DSC250: Advanced Data Mining

Topic Models

Zhiting Hu
Lecture 5, October 12, 2023
UCSanDiego
HALICIOĞLU DATA SCIENCE INSTITUTE

Outline

- Representations of Text and Topics
- Topic Model v1: Multinomial Mixture Model
- Topic Model v2: Probabilistic Latent Semantic Analysis (pLSA)
- Topic Model v3: Latent Dirichlet Allocation (LDA)

Slides adapted from:

- Y. Sun, CS 247: Advanced Data Mining
- M. Gormley, 10-701 Introduction to Machine Learning

Motivation

Suppose you're given a massive corpora and asked to carry out the following tasks

- Organize the documents into thematic categories
- Describe the evolution of those categories over time
- Enable a domain expert to analyze and understand the content
- Find relationships between the categories
- Understand how authorship influences the content

Motivation

Suppose you're given a massive corpora and asked to carry out the following tasks

- Organize the documents into thematic categories
- Describe the evolution of those categories over time
- Enable a domain expert to analyze and understand the content
- Find relationships between the categories
- Understand how authorship influences the content

Topic Modeling:

A method of (usually unsupervised) discovery of latent or hidden structure in a corpus

- Applied primarily to text corpora, but techniques are more general
- Provides a modeling toolbox
- Has prompted the exploration of a variety of new inference methods to accommodate large-scale datasets

Topic Modeling: Examples

Figure from (Blei, 2011), shows topics and top words learned automatically from reading 17,000 Science articles

Topic Modeling: Examples

Dirichlet-multinomial regression (DMR) topic model on ICML
(Mimno \& McCallum, 2008)
Topic 0 [0.152]
problem, optimization, problems, convex, convex optimization, linear, semidefinite programming, formulation, sets, constraints, proposed, margin, maximum margin, optimization problem, linear programming, programming, procedure, method, cutting plane, solutions

Topic 54 [0.05 I]

decision trees, trees, tree, decision tree, decision, tree ensemble, junction tree, decision tree learners, leaf nodes, arithmetic circuits, ensembles modts, skewing, ensembles, anytime induction decision trees, trees trees, random forests, objective decision trees, tree learners, trees grove, candidate split

Topic 99 [0.066]

inference, approximate inference, exact inference, markov chain, models, approximate, gibbs sampling, variational, bayesian, variational inference, variational bayesian, approximation, sampling,
 methods, exact, bayesian inference, dynamic bayesian, process, mcmc , efficient

Topic Modeling: Examples

- Map of NIH Grants
(Talley et al., 2011)

Other Applications of Topic Models

- Spacial LDA
(Wang \& Grimson, 2007)

Other Applications of Topic Models
 - Word Sense Induction

(Brody \& Lapata, 2009)

Senses of drug (WSJ)

1. U.S., administration, federal, against, war, dealer 2. patient, people, problem, doctor, company, abuse 3. company, million, sale, maker, stock, inc. 4. administration, food, company, approval, FDA

- Selectional Preference | Senses of drug (BNC) |
| :--- |
| 1. patient, treatment, effect, anti-inflammatory |
| 2. alcohol, treatment, patient, therapy, addiction |
| 3. patient, new, find, effect, choice, study |
| 4. test, alcohol, patient, abuse, people, crime |
| 5. trafficking, trafficker, charge, use, problem |
| 6. abuse, against, problem, treatment, alcohol |
| 7. people, wonder, find, prescription, drink, addict |
| 8. company, dealer, police, enforcement, patient |

(Ritter et al., 2010)

Topic t	Arg1	Relations which assign highest probability to t	Arg2
18	The residue - The mixture - The reaction mixture - The solution - the mixture - the reaction mixture - the residue - The reaction the solution - The filtrate - the reaction - The product - The crude product - The pellet The organic layer - Thereto - This solution - The resulting solution - Next - The organic phase - The resulting mixture - C.)	was treated with, is treated with, was poured into, was extracted with, was purified by, was diluted with, was filtered through, is disolved in, is washed with	EtOAc - CH2Cl2-H2O-CH.sub.2Cl.sub. 2 - H.sub. 2 O - water - MeOH - NaHCO3 Et2O - $\mathrm{NHCl}-\mathrm{CHCl}$.sub. 3 - NHCl - dropwise - CH2Cl.sub. 2 - Celite - Et.sub. 2 O Cl.sub. $2-\mathrm{NaOH}-\mathrm{AcOEt}-\mathrm{CH} 2 \mathrm{C} 12$ - the mixture - saturated $\mathrm{NaHCO} 3-\mathrm{SiO} 2$ - H 2 O - N hydrochloric acid - NHCl - preparative HPLC - to 0 C

