DSC250: Advanced Data Mining

Machine Learning Basics

Zhiting Hu
Lecture 2, October 3, 2023
UCSanDiego
HALICIOĞLU DATA SCIENCE INSTITUTE

Outline

- Probability
- Bayes' rule
- Exponential family
- Probabilistic graphical models
- Entropy, KL divergence, cross entropy
- Functional derivatives
- Practice: MLE vs Maximum entropy

Probability

Why Probability?

- The world is a very uncertain place
- "What will the weather be like today?"
- "Will I like this movie?"
- We often can't prove something is true, but we can still ask how likely different outcomes are or ask for the most likely explanations
- Predictions need to have associated confidence

- Confidence -> probability
- Not all machine learning models are probabilistic
- ... but most of them have probabilistic interpretations

Example: topic modeling

For documents in a large collection of text, model p (Word|Topic), p (Topic)

Figure from (Blei, 2011), shows topics and top words learned automatically from reading 17,000 Science articles

Example: image segmentation

Figure (Nowozin and Lampert, 2012) shows image segmentation problem, original image on left, where goal is to separate foreground from background

Middle figure shows a segmentation where each pixel is individually classified as belonging to foreground or background

Right figure shows a segmentation where the segmentation is inferred from a probability model over all pixels jointly (encoding probability that neighboring pixels tend to belong to the same group)

Example: modeling protein networks

A Model inference result

In cellular modeling, can we automatically determine how the presence or absence of some proteins affects other proteins?

Figure from (Sachs et al., 2005) shows automatically inferred protein probability network, which captured most of the known interactions using data-driven methods (far less manual effort than previous

Notations

- A random variable \boldsymbol{x} represents outcomes or states of the world.
- We write $p\left(\boldsymbol{x}_{0}\right)$ to mean Probability $\left(\boldsymbol{x}=\boldsymbol{x}_{0}\right)$
- Sample space: the space of all possible outcomes (may be discrete, continuous, or mixed)
- $p(\boldsymbol{x})$ is the probability mass (density) function
- Assigns a number to each point in sample space
- Non-negative, sums (integrates) to 1
- Intuitively: how often does \boldsymbol{x} occur, how much do we believe in \boldsymbol{x}.

Notations

- Joint distribution $p(\boldsymbol{x}, \boldsymbol{y})$
- Conditional distribution $p(\boldsymbol{y} \mid \boldsymbol{x})$
- $p(\boldsymbol{y} \mid \boldsymbol{x})=\frac{p(x, y)}{p(x)}$
- Expectation:

$$
\mathbb{E}[f(\boldsymbol{x})]=\sum_{\boldsymbol{x}} f(\boldsymbol{x}) p(\boldsymbol{x})
$$

or

$$
\mathbb{E}[f(\boldsymbol{x})]=\int_{\boldsymbol{x}} f(\boldsymbol{x}) p(\boldsymbol{x}) d x
$$

Rules of Probability

- Sum rule

$$
\begin{aligned}
& p(x)=\sum_{y} p(x, y) \quad \text { (Marginalize out } y \text {) } \\
& p\left(x_{1}\right)=\sum_{x_{2}} \sum_{x_{3}} \ldots \sum_{x_{N}} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)
\end{aligned}
$$

- Product/chain rule

$$
\begin{aligned}
& p(x, y)=p(y \mid x) p(x) \\
& p\left(x_{1}, \ldots, x_{N}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \ldots p\left(x_{N} \mid x_{1}, \ldots, x_{N-1}\right)
\end{aligned}
$$

Bayes' Rule

$$
p(\boldsymbol{y} \mid \boldsymbol{x})=\frac{p(\boldsymbol{x} \mid \boldsymbol{y}) p(\boldsymbol{y})}{p(\boldsymbol{x})}
$$

- This gives us a way of "reversing" conditional probabilities
- We call $p(\boldsymbol{y})$ the "prior", and $p(\boldsymbol{y} \mid \boldsymbol{x})$ the "posterior"
- Ex: Bayes' Rule in machine learning:
- \mathcal{D} : data (evidence)
- $\boldsymbol{\theta}$: unknown quantities, such as model parameters, predictions

Posterior belief on the unknown quantities you see data \mathcal{D}

$$
p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\mathcal{D})} \quad \begin{aligned}
& \text { Likelihood: How likely is the } \\
& \text { observed data under the } \\
& \text { particular unknown quantities } \boldsymbol{\theta}
\end{aligned}
$$

