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e Bonus credits
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Topic Models

- Topic modeling

- Get topics automatically

from a corpus

» Assign documents to
topics automatically

- Most frequently used
topic models

- pLSA
- LDA

“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL
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SHOW PROGRAM PEOPLE SCHOOLS
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ACTOR NEW SAYS BENNETT

FIRST STATE FAMILY MANIGAT

YORK PLAN WELFARE NAMPHY

OPERA MONEY MEN STATE

THEATER PROGRAMS PERCENT PRESIDENT

ACTRESS GOVERNMENT CARE ELEMENTARY

LOVE CONGRESS LIFE HAITI
The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000

donation, too.




Recap: Notations

e Word, document, topic

o w,d,Zz

e Word count in document:
o c¢(w,d) : number of times word w occurs in document d

O or X4yn: Nnumber of times the nth word in the vocabulary occurs in document d

e Word distribution for each topic (5, )

o Baw:p(W|2)



Recap: Topic Model v1: Multinomial Mixture Model

Graphical
Model

a
()

z

e

w

N

* Generative model

* For each document

- Sample its cluster label z~Categorical ()
* T = (1, Ty, ..., T ), T is the proportion of jth cluster

*plz=k)=m

» Plates indicate replicated
variables.

 Shaded nodes are
observed; unshaded nodes
are hidden.

- Sample its word vector x4 ~multinomial(f,)
* B, = (By1, Bz, ) Bzn), Bz is the parameter associate with nth word

in the vocabulary

Qin Xdn)!

 p(xalz = k) = Snien

X
S T B o [T B



Recap: Likelihood Function

L = ﬂp(xca = | [Zp(xd z = k)
][Zzo(xd\z Pz = )
U ﬁzxfl’;) Zp(z k)l_[ﬁ




Recap: Generative Model for pLSA

t

M

* For each posiionind, n = 1, ..., N,

» Generate the topic for the position as
z,|d~Categorical(0,),i.e.,p(z, = k|d) = 04,

(Note, 1 trial multinomial)

* Generate the word for the position as

Wp|zp~Categorical(B, ),i.e.,p(w, = w|z,) = ’BZ”.Y,"



Likelihood Function
* Probability of a word w
pld,0.8) = ) p(w,z = kld,0, )

— Zp(w|z =k, d,0,0)p(z=k|d, 08,5 = Zﬁkwedk
7 K
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Likelihood Function

*Probab

p(w|

— Zp(w|z =k, d,0,0)p(z=k|d, 0,5 = Zﬁkwedk
7 K

ility of a word w
4,0,6)= ) p(w,z =k|d,0,p)
k

- Likelihood of a corpus

H P<w17' ) '7de7d|97ﬁa7r)
d=1

_ H P(d) {ﬁ <Z P(z, = k|d, 9(1)P(wn|/8k)) }

— H Td <
d=1

n=1

(o)

L n=1

g4 is usually considered as uniform,i.e., 1/M
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Re-arrange the Likelihood Function

-Group the same word from different
positions together

max lOQL = z C(W; d)lOQ z Hdz IBZW

dw Z
S.t.Z:HdZ = 1and z'BZW =1
Z w

14



Limitations of pLSA

-Not a proper generative model
0,4 1s treated as a parameter

» Cannot model new documents

- Solution:

- Make 1t a proper generative model by adding
priors to 8 and S

15



Limitations of pLSA

-Not a proper generative model
0, 1s treated as a parameter

» Cannot model new documents

- Solution:

- Make 1t a proper generative model by adding
priors to 8 and [

U

Topic Model v3: Latent Dirichlet Allocation (LDA)

16



Review: Dirichlet Distribution
- Dirichlet distribution: @~Dirichlet(a)

M2 ak)
Hk I'(ag)

-T'(+) is gamma function: T'(z) :/ e "t dt
*T(z+1) =2zl'(2) 0

[ 1, 9,‘:"_1, where a; > 0

-i.e.,p(Ola) =

18



Review: Dirichlet Distribution

- Dirichlet distribution: @~Dirichlet(a)
[T @)
[Ty T(ak)

-T'(+) is gamma function: T'(z) =/ e 't dt
*T(z+1) =2zl'(2) 0

ie.,p(0la) = [T 65", where a > 0

Simplex view:
-x = x4(1,0,0) + x,(0,1,0) + x5(0,0,1)

*Where 0 < xq,x3,x3 < landx; +x, +x3 =1

x|la~Dir(a),a = (2,3,4)