Text Data

- Word/term
- Document
- A sequence of words - Corpus
- A collection of documents

Represent a Document

- Most common way: Bag-of-Words

- Ignore the order of words
- keep the count
c1: Human machine interface for Lab ABC computer applications c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user-perceived response time to error measurement
ml : The generation of random, binary, unordered trees
m 2 : The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering m4: Graph minors: A survey

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

Represent a Document

- Represent the doc as a vector where each entry corresponds to a different word and the number at that entry corresponds to how many times that word was present in the document (or some function of it)
- Number of words is huge
- Select and use a smaller set of words that are of interest
- E.g. uninteresting words: 'and', 'the' 'at', 'is', etc. These are called stopwords
- Stemming: remove endings. E.g. 'learn', 'learning', 'learnable’, 'learned’ could be substituted by the single stem 'learn'
- Other simplifications can also be invented and used
- The set of different remaining words is called dictionary or vocabulary. Fix an ordering of the terms in the dictionary so that you can operate them by their index.
- Can be extended to bi-gram, tri-gram, or so

Limitations of Bag-of-Words

- Dimensionality
- High dimensionality
- Sparseness
- Most of the entries are zero
-Shallow representation
- The vector representation does not capture semantic relations between words
Ex: "Tom loves Kate."

Represent a Topic

- A topic is represented by a word distribution

- Relate to an issue

universe	0.0439	drug	0.0672
galaxies	0.0375	patients	0.0493
clusters	0.0279	drugs	0.0444
matter	0.0233	clinical	0.0346
galaxy	0.0232	treatment	0.028
cluster	0.0214	trials	0.0277
cosmic	0.0137	therapy	0.0213
dark	0.0131	trial	0.0164
light	0.0109	disease	0.0157
density	0.01	medical	0.00997
bacteria	0.0983	male	0.0558
bacterial	0.0561	females	0.0541
resistance	0.0431	female	0.0529
coli	0.0381	males	0.0477
strains	0.025	sex	0.0339
microbiol	0.0214	reproductive	0.0172
microbial	0.0196	offspring	0.0168
strain	0.0165	sexual	0.0166
salmonella	0.0163	reproduction	0.0143
resistant	0.0145	eggs	0.0138

cells	0.0675
stem	0.0478
human	0.0421
cell	0.0309
gene	0.025
tissue	0.0185
cloning	0.0169
transfer	0.0155
blood	0.0113
embryos	0.0111
theory	0.0811
physics	0.0782
physicists	0.0146
einstein	0.0142
university	0.013
gravity	0.013
black	0.0127
theories	0.01
aps	0.00987
matter	0.00954

sequence	0.0818	years	0.156
sequences	0.0493	million	0.0556
genome	0.033	ago	0.045
dna	0.0257	time	0.0317
sequencing	0.0172	age	0.0243
map	0.0123	year	0.024
genes	0.0122	record	0.0238
chromosome	0.0119	early	0.0233
regions	0.0119	billion	0.0177
human	0.0111	history	0.0148
immune	0.0909	stars	0.0524
response	0.0375	star	0.0458
system	0.0358	astrophys	0.0237
responses	0.0322	mass	0.021
antigen	0.0263	disk	0.0173
antigens	0.0184	black	0.0161
immunity	0.0176	gas	0.0149
immunology	0.0145	stellar	0.0127
antibody	0.014	astron	0.0125
autoimmune	0.0128	hole	0.00824

Topic Models

- Topic modeling
- Get topics automatically from a corpus
- Assign documents to topics automatically
- Most frequently used topic models
- pLSA
- LDA

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

[^0]
Notations

- Word, document, topic
- w, d, z
- Word count in document:
- $c(w, d)$: number of times word w occurs in document d
- or $x_{d n}$: number of times the nth word in the vocabulary occurs in document d
- Word distribution for each topic (β_{z})
- $\beta_{z w}: p(w \mid z)$