Independence

- Two random variables are said to be independent iff their joint distribution factors

$$
p(\boldsymbol{x}, \boldsymbol{y})=p(\boldsymbol{x}) p(\boldsymbol{y})
$$

- Two random variables are conditionally independent given a third if they are independent after conditioning on the third

$$
p(\boldsymbol{x}, \boldsymbol{y} \mid \mathbf{z})=p(\boldsymbol{x} \mid \mathbf{z}) p(\boldsymbol{y} \mid \mathbf{z})
$$

Some common distributions - Gaussian distribution

- Gaussian distribution
(Multivariate)

$$
P(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}
$$

$$
P(x \mid \mu, \Sigma)=|2 \pi \Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \sum^{-1}(x-\mu)\right\}
$$

Some common distributions - Multinomial distribution

- Multinomial distribution
- Discrete random variable \boldsymbol{x} that takes one of M values $\{1, \ldots, M\}$
- $p(x=i)=\pi_{i}, \quad \sum_{i} \pi_{i}=1$
- Out of n independent trials, let k_{i} be the number of times $x=i$ was observed
- The probability of observing a vector of occurrences $\boldsymbol{k}=\left[k_{1}, \ldots, k_{M}\right]$ is given by the multinomial distribution parametrized by π

$$
p(\mathbf{k} \mid \pi, n)=p\left(k_{1}, \ldots, k_{m} \mid \pi_{1}, \ldots, \pi_{m}, n\right)=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} \prod_{i=1} \pi_{i}^{k_{i}}
$$

- E.g., describing a text document by the frequency of occurrence of every distinct word
- For $n=1$, a.k.a. categorical distribution
- $p(\boldsymbol{x}=i \mid \boldsymbol{\pi})=\pi_{i}$
- In $\boldsymbol{k}=\left[k_{1}, \ldots, k_{M}\right]: k_{i}=1$, and $k_{j}=0$ for all $j \neq i \rightarrow$ a.k.a., one-hot representation of i

Exponential family

- A distribution

$$
p_{\theta}(\boldsymbol{x})=h(\boldsymbol{x}) \exp \{\boldsymbol{\theta} \cdot T(\boldsymbol{x})\} / Z(\boldsymbol{\theta})
$$

is an exponential family distribution

- $\boldsymbol{\theta} \in R^{d}$: natural (canonical) parameter
- $T(\boldsymbol{x}) \in R^{d}$: sufficient statistics, features of data \boldsymbol{x}
- $Z(\boldsymbol{\theta})=\sum_{x, y} h(\boldsymbol{x}) \exp \{\boldsymbol{\theta} \cdot T(\boldsymbol{x})\}$: normalization factor
- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

Example: Multivariate Gaussian Distribution

- For a continuous vector random variable $\boldsymbol{x} \in R^{k}$

$$
\begin{aligned}
p(x \mid \mu, \Sigma) & =\frac{1}{(2 \pi)^{k / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\} \\
& =\frac{1}{(2 \pi)^{k / 2}} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} x x^{T}\right)+\mu^{T} \Sigma^{-1} x-\frac{1}{2} \mu^{T} \Sigma^{-1} \mu-\log |\Sigma|\right\}
\end{aligned}
$$

- Exponential family representation

$$
\begin{aligned}
\boldsymbol{\theta} & =\left[\Sigma^{-1} \mu ;-\frac{1}{2} \operatorname{vec}\left(\Sigma^{-1}\right)\right]=\left[\boldsymbol{\theta}_{1}, \operatorname{vec}\left(\boldsymbol{\theta}_{2}\right)\right], \boldsymbol{\theta}_{1}=\Sigma^{-1} \mu \text { and } \boldsymbol{\theta}_{2}^{-}=-\frac{1}{2} \Sigma^{-1} \\
T(\boldsymbol{x}) & =\left[\boldsymbol{x} ; \operatorname{vec}\left(\boldsymbol{x} \boldsymbol{x}^{T}\right)\right] \\
A(\boldsymbol{\theta}) & =\frac{1}{2} \mu^{T} \Sigma^{-1} \mu+\log |\Sigma|=-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\theta}_{2} \boldsymbol{\theta}_{1} \boldsymbol{\theta}_{1}^{T}\right)-\frac{1}{2} \log \left(-2 \boldsymbol{\theta}_{2}\right) \\
h(x) & =(2 \pi)^{-k / 2}
\end{aligned}
$$