36
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More Examples in the Simplex View

Dirichlet(1,1,1)

Dirichlet(2,2,10)

»

Dirichlet(2,2,2) Dirichlet(10,10,10)

> >

Dirichlet(2,10,2) Dirichlet(0.8,0.8,0.8)

, P>

20



Topic Model v3: Latent Dirichlet Allocation (LDA)

OHOFO—@
o 9(1 Zd. . | I"rd- - N

D

©<_

K

@

h

0,~Dirichlet(a): address topic distribution for unseen documents

Bi~Dirichlet(n): smoothing over words
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Topic Model v3: Latent Dirichlet Allocation (LDA)

Per-word

Proportions : :
topic assignment

parameter
Per-document Observed
topic proportions word

N

Topics

|

Topic
parameter

|

O+O1+O—@
Qv 04 Zdan Wan N

D

D,

Q._

K

AQ

U

0,~Dirichlet(a): address topic distribution for unseen documents

Bi~Dirichlet(n): smoothing over words
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Generative Model for LDA

For each topic k € {1,..., K}:
By ~ Dir(M)

0, ~ Dir(a)

Zd,n ~/ MUlt(]., Hd )
Wan 0

Zdn

For each wordn € {1,..., Ny }

(draw distribution over words]|
For each document d € {1,...,D }
[draw distribution over topics]

[draw topic assignment]
[draw word]

OO

= 6(1 d n U d.n

T\T
/ /
'\
b

Q@

@

U

Mk
K

23



(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

alllE.

* The generative story begins with only a Dirichlet
prior over the topics.

* Each topicis defined as a Multinomial distribution
over the vocabulary, parameterized by By
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

dEidE.

* The generative story begins with only a Dirichlet
prior over the topics.

* Each topic is defined as a Multinomial distribution
over the vocabulary, parameterized by fy
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

* Atopicis visualized as its high probability
words.
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

* Atopicis visualized as its high probability
words.

* A pedagogical label is used to identify the topic.
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

B 1 bk B2 il B 3ukuid B 4kl B ikl B el

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}

* Atopicis visualized as its high probability
words.

* A pedagogical label is used to identify the topic.



(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (17)

iiﬁﬁ {Japan}

Dirichlet(a)

/

47




(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (17)

iiﬁﬁ {Japan}

Dirichlet(a)

/

-0 ‘i..l. ,

The 54/40' _dlspute is

48




(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (17)

iiﬁﬁ {Japan}

Dirichlet(a)

/

-0 ‘i..l. ,

The 54/40' _dlspute is

still unresolved, and-
and US [
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (17)

ifﬁ {Japan}

Dmchlet(a) /

-0 ‘i..l. ,

The 54/40' _dlspute is

still unresolved, and
and.

/
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(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (17)

ifﬁ {Japan}

Dmchlet(a) /

-0 ‘i..l. ,

The 54/40' _dlspute is

still unresolved, and
and.

/

50




(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

B 1 bk B2 il B 3ukuid B 4kl B ikl B el

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
Dirichlet(a)
I
0,=
>

The 54/40'boundary dispute is
still unresolved, and/Canadian
and US Coast Guard vessels
regularly if infrequently detain
each other's fish boats in the
disputed waters off Dixon...




(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling

Dirichlet (1)

B 1 kil B2 kil

B 3l B il

B ikl B 6l

{Canadian gov.} {government} {hockey} {U.S. gov.} {baseball} {Japan}
Dirichlet(a)
5\ 'T
0, 0,= — 0,=
> > >

The 54/40'boundary dispute is
still unresolved, and/Canadian
and US Coast Guard vessels
regularly if infrequently detain
each other's fish boats in the
disputed waters off Dixon...

In the year before
Lemieux came, Pittsburgh
finished with 38 points.
Following his arrival, the
Pens finished...

The Orioles’ pitching staff
again is having a fine
exhibition 'season. Four
shutouts, low team ERA,
(Well, I haven't gotten any
baseball...




(Blei, Ng, & Jordan, 2003)

LDA for Topic Modeling




Joint Distribution for LDA

O+oFo—@
. O Zan Wan N

D

04_
Ok

K

@

1

- Joint distribution of latent variables and

documents is:

p(B1k Z1.p,01.p,Wipla,n) =
l_LKz1 p(ﬁ/ | "f)) 1_[5:1 ,0( 04 | a) (Hg:1 P(Zd,n| Qd)P( Wq n | ﬁ1 K> Zd,n))
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Learning of Topic Models



Unsupervised Learning

e Each data instance is partitioned into two parts:
o observed variables x
o latent (unobserved) variables z

e Want to learn a model pg(x, 2)

[Content adapted from CMU 10-708]
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...

