DSC250: Advanced Data Mining

Topic Models

Zhiting Hu
Lecture 7, October 19, 2023

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE




Outline

e Topic Model v3: Latent Dirichlet Allocation (LDA)

e Learning of Topic Model: Expectation Maximization (EM)

Slides adapted from:
* Y. Sun, CS 247: Advanced Data Mining
M. Gormley, 10-701 Introduction to Machine Learning



Topic Model v3: Latent Dirichlet Allocation (LDA)
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0,~Dirichlet(a): address topic distribution for unseen documents

Bi~Dirichlet(n): smoothing over words



Generative Model for LDA

For each topic k € {1,..., K}:
By ~ Dir(M)

0, ~ Dir(a)

Zan ™ MUlt(]., Hd )

Wdn ™~ sz,n

For each wordn € {1,..., Ny }

(draw distribution over words]|
For each document d € {1,...,D }
[draw distribution over topics]

[draw topic assignment]
[draw word]
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

alllE.

* The generative story begins with only a Dirichlet
prior over the topics.

* Each topicis defined as a Multinomial distribution
over the vocabulary, parameterized by By
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

dEidE.

* The generative story begins with only a Dirichlet
prior over the topics.

* Each topic is defined as a Multinomial distribution
over the vocabulary, parameterized by fy
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

* Atopicis visualized as its high probability
words.
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

* Atopicis visualized as its high probability
words.

* A pedagogical label is used to identify the topic.
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

B 1 bk B2 il B 3ukuid B 4kl B ikl B el

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}

* Atopicis visualized as its high probability
words.

* A pedagogical label is used to identify the topic.



(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (17)

iiﬁﬁ {Japan}

Dirichlet(a)

/
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (17)

iiﬁﬁ {Japan}

Dirichlet(a)

/

-0 ‘i..l. ,

The 54/40' _dlspute is
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (17)

iiﬁﬁ {Japan}

Dirichlet(a)

/
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The 54/40' _dlspute is

still unresolved, and-
and US [
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LDA for Topic Modeling

Dirichlet (17)
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

B 1 bk B2 il B 3ukuid B 4kl B ikl B el

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
Dirichlet(a)
I
0,=
>

The 54/40'boundary dispute is
still unresolved, and/Canadian
and US Coast Guard vessels
regularly if infrequently detain
each other's fish boats in the
disputed waters off Dixon...




(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

B 1 kil B2 kil

B 3l B il

B ikl B 6l

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
Dirichlet(a)
5\ 'T
0, 0,= — 0,=
> > >

The 54/40'boundary dispute is
still unresolved, and/Canadian
and US Coast Guard vessels
regularly if infrequently detain
each other's fish boats in the
disputed waters off Dixon...

In the year before
Lemieux came, Pittsburgh
finished with 38 points.
Following his arrival, the
Pens finished...

The Orioles’ pitching staff
again is having a fine
exhibition 'season. Four
shutouts, low team ERA,
(Well, I haven't gotten any
baseball...




(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling




Joint Distribution for LDA
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- Joint distribution of latent variables and

documents is:

p(B1k Z1.p,01.p,Wipla,n) =
l_LKz1 p(ﬁ/ | "f)) 1_[5:1 ,0( 04 | a) (Hg:1 P(Zd,n| Qd)P( Wq n | ﬁ1 K> Zd,n))
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«

Likelihood Function for LDA AR P

p(ﬂl:K' Z1.p, 01:D yWi.plQ, 77) —
[T, p(Bi ) TTo-, p(0a1a) (TTo-, p(zan| 0a)p(Wen| Bk 20))

OTOFO-@—1O—C
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Likelihood Function for LDA AR P

p(ﬂl:K' Z1.p, 01:D yWi.plQ, 77) —
[T, p(Bi ) TTo-, p(0a1a) (TTo-, p(zan| 0a)p(Wen| Bk 20))
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Learning of Topic Models



Recap: pLSA Topic Model

t

d

e

e Observed variables:

e Latent variables:
e Parameters:
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The General Unsupervised Learning Problem

e Each data instance is partitioned into two parts:
o observed variables x
o latent (unobserved) variables z

e Want to learn a model pg(x, z)

[Content adapted from CMU 10-708]
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., topic model, speech recognition models, ...