Probabilistic Graphical Models

Example

- Consider three binary-valued random variables

$$
X_{1}, X_{2}, X_{3} \quad \operatorname{Val}\left(X_{i}\right)=\{0,1\}
$$

- Let outcome space Ω be the cross-product of their states:

$$
\Omega=\operatorname{Val}\left(X_{1}\right) \times \operatorname{Val}\left(X_{2}\right) \times \operatorname{Val}\left(X_{3}\right)
$$

- $X_{i}(\omega)$ is the value for X_{i} in the assignment $\omega \in \Omega$
- Specify $p(\omega)$ for each outcome $\omega \in \Omega$ by a big table:

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	.11
0	0	1	.02
	\vdots		
1	1	1	.05

- How many parameters do we need to specify?

Marginalization

- Suppose X and Y are random variables with distribution $p(X, Y)$ X : Intelligence, $\quad \operatorname{Val}(X)=\{$ "Very High", "High" $\}$ Y : Grade, $\quad \operatorname{Val}(Y)=\{" a ", " b "\}$
- Joint distribution specified by:

X		
	vh	h
a	0.7	0.15
b	0.1	0.05

- $p(Y=a)=?=0.85$
- More generally, suppose we have a joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$. Then,

$$
p\left(X_{i}=x_{i}\right)=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{i-1}} \sum_{x_{i+1}} \cdots \sum_{x_{n}} p\left(x_{1}, \ldots, x_{n}\right)
$$

Conditioning

- Suppose X and Y are random variables with distribution $p(X, Y)$
X : Intelligence, $\quad \operatorname{Val}(X)=\{$ "Very High", "High" $\}$
Y : Grade, $\operatorname{Val}(Y)=\{$ "a", "b" $\}$

X		
	vh	h
a	0.7	0.15
b	0.1	0.05

- Can compute the conditional probability

$$
\begin{aligned}
p(Y=a \mid X=v h) & =\frac{p(Y=a, X=v h)}{p(X=v h)} \\
& =\frac{p(Y=a, X=v h)}{p(Y=a, X=v h)+p(Y=b, X=v h)} \\
& =\frac{0.7}{0.7+0.1}=0.875 .
\end{aligned}
$$

Example: Medical diagnosis

- Variable for each symptom (e.g. "fever", "cough", "fast breathing", "shaking", "nausea", "vomiting")
- Variable for each disease (e.g. "pneumonia", "flu", "common cold", "bronchitis", "tuberculosis")
- Diagnosis is performed by inference in the model:

$$
p(\text { pneumonia }=1 \mid \operatorname{cough}=1, \text { fever }=1, \text { vomiting }=0)
$$

- One famous model, Quick Medical Reference (QMR-DT), has 600 diseases and 4000 findings

Representing the distribution

- Naively, could represent multivariate distributions with table of probabilities for each outcome (assignment)
- How many outcomes are there in QMR-DT? 2^{4600}
- Estimation of joint distribution would require a huge amount of data
- Inference of conditional probabilities, e.g.

$$
p(\text { pneumonia }=1 \mid \operatorname{cough}=1, \text { fever }=1, \text { vomiting }=0)
$$

would require summing over exponentially many variables' values

- Moreover, defeats the purpose of probabilistic modeling, which is to make predictions with previously unseen observations

Structure through independence

- If X_{1}, \ldots, X_{n} are independent, then

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \cdots p\left(x_{n}\right)
$$

- 2^{n} entries can be described by just n numbers (if $\left|\operatorname{Val}\left(X_{i}\right)\right|=2$)!
- However, this is not a very useful model - observing a variable X_{i} cannot influence our predictions of X_{j}
- If X_{1}, \ldots, X_{n} are conditionally independent given Y, denoted as $X_{i} \perp \mathbf{X}_{-i} \mid Y$, then

$$
\begin{aligned}
p\left(y, x_{1}, \ldots, x_{n}\right) & =p(y) p\left(x_{1} \mid y\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, y\right) \\
& =p(y) p\left(x_{1} \mid y\right) \prod_{i=2}^{n} p\left(x_{i} \mid y\right)
\end{aligned}
$$

Bayesian networks (directed PGMs)