: ) (D), @

) Ve L e = = A A ,
et T SR R TR &) & & . &
1 =

i

Fig. 1.2 Isolated Word Problem

LCoocepr: a xiogle word

40



Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:
o imaginary quantity: meant to provide some simplified and abstractive view of
the data generation process
= e.g., speech recognition models, mixture models, ...
o a real-world object (and/or phenomena), but difficult or impossible to measure
= e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
o a real-world object (and/or phenomena), but sometimes wasn’t measured,
because of faulty sensors, etc.
e Discrete latent variables can be used to partition/cluster data into sub-
groups
e Continuous latent variables (factors) can be used for dimensionality
reduction (e.g., factor analysis, etc.)

42



Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(x,|1,2) = Zk TN (x| 14, 2,)
A\

mixture proportion  mixture component

e This model can be used for unsupervised clustering.

o This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.

43



Example: Gaussian Mixture Models (GMMs) @

o Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ ()" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1

1
(27[)'"/2’2,(’1/2 exp{_%('xn - 1) 2 (x, _:uk)}

p(x,|zy =1, p,%) =

Parameters to be learned:

o The likelihood of a sample: .
mixture component

mixture proportion

w2) =) p(z" =1|7)p(x,|z* =1, 1, %) —
= Zzn Hk ((”k)zs N(x, :,ukazk)zic ): Zk TN (x| 1y, 2,)

p(x,
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Example: Gaussian Mixture Models (GMMs)
ﬂaz)zzk7?kN(x9!ﬂkﬂzk)

o Consider a mixture of K Gaussian components: P(X,
e Recall MLE for completely observed data

o Data log-likelihood: , (0; D) = long(Zn,x ) = long(Z |\ m)p(x, |z, 14,0)

_Zlognﬂ-k +ZlogHN(xn,,uk,o-)
o MLE: _Zzzklogﬂk Zzzn 52 L (x,-1) +C

Ty e = argmax ¢ (0; D),

My 4 e = argmax ¢ (0;D) = s = Z ;
Oy e = argmax ¢ (0;D) '

e What if we do not know z,7? i



Why is Learning Harder?

e Complete log likelihood: if both x and z can be observed, then

?.(0;x,z) =logp(x,z|0) = logp(z|6,) + log p(x|z,6,)
o Decomposes into a sum of factors, the parameter for each factor can be
estimated separately
e But given that z is not observed, £.(8; x, z) is a random quantity, cannot
be maximized directly

e Incomplete (or marginal) log likelihood: with z unobserved, our
objective becomes the log of a marginal probability:

2(0; x) = log p(x]6) = log 22 D (x, z|6)

o All parameters become coupled together
o In other models when z is complex (continuous) variables (as we'll see later),

marginalization over z is intractable.
46



Expectation Maximization (EM)
e For any distribution g(z|x), define expected complete log likelihood:

Bqlc(6i%,2)] = ) a(zlx) log p(x, 2|6)

o A deterministic function of
o Inherit the factorizability of ¢.(6; x, 2)

e Use this as the surrogate objective
e Does maximizing this surrogate yield a maximizer of the likelihood?

47



Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eq[£c(63%,2)] = ) a(zlx) log p(x,216)
e Jensen’s mequallty
¢ (0;x)=log p(x|0)

=log)" p(x,2|6)

— -logY.¢(z | px.210)

/ 4(Z|X)

@ZQ(Z | X) log Z19) Evidence Lower Bound (ELBO)
f/(Z | X)

=Y g(z| x)log p(x,z|0) - g(z| X)logg(z | X)

= Eq4[2c(0;x,2)] + H(q) 48



Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eql2c(0;%,2)] = ) q(zlx) logp(x, 216)
e Jensen's inequality ‘
¢ (0;x)=1log p(x |0)

=log)" p(x,2|6)

_ px,z10)
// -log Y (210 2T S
O 92| 0)10g 22210

z 9(z | x)

e Indeed we have

p(x,z|0)
f(@, x) = IEq(le) llog

q(z|x)

+KL(q(zI) || p(zlx, )



Lower Bound and Free Energy

e Forfixed data x, define a functional called the (variational) free energy:

F(q,0) = —E4[£.(0;x,2)] — H(q) = £(0; x)

e The EM algorithm is coordinate-decent on F
o At each step t:
1 — argmin F (q, Ht)

q

arg m@in F (th , Ht)

= E-step: @

= M-step: (975“‘ 1

50



E-step: minimization of F(q,0) w.r.t g

e Claim: .

q**' = argmin, F(q,6%) = p(z|x,0%)

o This is the posterior distribution over the latent variables given the data and
the current parameters.

e Proof (easy): recall

,z|6°
f(et; X) = [Eq(z|x) [logpgzzzl.lx) ) + KL(CI(le) | p(z]x, et))

Independent of g —F(q,0% >0

o F(q,0% is minimized when KL(q(z|x) || p(z|x,6%)) = 0, which is achieved only
when q(z|x) = p(z|x,6")

51



M-step: minimization of F(gq,0) w.r.t 6
e Note that the free energy breaks into two terms:

F(q,0) = —E4[£.(0;x,2)] — H(q) = £(6; x)

o The first term is the expected complete log likelihood and the second term,
which does not depend on g, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed g we only
need to consider the first term:

6! = argmaxg E,[£.(0; x,z)] = argmaxg 2 qtt1(z|x) log p(x, z|0)
Z

o Under optimal ¢**1, this is equivalent to solving a standard MLE of fully
observed model p(x, z|9), with z replaced by its expectation w.r.t p(z|x, 6")

52



Example: Gaussian Mixture Models (GMMs) @

o Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ ()" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1
(Zﬂ)m/lek’

p(x, |25 =1, u,%) = expli(x, - 1) S (x, - 1)}

o The likelihood of a sample: .
mixture component

mixture proportion

1,2 =Y p(z* =1|7)p(x,| " =1, 41,%) —
= Zzn Hk ((”k)zg N(x, :,ukazk)zic ): Zk TN (x| 1y, 2,)

p(x,
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Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components
e The expected complete log likelihood

E, [£c(0;7, 2)] —ZE logp (2, | )] +ZE logp (wy | 2n, 1, 2)]
—ZZE IOgﬂk——ZZE ( —Mk)Tzﬁl(xn—uk)+10g|2k|+0>

e E-step: computing the posterior of z,, given the current estimate of the

parameters (i.e., T, u, X)

AON G, 050 7
Zﬂ(t)N(xn9|/’l(t) Zl(t))\ p(x,,u(t),Z(t))

p(z, =1]x,u",2) =
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Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

7, =argmax(l (0)), = 52-(1.(0))=0,Vk, st an =1

o = 2Bl B )

OF
i —argmax(®)), = ) = 2en”

Z Z'k(t) Fact:
non dlogA™|
k(t) t+1) (t+1)\T oA"Y
* Tn (xn o ‘U )('xn o lu )
z“k = arg max<l(9)>’ = Zg‘m) - Zn Zkrk(t) : Ox’ Ax =xx"

O0A
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Example: Gaussian Mixture Models (GMMs)

e Start: “guess” the centroid u; and covariance X of each of the K clusters

e Loop:
e L=1 . " L=4
2|0 R A S

!‘ :gO ° . ) [

o O # | S
» 2 ¢ &

(a) (c) (d) (e)
L=6 L=8 L=10 L=12
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Summary: EM Algorithm

e A way of maximizing likelihood function for latent variable models. Finds MLE
of parameters when the original (hard) problem can be broken up into two
(easy) pieces

o Estimate some “missing” or “unobserved” data from observed data and current
parameters.

o Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best guess (posterior)
and updating the parameters based on this guess:

o E-step: T arg mqinF (q,@t)

© M-step: gi+l — argm@inF (qt+1,9t)
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Each EM iteration guarantees to improve the likelihood

p(x,z|0)
q(z|x)

log

£(6;x) = Eqzx) + KL(CI(Z|x) 1 p(zlx,@))

KL(ng)I [
y Y
) ' KL(g|lp) = 0 — SR N S I

£(q,9) Inp(X(6) L(g,0°') Inp(X[6°) L(g,6™") In p(X|6)

y y A 4 A 4 A 4 y

E-step M-step

[PRML, Chap 9.4] 58



EM Variants
e Sparse EM

o Do not re-compute exactly the posterior probability on each data point under all
models, because it is almost zero.

o Instead keep an "active list” which you update every once in a while.

e Generalized (Incomplete) EM:

o It might be hard to find the ML parameters in the M-step, even given the
completed data. We can still make progress by doing an M-step that improves
the likelihood a bit (e.g. gradient step).
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