: ) (D), @

) Ve L e = = A A ,
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i

Fig. 1.2 Isolated Word Problem

LCoocepr: a xiogle word
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., topic model, speech recognition models, ...
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:
o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process
= e.g., topic model, speech recognition models, ...
o a real-world object (and/or phenomena), but difficult or impossible to measure
= e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
o a real-world object (and/or phenomena), but sometimes wasn’t measured,
because of faulty sensors, etc.
e Discrete latent variables can be used to partition/cluster data into sub-
groups
e Continuous latent variables (factors) can be used for dimensionality
reduction (e.g., factor analysis, etc.)
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Recap: pLSA Topic Model

e Likelihood function of a word w:
pWwld,0,8) = ) p(w,z = kid,6,)
k

— Ep(wlz =k,d,0,8)p(z=k|d,0,p) = Zﬁkwedk
- K
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Recap: pLSA Topic Model

e Likelihood function of a word w:
pWwld,0,8) = ) p(w,z = kid,6,)
k

— Ep(wlz =k,d,0,8)p(z=k|d,0,p) = Zﬁkwedk
- K

e Learning by maximizing the log likelihood:
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Why is Learning Harder?
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Why is Learning Harder?

e Complete log likelihood: if both x and z can be observed, then

?.(0;x,z) =logp(x,z|0) = logp(z|6,) + log p(x|z,6,)

o Decomposes into a sum of factors, the parameter for each factor can be
estimated separately

e But given that z is not observed, £.(8; x, z) is a random quantity, cannot
be maximized directly
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Why is Learning Harder?

e Complete log likelihood: if both x and z can be observed, then

?.(0;x,z) =logp(x,z|0) = logp(z|6,) + log p(x|z,6,)
o Decomposes into a sum of factors, the parameter for each factor can be
estimated separately
e But given that z is not observed, £.(8; x, z) is a random quantity, cannot
be maximized directly

e Incomplete (or marginal) log likelihood: with z unobserved, our
objective becomes the log of a marginal probability:

2(0; x) = log p(x]6) = log 22 D (x, z|6)

o All parameters become coupled together
o In other models when z is complex (continuous) variables, marginalization

over Z is intractable.
31



Expectation Maximization (EM)
e For any distribution g(z|x), define expected complete log likelihood:

Bqlc(6i%,2)] = ) a(zlx) log p(x, 2|6)

o A deterministic function of
o Inherit the factorizability of ¢.(6; x, 2)

e Use this as the surrogate objective
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Expectation Maximization (EM)
e For any distribution g(z|x), define expected complete log likelihood:

Bqlc(6i%,2)] = ) a(zlx) log p(x, 2|6)

o A deterministic function of
o Inherit the factorizability of ¢.(6; x, 2)

e Use this as the surrogate objective
e Does maximizing this surrogate yield a maximizer of the likelihood?
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Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eql£c(63%,2)] = ) a(zlx) log p(x, 216)
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Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eql2c(0;%,2)] = ) q(zlx) logp(x, 216)
e Jensen's inequality ‘
¢ (0;x)=1log p(x |0)

=log)" p(x,2|6)

— “log Y g(z| %) PX-Z10)

/ q(z|x)
p(x,z|0)

9(z | x)

>% g(z| x)log
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Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eq[£c(63%,2)] = ) a(zlx) log p(x,216)
e Jensen’s mequallty
¢ (0;x)=1log p(x |0)

=log)" p(x,2|6)

— -logY.¢(z | px.210)

/ 4(Z|X)

@ZQ(Z | X) 10g Z19) Evidence Lower Bound (ELBO)
f/(Z | X)
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Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eq[£c(63%,2)] = ) a(zlx) log p(x,216)
e Jensen’s mequallty
¢ (0;x)=log p(x|0)

=log)" p(x,2|6)

— -logY.¢(z | px.210)

/ 4(Z|X)

@ZQ(Z | X) log Z19) Evidence Lower Bound (ELBO)
f/(Z | X)

=Y g(z| x)log p(x,z|0) - g(z| X)logg(z | X)

= E,[£:(0; x,2)] + H(q) .



Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eql2c(0;%,2)] = ) q(zlx) logp(x, 216)
e Jensen's inequality ‘
¢ (0;x)=1log p(x |0)

=log)" p(x,2|6)

_ px,z10)
// -log Y (210 2T S
O 92| 0)10g 22210

z 9(z | x)

e Indeed we have

p(x,z|0)
f(@, x) = IEq(le) llog

q(z|x)

+KL(q(zl) || p(zlx, 0))



Lower Bound and Free Energy

e Forfixed data x, define a functional called the (variational) free energy:

F(q,0) = —E4[£.(0;x,2)] — H(q) = £(0; x)

e The EM algorithm is coordinate-decent on F
o At each step t:
1 — argmin F (q, Ht)

q

arg m@in F (th , Ht)

= E-step: @

= M-step: (975“‘ 1

40



E-step: minimization of F(q,0) w.r.t g

e Claim: .

q**' = argmin, F(q,6%) = p(z|x,0%)

o This is the posterior distribution over the latent variables given the data and
the current parameters.