- A Bayesian network is specified by a directed acyclic graph $G=(V, E)$ with:
(1) One node $i \in V$ for each random variable X_{i}
(2) One conditional probability distribution (CPD) per node, $p\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right)$, specifying the variable's probability conditioned on its parents' values
- Corresponds 1-1 with a particular factorization of the joint distribution:

$$
p\left(x_{1}, \ldots x_{n}\right)=\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\operatorname{Pa}(i)}\right)
$$

- Powerful framework for designing algorithms to perform probability computations

Example

- Consider the following Bayesian network:

- What is its joint distribution?

$$
\begin{aligned}
p\left(x_{1}, \ldots x_{n}\right) & =\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right) \\
p(d, i, g, s, l) & =p(d) p(i) p(g \mid i, d) p(s \mid i) p(I \mid g)
\end{aligned}
$$

More Examples

$$
p\left(x_{1}, \ldots x_{n}\right)=\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\operatorname{Pa}(i)}\right)
$$

Will my car start this morning?

More Examples

$$
p\left(x_{1}, \ldots x_{n}\right)=\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right)
$$

What is the differential diagnosis?

Fig. I The ALARM network representing causal relationships is shown with dlagnosttc ($)$). Intermediate (O) and measurement (0) nodes, CO: cardiac output. CVP: certral venous pressure, LVED volume: left ventricular enddilastollc volume. LV fallure: left ventricular fallure, MV: minute ventilation, PA Sat: pulmonary artery axggen saturattor. PAP: pulmonary artery pressure, PCWP: pulmonary capillary wedge pressure, Pres: breathing pressure, RR: resptratory rate, TPR: total pertpheral reststance. TV: tldal volume

Entropy

Entropy

- Shannon entropy $H(p)=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x})$
- The average level of "information", "surprise", or "uncertainty" inherent to the variable \boldsymbol{x} 's possible outcomes

KL Divergence

- Kullback-Leibler (KL) divergence: measures the closeness of two distributions $p(\boldsymbol{x})$ and $q(\boldsymbol{x})$

$$
\operatorname{KL}(q(\boldsymbol{x}) \| p(\boldsymbol{x}))=\sum_{\boldsymbol{x}} q(\boldsymbol{x}) \log \frac{q(\boldsymbol{x})}{p(\boldsymbol{x})}
$$

- a.k.a. Relative entropy
- KL >= 0 (Jensen's inequality)
- Intuitively:
- If q is high and p is high, then we are happy (i.e. low KL divergence)
- If q is high and p is low then we pay a price (i.e. high KL divergence).
- If q is low then we don't care (i.e. also low KL divergence, regardless of p)
- not a true "distance":
- not commutative (symmetric) $\mathrm{KL}(\mathrm{p} \| q)!=\mathrm{KL}(\mathrm{q} \| \mathrm{p})$
- doesn't satisfy triangle inequality

KL Divergence

- Kullback-Leibler (KL) divergence: measures the closeness of two distributions $p(\boldsymbol{x})$ and $q(\boldsymbol{x})$

$$
\operatorname{KL}(q(\boldsymbol{x}) \| p(\boldsymbol{x}))=\sum_{\boldsymbol{x}} q(\boldsymbol{x}) \log \frac{q(\boldsymbol{x})}{p(\boldsymbol{x})}
$$

- a.k.a. Relative entropy
- Maximum likelihood estimation (MLE) is minimizing the KL divergence between the empirical data distribution and the model distribution

$$
\begin{gathered}
\mathrm{KL}\left(\tilde{p}(\boldsymbol{x}) \| p_{\theta}(\boldsymbol{x})\right)=-\mathbb{E}_{\tilde{p}(x)}\left[\log p_{\theta}(\boldsymbol{x})\right]+H(\tilde{p}(\boldsymbol{x})) \\
\downarrow \\
\text { Cross entropy }
\end{gathered}
$$

Key Takeaways

- Probability $p(\boldsymbol{x})$
- Bayes'rule $p(\boldsymbol{y} \mid \boldsymbol{x})=\frac{p(\boldsymbol{x} \mid \boldsymbol{y}) p(\boldsymbol{y})}{p(\boldsymbol{x})}$
- prior, posterior
- Exponential family:
- Gaussian, multinomial, categorical, ...
- Probabilistic graphical models: Bayesian networks
- KL Divergence
- relation to Cross-entropy

$$
\mathrm{KL}(q(\boldsymbol{x}) \| p(\boldsymbol{x}))=\sum_{\boldsymbol{x}} q(\boldsymbol{x}) \log \frac{q(\boldsymbol{x})}{p(\boldsymbol{x})}
$$