Recap: Multinomial distribution

- Multinomial distribution
- Discrete random variable \boldsymbol{x} that takes one of M values $\{1, \ldots, M\}$
- $p(x=i)=\pi_{i}, \quad \sum_{i} \pi_{i}=1$
- Out of n independent trials, let k_{i} be the number of times $\boldsymbol{x}=i$ was observed
- The probability of observing a vector of occurrences $\boldsymbol{k}=\left[k_{1}, \ldots, k_{M}\right]$ is given by the multinomial distribution parametrized by π

$$
\mathfrak{p}(\mathbf{k} \mid \boldsymbol{\pi}, \mathfrak{n})=p\left(k_{1}, \ldots, k_{m} \mid \pi_{1}, \ldots, \pi_{m}, n\right)=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} \prod_{i=1} \pi_{i}^{k_{i}}
$$

- E.g., describing a text document by the frequency of occurrence of every distinct word
- For $n=1$, a.k.a. categorical distribution
- $p(\boldsymbol{x}=i \mid \boldsymbol{\pi})=\pi_{i}$
- In $\boldsymbol{k}=\left[k_{1}, \ldots, k_{M}\right]: k_{i}=1$, and $k_{j}=0$ for all $j \neq i \rightarrow$ a.k.a., one-hot representation of i

Topic Model v1: Multinomial Mixture Model

- For documents with bag-of-words representation
- $\boldsymbol{x}_{d}=\left(x_{d 1}, x_{d 2}, \ldots, x_{d N}\right), x_{d n}$ is the number of words for nth word in the vocabulary
- Generative model

Topic Model v1: Multinomial Mixture Model

- For documents with bag-of-words representation
- $\boldsymbol{x}_{d}=\left(x_{d 1}, x_{d 2}, \ldots, x_{d N}\right), x_{d n}$ is the number of words for nth word in the vocabulary
- Generative model

Formulating the statistical relationship between words, documents and latent topics as a generative process describing how documents are created

Topic Model v1: Multinomial Mixture Model
 - For documents with bag-of-words representation

- $\boldsymbol{x}_{d}=\left(x_{d 1}, x_{d 2}, \ldots, x_{d N}\right), x_{d n}$ is the number of words for nth word in the vocabulary
- Generative model
- For each document
- Sample its cluster label $z \sim$ Categorical $(\boldsymbol{\pi})$
- $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{K}\right), \pi_{k}$ is the proportion of jth cluster
- $p(z=k)=\pi_{k}$
- Sample its word vector $\boldsymbol{x}_{\boldsymbol{d}} \sim$ multinomial $\left(\boldsymbol{\beta}_{z}\right)$
- $\boldsymbol{\beta}_{z}=\left(\beta_{z 1}, \beta_{z 2}, \ldots, \beta_{z N}\right), \beta_{z n}$ is the parameter associate with nth word in the vocabulary
- $p\left(\boldsymbol{x}_{d} \mid z=k\right)=\frac{\left(\sum_{n} x_{d n}\right)!}{\Pi_{n} x_{d n}!} \prod_{n} \beta_{k n}^{x_{d n}} \propto \prod_{n} \beta_{k n}^{x_{d n}}$

Topic Model v1: Multinomial Mixture Model

Graphical Model

- Plates indicate replicated variables.
- Shaded nodes are observed; unshaded nodes are hidden.

- Generative model

- For each document
- Sample its cluster label $z \sim$ Categorical($\boldsymbol{\pi}$)
- $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{K}\right), \pi_{k}$ is the proportion of jth cluster
- $p(z=k)=\pi_{k}$
- Sample its word vector $\boldsymbol{x}_{\boldsymbol{d}} \sim$ multinomial $\left(\boldsymbol{\beta}_{z}\right)$
- $\boldsymbol{\beta}_{z}=\left(\beta_{z 1}, \beta_{z 2}, \ldots, \beta_{z N}\right), \beta_{z n}$ is the parameter associate with nth word in the vocabulary
- $p\left(\boldsymbol{x}_{d} \mid z=k\right)=\frac{\left(\sum_{n} x_{d n}\right)!}{\prod_{n} x_{d n}!} \prod_{n} \beta_{k n}^{x_{d n}} \propto \prod_{n} \beta_{k n}^{x_{d n}}$

Likelihood Function

Likelihood Function

$$
\begin{aligned}
L & =\prod_{d} p\left(\boldsymbol{x}_{d}\right)=\prod_{d} \sum_{k} p\left(\boldsymbol{x}_{d}, z=k\right) \\
& =\prod_{d} \sum_{k} p\left(\boldsymbol{x}_{d} \mid z=k\right) p(z=k) \\
= & \prod_{d} \frac{\left(\sum_{n} x_{d n}\right)!}{\prod_{n} x_{d n}!} \sum_{k} p(z=k) \prod_{n} \beta_{k n}^{x_{d n}}
\end{aligned}
$$