e Proof (easy): recall

,z|6°
f(et; X) = [Eq(z|x) [logpgzzzl.lx) ) + KL(CI(le) | p(z]x, et))

Independent of g —F(q,0% >0

o F(q,0% is minimized when KL(q(z|x) || p(z|x,6%)) = 0, which is achieved only
when q(z|x) = p(z|x,6")
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M-step: minimization of F(gq,0) w.r.t 6
e Note that the free energy breaks into two terms:

F(q,0) = —E4[£.(0;x,2)] — H(q) = £(6; x)

o The first term is the expected complete log likelihood and the second term,
which does not depend on g, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed g we only
need to consider the first term:

6! = argmaxg E,[£.(0; x,z)] = argmaxg 2 qtt1(z|x) log p(x, z|0)
Z

o Under optimal ¢**1, this is equivalent to solving a standard MLE of fully
observed model p(x, z|9), with z replaced by its expectation w.r.t p(z|x, 6")
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*

Learning pLSA with EM

o E-step:

wlz, d, t (Z|d,9t) ,Bt ot
p(ley d; gt’ﬁt) — p( | ﬁ )p zw¥dz

ZZI p(lel’ d' ﬁt)p(zlld’ Ht) - ZZI :B;WHEIZI

e M-step:
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Another Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(x,|1,2) = Zk TN (x| 14, 2,)
A\

mixture proportion  mixture component

e This model can be used for unsupervised clustering.

o This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.
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Example: Gaussian Mixture Models (GMMs) @

o Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ ()" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1

1
(27[)'"/2’2,(’1/2 exp{_%('xn - 1) 2 (x, _:uk)}

p(x,|zy =1, p,%) =

Parameters to be learned:

o The likelihood of a sample: .
mixture component

mixture proportion

w2) =) p(z" =1|7)p(x,|z* =1, 1, %) —
= Zzn Hk ((”k)zs N(x, :,ukazk)zic ): Zk TN (x| 1y, 2,)

p(x,
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Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components
e The expected complete log likelihood

E, [£c(0;7, 2)] —ZE logp (2, | )] +ZE logp (wy | 2n, 1, 2)]
—ZZE IOgﬂk——ZZE ( —Mk)Tzﬁl(xn—uk)+10g|2k|+0>

e E-step: computing the posterior of z,, given the current estimate of the

parameters (i.e., T, u, X)

AON G, 050 7
Zﬂ(t)N(xn9|/’l(t) Zl(t))\ p(x,,u(t),Z(t))

p(z, =1]x,u",2) =
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Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

7, =argmax(l (0)), = 52-(1.(0))=0,Vk, st an =1

o = 2Bl B )

OF
i —argmax(®)), = ) = 2en”

Z Z'k(t) Fact:
non dlogA™|
k(t) t+1) (t+1)\T oA"Y
* Tn (xn o ‘U )('xn o lu )
z“k = arg max<l(9)>’ = Zg‘m) - Zn Zkrk(t) : Ox’ Ax =xx"

O0A
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Example: Gaussian Mixture Models (GMMs)

e Start: “guess” the centroid u; and covariance X of each of the K clusters

e Loop:
e L=1 . " L=4
2|0 R A S

!‘ :gO ° . ) [

o O # | S
» 2 ¢ &

(a) (c) (d) (e)
L=6 L=8 L=10 L=12
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Summary: EM Algorithm

e A way of maximizing likelihood function for latent variable models. Finds MLE
of parameters when the original (hard) problem can be broken up into two
(easy) pieces

o Estimate some “missing” or “unobserved” data from observed data and current
parameters.

o Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best guess (posterior)
and updating the parameters based on this guess:

o E-step: T arg mqinF (q,@t)

© M-step: gi+l — argm@inF (qt+1,9t)
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Each EM iteration guarantees to improve the likelihood

p(x,z|0)
q(z|x)

log

£(6;x) = Eqzx) + KL(CI(Z|x) 1 p(zlx,@))

KL(ng)I [
y Y
) ' KL(g|lp) = 0 — SR N S I

£(q,9) Inp(X(6) L(g,0°') Inp(X[6°) L(g,6™") In p(X|6)

y y A 4 A 4 A 4 y

E-step M-step

[PRML, Chap 9.4] 50



EM Variants
e Sparse EM

o Do not re-compute exactly the posterior probability on each data point under all
models, because it is almost zero.

o Instead keep an "active list” which you update every once in a while.

e Generalized (Incomplete) EM:

o It might be hard to find the ML parameters in the M-step, even given the
completed data. We can still make progress by doing an M-step that improves
the likelihood a bit (e.g. gradient step).

51