Functional Derivatives

Functional derivative

- $\nabla_{q}-\mathbb{H}(q)=\log q+1$
- Functional $F(y)$: an operator that takes a function $y(x)$ and returns an output value F
- Functional derivative (aka, variational derivative): relates a change in a Functional $F(y)$ to a change in the function y

Functional derivative

- Recall the conventional derivative $\frac{d y}{d x}$
- Taylor expansion

$$
y(x+\epsilon)=y(x)+\frac{\mathrm{d} y}{\mathrm{~d} x} \epsilon+O\left(\epsilon^{2}\right)
$$

- Functional derivative
- How much a functional $F[y]$ changes when we make a small change $\varepsilon \eta(x)$ to the function $y(x)$

$$
F[y(x)+\epsilon \eta(x)]=F[y(x)]+\epsilon \int \frac{\delta F}{\delta y(x)} \eta(x) \mathrm{d} x+O\left(\epsilon^{2}\right)
$$

- A function $y(x)$ that maximizes (or minimizes) a functional $F[y]$ must satisfy

$$
\frac{\delta F}{\delta y(x)}=0 \text { for all } x
$$

Functional derivative

$$
F[y(x)+\epsilon \eta(x)]=F[y(x)]+\epsilon \int \frac{\delta F}{\delta y(x)} \eta(x) \mathrm{d} x+O\left(\epsilon^{2}\right)
$$

- Consider a functional that is defined by an integral over a function $G(y, x)$

$$
F[y]=\int G(y, x) d x
$$

- Consider variations in the function $y(x)$,

$$
F[y+\epsilon \eta(x)]=F[y(x)]+\epsilon \int \frac{\partial G}{\partial y} \eta(x) d x+O\left(\epsilon^{2}\right)
$$

Functional derivative

$$
F[y(x)+\epsilon \eta(x)]=F[y(x)]+\epsilon \int \frac{\delta F}{\delta y(x)} \eta(x) \mathrm{d} x+O\left(\epsilon^{2}\right)
$$

- Consider a functional that is defined by an integral over a function $G(y, x)$

$$
F[y]=\int G(y, x) d x
$$

- Ex. $1,-\mathbb{H}(q)=\int q(x) \log q(x) d x$
- $G=q(x) \log q(x)$
- Consider variations in the function $y(x)$,

$$
F[y+\epsilon \eta(x)]=F[y(x)]+\epsilon \int \frac{\partial G}{\partial y} \eta(x) d x+O\left(\epsilon^{2}\right)
$$

Practice: Maximum likelihood vs Maximum Entropy

Supervised Maximum Likelihood

- Model to be learned $p_{\theta}(\boldsymbol{x})$
- Observe full data $\mathcal{D}=\left\{\boldsymbol{x}^{*}\right\}$
- i.i.d: independent, identically distributed
- Maximum Likelihood Estimation (MLE)
- The most classical learning algorithm

$$
\min _{\theta}-\mathbb{E}_{x^{*} \sim \mathcal{D}}\left[\log p_{\theta}\left(x^{*}\right)\right]
$$

- MLE is closely connected to the Maximum Entropy (MaxEnt) principle

Recap: Exponential Family

- A distribution

$$
p_{\theta}(\boldsymbol{x})=h(\boldsymbol{x}) \exp \{\boldsymbol{\theta} \cdot T(\boldsymbol{x})\} / Z(\boldsymbol{\theta})
$$

is an exponential family distribution

- $\boldsymbol{\theta} \in R^{d}$: natural (canonical) parameter
- $T(\boldsymbol{x}) \in R^{d}$: sufficient statistics, features of data \boldsymbol{x}
- $Z(\boldsymbol{\theta})=\sum_{x, y} h(\boldsymbol{x}) \exp \{\boldsymbol{\theta} \cdot T(\boldsymbol{x})\}:$ normalization factor
- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

Maximum Likelihood for Exponential Family

$m(x)$: the number of times x is observed in D

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{\theta} ; \mathcal{D}) & =\sum_{\boldsymbol{x}} m(\boldsymbol{x}) \log p(\boldsymbol{x} \mid \boldsymbol{\theta}) \\
& =\sum_{\boldsymbol{x}} m(\boldsymbol{x})\left(\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})-\log Z(\boldsymbol{\theta})\right) \\
& =\sum_{\boldsymbol{x}} m(\boldsymbol{x}) \sum_{i} \theta_{i} T_{i}(\boldsymbol{x})-N \log Z(\boldsymbol{\theta})
\end{aligned}
$$