Limitations of Multinomial Mixture Model

- All the words in the same documents are

 sampled from the same topic

- In practice, people switch topics during their writing

Limitations of Multinomial Mixture Model

Mixture vs. Admixture

Topic Model v2: Probabilistic Latent Semantic Analysis (pLSA)
 "Arts"
 "Budgets"
 "Children" "Education"

NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

[^1]
Generative Model for pLSA

- For each position in $\mathrm{d}, \mathrm{n}=1, \ldots, N_{d}$
- Generate the topic for the position as

$$
z_{n} \mid d \sim \text { Categorical }\left(\boldsymbol{\theta}_{d}\right) \text {, i.e., } p\left(z_{n}=k \mid d\right)=\theta_{d k}
$$

(Note, 1 trial multinomial)

- Generate the word for the position as

$$
w_{n} \mid z_{n} \sim \operatorname{Categorical}\left(\boldsymbol{\beta}_{z_{n}}\right) \text {, i.e., } p\left(w_{n}=w \mid z_{n}\right)=\beta_{z_{n} w}
$$

Graphical Model for pLSA

Note: Sometimes, people add parameters such as θ and β into the graphical model

Likelihood Function

- Probability of a word w

$$
\begin{aligned}
& p(w \mid d, \theta, \beta)=\sum_{k} p(w, z=k \mid d, \theta, \beta) \\
& =\sum_{k} p(w \mid z=k, d, \theta, \beta) p(z=k \mid d, \theta, \beta)=\sum_{k} \beta_{k w} \theta_{d k}
\end{aligned}
$$

Likelihood Function

- Probability of a word w

$$
\begin{aligned}
& p(w \mid d, \theta, \beta)=\sum_{k} p(w, z=k \mid d, \theta, \beta) \\
& =\sum_{k} p(w \mid z=k, d, \theta, \beta) p(z=k \mid d, \theta, \beta)=\sum_{k} \beta_{k w} \theta_{d k}
\end{aligned}
$$

- Likelihood of a corpus

$$
\begin{aligned}
& \prod_{d=1} P\left(w_{1}, \cdots, w_{N_{d}}, d \mid \theta, \beta, \pi\right) \\
= & \prod_{d=1} P(d)\left\{\prod_{n=1}^{N_{d}}\left(\sum_{k} P\left(z_{n}=k \mid d, \theta_{d}\right) P\left(w_{n} \mid \beta_{k}\right)\right)\right\} \\
= & \prod_{d=1} \pi_{d}\left\{\prod_{n=1}^{N_{d}}\left(\sum_{k} \theta_{d k} \beta_{k w_{n}}\right)\right\} \\
& \pi_{d} \text { is usually considered as uniform, i.e., } 1 / \mathrm{M}
\end{aligned}
$$

Re-arrange the Likelihood Function

- Group the same word from different positions together

$$
\begin{gathered}
\max \log L=\sum_{d w} c(w, d) \log \sum_{z} \theta_{d z} \beta_{z w} \\
\text { s.t. } \sum_{z} \theta_{d z}=1 \text { and } \sum_{w} \beta_{z w}=1
\end{gathered}
$$

Limitations of pLSA

- Not a proper generative model
- $\boldsymbol{\theta}_{d}$ is treated as a parameter
- Cannot model new documents
-Solution:
- Make it a proper generative model by adding priors to θ and β

Limitations of pLSA

- Not a proper generative model
- $\boldsymbol{\theta}_{d}$ is treated as a parameter
- Cannot model new documents
-Solution:
- Make it a proper generative model by adding priors to θ and β
π
Topic Model v3: Latent Dirichlet Allocation (LDA)

Review: Dirichlet Distribution

- Dirichlet distribution: $\boldsymbol{\theta} \sim \operatorname{Dirichlet}(\boldsymbol{\alpha})$
- i.e., $p(\boldsymbol{\theta} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{k} \alpha_{k}\right)}{\Pi_{k} \Gamma\left(\alpha_{k}\right)} \Pi_{k} \theta_{k}^{\alpha_{k}-1}$, where $\alpha_{k}>0$
- $\Gamma(\cdot)$ is gamma function: $\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t$
- $\Gamma(z+1)=\mathrm{z} \Gamma(z)$

