}^{-1} \left(x_{n} - \mu_{k} \right) + \log |\Sigma_{k}| + C \right)$$

• E-step: computing the posterior of z_n given the current estimate of the parameters (i.e., π , μ , Σ)

$$p(z_n^k = 1 \mid x, \mu^{(t)}, \Sigma^{(t)}) = \frac{\pi_k^{(t)} N(x_n, | \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_i \pi_i^{(t)} N(x_n, | \mu_i^{(t)}, \Sigma_i^{(t)})} p(x_n^{(t)}, \Sigma_i^{(t)})$$

ullet M-step: computing the parameters given the current estimate of z_n

$$\pi_{k}^{*} = \arg\max\langle l_{c}(\mathbf{\theta})\rangle, \qquad \Rightarrow \frac{\partial}{\partial \pi_{k}} \langle l_{c}(\mathbf{\theta})\rangle = 0, \forall k, \quad \text{s.t.} \sum_{k} \pi_{k} = 1$$

$$\Rightarrow \pi_{k}^{*} = \frac{\sum_{n} \langle z_{n}^{k} \rangle_{q^{(t)}}}{N} = \frac{\sum_{n} \tau_{n}^{k(t)}}{N} = \frac{\langle n_{k} \rangle_{N}}{N}$$

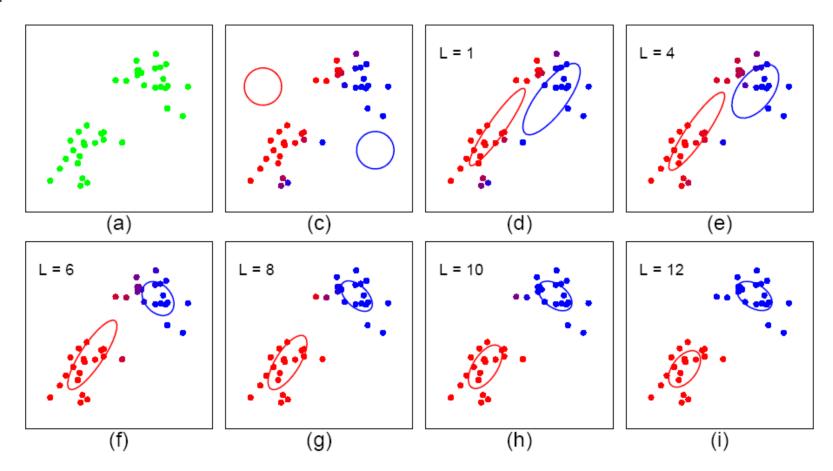
$$\mu_{k}^{*} = \arg\max\langle l(\mathbf{\theta})\rangle, \qquad \Rightarrow \mu_{k}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{k(t)} x_{n}}{\sum_{n} \tau_{n}^{k(t)}}$$

$$\Sigma_{k}^{*} = \arg\max\langle l(\mathbf{\theta})\rangle, \qquad \Rightarrow \Sigma_{k}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{k(t)} (x_{n} - \mu_{k}^{(t+1)})(x_{n} - \mu_{k}^{(t+1)})^{T}}{\sum_{n} \tau_{n}^{k(t)}}$$

$$\frac{\partial \log |A^{-1}|}{\partial A^{-1}} = A^{T}$$

$$\frac{\partial \mathbf{x}^{T} A \mathbf{x}}{\partial A} = \mathbf{x} \mathbf{x}^{T}$$

- Start: "guess" the centroid μ_k and covariance Σ_k of each of the K clusters
- Loop:

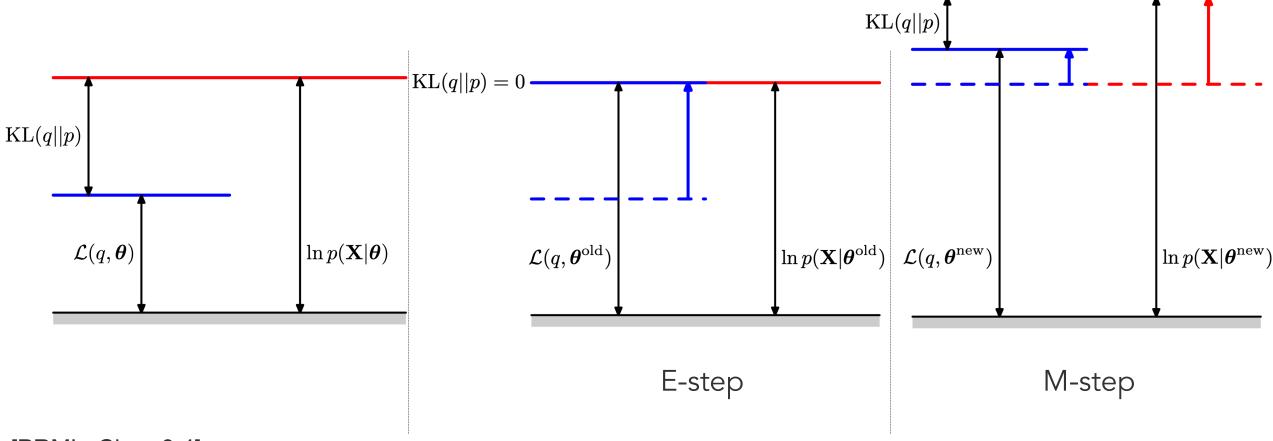


Summary: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds MLE
 of parameters when the original (hard) problem can be broken up into two
 (easy) pieces
 - Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
 - \circ E-step: $q^{t+1} = \arg\min_{q} F\left(q, \theta^{t}\right)$
 - \circ M-step: $\theta^{t+1} = \arg\min_{\theta} F\left(q^{t+1}, \theta^{t}\right)$

Each EM iteration guarantees to improve the likelihood

$$\ell(\theta; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x})} \right] + \text{KL}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}|\mathbf{x}, \theta))$$



[PRML, Chap 9.4] 50

EM Variants

- Sparse EM
 - Do not re-compute exactly the posterior probability on each data point under all models, because it is almost zero.
 - Instead keep an "active list" which you update every once in a while.
- Generalized (Incomplete) EM:
 - It might be hard to find the ML parameters in the M-step, even given the completed data. We can still make progress by doing an M-step that improves the likelihood a bit (e.g. gradient step).

Questions?