- Take gradient and set to 0

$$
\begin{aligned}
& \frac{\partial}{\partial \theta_{i}} \mathcal{L}(\boldsymbol{\theta} ; \mathcal{D})=\sum_{\boldsymbol{x}} m(\boldsymbol{x}) T_{i}(\boldsymbol{x})-N \frac{\partial}{\partial \theta_{i}} \log Z(\boldsymbol{\theta}) \\
&=\sum_{\boldsymbol{x}} m(\boldsymbol{x}) T_{i}(\boldsymbol{x})-N \sum_{\boldsymbol{x}} p(\boldsymbol{x} \mid \boldsymbol{\theta}) T_{i}(\boldsymbol{x}) \\
& \Rightarrow \mathbb{I} \sum_{\boldsymbol{x}} p(\boldsymbol{x} \mid \boldsymbol{\theta}) T_{i}(\boldsymbol{x})_{\mathbf{I}}=\sum_{\boldsymbol{x}} \frac{m(\boldsymbol{x})}{N} T_{i}(\boldsymbol{x})=\sum_{\boldsymbol{x}} \tilde{p}(\boldsymbol{x} \mid \boldsymbol{\theta}) T_{i}(\boldsymbol{x})
\end{aligned}
$$

At MLE, the expectations of the sufficient statistics under the model must match empirical feature average

Maximum Entropy (MaxEnt)

- Given \mathcal{D}, to estimate $p(\boldsymbol{x})$
- We can approach the problem from an entirely different point of view. Begin with some fixed feature expectations:

$$
\sum_{x} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})=\sum_{x} \frac{m(\boldsymbol{x})}{N} T_{i}(\boldsymbol{x}):=\alpha_{i}
$$

- There may exist many distributions which satisfy them. Which one should we select?
- MaxEnt principle: the most uncertain or flexible one, i.e., the one with maximum entropy
- This yields a new optimization problem: - This is a variational definition of a distribution!

$$
\begin{array}{ll}
\max _{p} & \mathrm{H}(p(\boldsymbol{x}))=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x}) \\
\text { s.t. } & \sum_{\boldsymbol{x}} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})=\alpha_{i} \\
& \sum_{\boldsymbol{x}} p(\boldsymbol{x})=1
\end{array}
$$

Solution to the MaxEnt Problem

- To solve the MaxEnt problem, we use Lagrange multipliers:
$\max _{\theta, \mu} \min _{p(x)} L=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x})-\sum_{i} \theta_{i}\left(\sum_{x} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})-\alpha_{i}\right)-\mu\left(\sum_{\boldsymbol{x}} p(\boldsymbol{x})-1\right)$

Solution to the MaxEnt Problem

- To solve the MaxEnt problem, we use Lagrange multipliers:
$\max _{\theta, \mu} \min _{p(x)} L=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x})-\sum_{i} \theta_{i}\left(\sum_{x} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})-\alpha_{i}\right)-\mu\left(\sum_{\boldsymbol{x}} p(\boldsymbol{x})-1\right)$
$\frac{\partial L}{\partial p(\boldsymbol{x})}=1+\log p(\boldsymbol{x})-\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})-\mu$
$p^{*}(\boldsymbol{x})=e^{\mu-1} \exp \left\{\sum_{i} \theta_{i} f_{i}(\boldsymbol{x})\right\}$
$Z(\boldsymbol{\theta})=e^{\mu-1}=\sum_{\boldsymbol{x}} \exp \left\{\sum_{i} \theta_{i} f_{i}(\boldsymbol{x})\right\} \quad\left(\right.$ since $\left.\sum_{\boldsymbol{x}} p^{*}(\boldsymbol{x})=1\right)$
$p(\boldsymbol{x} \mid \boldsymbol{\theta})=\frac{1}{Z(\boldsymbol{\theta})} \exp \left\{\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})\right\}$