Review: Dirichlet Distribution

- Dirichlet distribution: $\boldsymbol{\theta} \sim \operatorname{Dirichlet}(\boldsymbol{\alpha})$
- i.e., $p(\boldsymbol{\theta} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{k} \alpha_{k}\right)}{\Pi_{k} \Gamma\left(\alpha_{k}\right)} \Pi_{k} \theta_{k}^{\alpha_{k}-1}$, where $\alpha_{k}>0$
- $\Gamma(\cdot)$ is gamma function: $\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t$

$$
\text { - } \Gamma(z+1)=z \Gamma(z)
$$

Simplex view:

$$
\begin{aligned}
& \cdot x=x_{1}(1,0,0)+x_{2}(0,1,0)+x_{3}(0,0,1) \\
& \cdot \text { Where } 0 \leq x_{1}, x_{2}, x_{3} \leq 1 \text { and } x_{1}+x_{2}+x_{3}=1
\end{aligned}
$$

More Examples in the Simplex View

Topic Model v3: Latent Dirichlet Allocation (LDA)

$\boldsymbol{\theta}_{\boldsymbol{d}} \sim$ Dirichlet (α) : address topic distribution for unseen documents $\boldsymbol{\beta}_{k} \sim \operatorname{Dirichlet}(\eta)$: smoothing over words

Topic Model v3: Latent Dirichlet Allocation (LDA)

$\boldsymbol{\theta}_{\boldsymbol{d}} \sim \operatorname{Dirichlet}(\alpha)$: address topic distribution for unseen documents $\beta_{k} \sim \operatorname{Dirichlet}(\eta)$: smoothing over words

Generative Model for LDA

$$
\text { For each topic } k \in\{1, \ldots, K\}:
$$

$$
\beta_{k} \sim \operatorname{Dir}(\eta) \quad[\text { draw distribution over words }]
$$

$$
\text { For each document } d \in\{1, \ldots, D\}
$$

$$
\boldsymbol{\theta}_{d} \sim \operatorname{Dir}(\boldsymbol{\alpha}) \quad[\text { draw distribution over topics }]
$$

For each word $n \in\left\{1, \ldots, N_{d}\right\}$

$$
\begin{array}{rr}
z_{d, n} \sim \operatorname{Mult}\left(1, \boldsymbol{\theta}_{d}\right) & {[\text { draw topic assignment }]} \\
w_{d, n} \sim \theta_{z_{d, n}} & {[\text { draw word }]} \\
\hline
\end{array}
$$

LDA for Topic Modeling

- The generative story begins with only a Dirichlet prior over the topics.
- Each topic is defined as a Multinomial distribution over the vocabulary, parameterized by $\boldsymbol{\beta}_{\boldsymbol{k}}$

LDA for Topic Modeling

- The generative story begins with only a Dirichlet prior over the topics.
- Each topic is defined as a Multinomial distribution over the vocabulary, parameterized by $\boldsymbol{\beta}_{\boldsymbol{k}}$

LDA for Topic Modeling

- A topic is visualized as its high probability words.

LDA for Topic Modeling

- A topic is visualized as its high probability words.
- A pedagogical label is used to identify the topic.

LDA for Topic Modeling

- A topic is visualized as its high probability words.
- A pedagogical label is used to identify the topic.

LDA for Topic Modeling

Joint Distribution for LDA

- Joint distribution of latent variables and documents is:

$$
\begin{aligned}
& \quad p\left(\boldsymbol{\beta}_{1: K}, \boldsymbol{z}_{1: D}, \boldsymbol{\theta}_{1: D}, \boldsymbol{w}_{1: D} \mid \alpha, \eta\right)= \\
& \prod_{i=1}^{K} p\left(\beta_{i} \mid \eta\right) \prod_{d=1}^{D} p\left(\theta_{d} \mid \alpha\right)\left(\prod_{n=1}^{N} p\left(z_{d, n} \mid \theta_{d}\right) p\left(w_{d, n} \mid \beta_{1: K}, z_{d, n}\right)\right)
\end{aligned}
$$

Questions?

[^0]: The William Randolph Hearst Foundation will give $\$ 1.25$ million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be $\$ 200,000$ for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $\$ 400,000$ each. The Juilliard School, where music and the performing arts are taught, will get $\$ 250,000$. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $\$ 100,000$ donation, too.

[^1]: The William Randolph Hearst Foundation will give $\$ 1.25$ million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be $\$ 200,000$ for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $\$ 400,000$ each. The Juilliard School, where music and the performing arts are taught, will get $\$ 250,000$. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