Solution to the MaxEnt Problem

- To solve the MaxEnt problem, we use Lagrange multipliers:
$\max _{\theta, \mu} \min _{p(x)} L=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x})-\sum_{i} \theta_{i}\left(\sum_{x} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})-\alpha_{i}\right)-\mu\left(\sum_{\boldsymbol{x}} p(\boldsymbol{x})-1\right)$
$\frac{\partial L}{\partial p(\boldsymbol{x})}=1+\log p(\boldsymbol{x})-\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})-\mu$
$p^{*}(\boldsymbol{x})=e^{\mu-1} \exp \left\{\sum_{i} \theta_{i} f_{i}(\boldsymbol{x})\right\}$
$Z(\boldsymbol{\theta})=e^{\mu-1}=\sum_{\boldsymbol{x}} \exp \left\{\sum_{i} \theta_{i} f_{i}(\boldsymbol{x})\right\} \quad\left(\right.$ since $\left.\sum_{\boldsymbol{x}} p^{*}(\boldsymbol{x})=1\right) \quad \begin{aligned} & \text { Problem is strictly } \\ & \text { convex w.r.t. } p(\boldsymbol{x}) \text {, so }\end{aligned}$
$p(\boldsymbol{x} \mid \boldsymbol{\theta})=\frac{1}{Z(\boldsymbol{\theta})} \exp \left\{\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})\right\}$
- So feature constraints + MaxEnt \Rightarrow exponential family. solution is unique.

Solution to the MaxEnt Problem

- To solve the MaxEnt problem, we use Lagrange multipliers:
$\max _{\theta, \mu} \min _{p(x)} L=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x})-\sum_{i} \theta_{i}\left(\sum_{x} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})-\alpha_{i}\right)-\mu\left(\sum_{\boldsymbol{x}} p(\boldsymbol{x})-1\right)$

$$
p(\boldsymbol{x} \mid \boldsymbol{\theta})=\frac{1}{Z(\boldsymbol{\theta})} \exp \left\{\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})\right\}
$$

- So feature constraints + MaxEnt \Rightarrow
plug $p(x \mid \boldsymbol{\theta})$ back into L, and since $\sum_{x} \frac{m(x)}{N} T_{i}(\boldsymbol{x}):=\alpha_{i}$:

$$
\max _{\theta} L(\boldsymbol{\theta})=\sum_{\boldsymbol{x}} m(\boldsymbol{x}) \sum_{i} \theta_{i} T_{i}(\boldsymbol{x})-N \log Z(\boldsymbol{\theta})
$$ exponential family.

- Problem is strictly convex w.r.t. $p(\boldsymbol{x})$, so solution is unique.
- Recovers precisely the MLE problem of exponential family

Constraints from Data

- We have seen a case of convex duality:
- In one case, we assume exponential family and show that Maximum Likelihood implies model expectations must match empirical expectations.
- In the other case, we assume model expectations must match empirical feature counts and show that MaxEnt implies exponential family distribution.

A more general MaxEnt problem

$$
\begin{aligned}
\underset{p}{\min } & \mathrm{KL}(p(\boldsymbol{x}) \| h(\boldsymbol{x})) \\
& \stackrel{\text { def }}{=} \sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log \frac{p(\boldsymbol{x})}{h(\boldsymbol{x})}=-\mathrm{H}(p)-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log h(\boldsymbol{x}) \\
\text { s.t. } & \sum_{\boldsymbol{x}} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})=\alpha_{i} \\
& \sum_{\boldsymbol{x}} p(\boldsymbol{x})=1 \\
\Rightarrow \quad & p(\boldsymbol{x} \mid \boldsymbol{\theta})=\frac{1}{Z(\boldsymbol{\theta})} h(\boldsymbol{x}) \exp \left\{\sum_{i} \theta_{i} T_{i}(\boldsymbol{x})\right\}
\end{aligned}
$$

Summary

- Maximum entropy is dual to maximum likelihood of exponential family distributions
- This provides an alternative view of the problem of fitting a model into data:
- The data instances in the training set are treated as constraints, and the learning problem is treated as a constrained optimization problem.
- We'll revisit this optimization-theoretic view of learning repeatedly in the future!

$$
\begin{array}{ll}
\max _{p} & \mathrm{H}(p(\boldsymbol{x}))=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log p(\boldsymbol{x}) \\
\text { s.t. } & \sum_{\boldsymbol{x}} p(\boldsymbol{x}) T_{i}(\boldsymbol{x})=\alpha_{i} \\
& \sum_{\boldsymbol{x}} p(\boldsymbol{x})=1
\end{array}
$$

Key Takeaways

- Probability
- Bayes' rule
- Exponential family
- Probabilistic graphical models: Bayesian networks
- KL divergence
- Functional derivative
- Convex duality between MLE and MaxEnt (optional)

Questions?

