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Outline
● Probability
! Bayes’ rule
! Exponential family
! Probabilistic graphical models
! Entropy, KL divergence, cross entropy

● Functional derivatives

● Practice: MLE vs Maximum entropy
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Probability



Why Probability?
● The world is a very uncertain place 
! “What will the weather be like today?”
! “Will I like this movie?” 

● We often can’t prove something is true, but we can still 
ask how likely different outcomes are or ask for the most 
likely explanations

● Predictions need to have associated confidence
! Confidence -> probability

● Not all machine learning models are probabilistic
! … but most of them have probabilistic interpretations

4[CS60020, Bhattacharya; CSC2515, Wang]



Example: topic modeling,_HTWSL! [VWPJ�TVKLSPUN
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Figure 2: Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles
from the journal Science. At left is the inferred topic proportions for the example article in
Figure 1. At right are the top 15 most frequent words from the most frequent topics found in
this article.

is drawn from one of the topics (step #2b), where the selected topic is chosen from the
per-document distribution over topics (step #2a).2

In the example article, the distribution over topics would place probability on genetics,
data analysis and evolutionary biology, and each word is drawn from one of those three
topics. Notice that the next article in the collection might be about data analysis and
neuroscience; its distribution over topics would place probability on those two topics. This
is the distinguishing characteristic of latent Dirichlet allocation—all the documents in the
collection share the same set of topics, but each document exhibits those topics with di↵erent
proportion.

As we described in the introduction, the goal of topic modeling is to automatically discover
the topics from a collection of documents. The documents themselves are observed, while
the topic structure—the topics, per-document topic distributions, and the per-document
per-word topic assignments—are hidden structure. The central computational problem for
topic modeling is to use the observed documents to infer the hidden topic structure. This
can be thought of as “reversing” the generative process—what is the hidden structure that
likely generated the observed collection?

Figure 2 illustrates example inference using the same example document from Figure 1.
Here, we took 17,000 articles from Science magazine and used a topic modeling algorithm to
infer the hidden topic structure. (The algorithm assumed that there were 100 topics.) We

2We should explain the mysterious name, “latent Dirichlet allocation.” The distribution that is used to
draw the per-document topic distributions in step #1 (the cartoon histogram in Figure 1) is called a Dirichlet
distribution. In the generative process for LDA, the result of the Dirichlet is used to allocate the words of the
document to di↵erent topics. Why latent? Keep reading.
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Example: image segmentation,_HTWSL! PTHNL�ZLNTLU[H[PVU1.2. Outline 3

Fig. 1.1 Input image to be
segmented into foreground
and background. (Image
source: http://pdphoto.org)

Fig. 1.2 Pixelwise separate
classification by gi only:
noisy, locally inconsistent de-
cisions.

Fig. 1.3 Joint optimum y⇤

with spatially consistent de-
cisions.

The optimal prediction y⇤ will trade o↵ the quality of the local model
gi with making decisions that are spatially consistent according to gi,j .
This is shown in Figure 1.1 to 1.3.

We did not say how the functions gi and gi,j can be defined. In the
above model we would use a simple binary classification model

gi(yi, x) = hwyi ,'i(x)i, (1.2)

where 'i : X ! Rd extracts some image features from the image around
pixel i, for example color or gradient histograms in a fixed window
around i. The parameter vector wy 2 Rd weights these features. This
allows the local model to represent interactions such as “if the picture
around i is green, then it is more likely to be a background pixel”. By
adjusting w = (w0, w1) suitably, a local score gi(yi, x) can be computed
for any given image. For the pairwise interaction gi,j(yi, yj) we ignore
the image x and use a 2-by-2 table of values for gi,j(0, 0), gi,j(0, 1),
gi,j(1, 0), and gi,j(1, 1), for all adjacent pixels (i, j) 2 J .

1.2 Outline

In Graphical Models we introduce an important class of discrete struc-
tured models that can be concisely represented in terms of a graph. In
this and later parts we will use factor graphs, a useful special class of
graphical models. We do not address in detail the important class of
directed graphical models and temporal models.

Computation in undirected discrete factor graphs in terms of proba-
bilities is described in Inference in Graphical Models. Because for most
models exact computations are intractable, we discuss a number of pop-
ular approximations such as belief propagation, mean field, and Monte

-PN\YL��5V^VaPU�HUK�3HTWLY[� ������ZOV^Z�PTHNL�ZLNTLU[H[PVU
WYVISLT� VYPNPUHS�PTHNL�VU�SLM[� ^OLYL�NVHS�PZ�[V�ZLWHYH[L�MVYLNYV\UK
MYVT�IHJRNYV\UK

4PKKSL�ÄN\YL�ZOV^Z�H�ZLNTLU[H[PVU�^OLYL�LHJO�WP_LS�PZ�PUKP]PK\HSS`
JSHZZPÄLK�HZ�ILSVUNPUN�[V�MVYLNYV\UK�VY�IHJRNYV\UK
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Example: modeling protein networks

7

,_HTWSL! TVKLSPUN�WYV[LPU�UL[^VYRZ

sample in this data set consists of quantita-
tive amounts of each of the 11 phosphorylated
molecules, simultaneously measured from sin-
gle cells [data sets are downloadable (8)]. For
purposes of illustration, examples of actual
fluorescence-activated cell sorter (FACS) data
plotted in prospective corelationship form are
shown in fig. S1. In most cases, this reflects the
activation state of the kinases monitored, or in
the cases of PIP3 and PIP2, the levels of these
secondary messenger molecules in primary cells,
under the condition measured. Nine stimula-
tory or inhibitory interventional conditions were
used (Table 1) (8). The complete data sets were
analyzed with the Bayesian network structure
inference algorithm (6, 9, 17).

A high-accuracy human primary T cell
signaling causality map. The resulting de
novo causal network model was inferred
(Fig. 3A) with 17 high-confidence causal arcs
between various components. To evaluate the
validity of this model, we compared the mod-
el arcs (and absent potential arcs) with those
described in the literature. Arcs were catego-
rized as the following: (i) expected, for con-
nections well-established in the literature that
have been demonstrated under numerous con-
ditions in multiple model systems; (ii) reported,
for connections that are not well known, but
for which we were able to find at least one
literature citation; and (iii) missing, which indi-
cates an expected connection that our Bayesian
network analysis failed to find. Of the 17 arcs
in our model, 15 were expected, all 17 were
either expected or reported, and 3 were missed
(Fig. 3A and table S1) (8, 18–22). Table 3
enumerates the probable paths of influence
corresponding to model arcs determined by
surveying published reports.

Several of the known connections from
our model are direct enzyme-substrate rela-
tionships (Fig. 3B) (PKA to Raf, Raf to Mek,
Mek to Erk, and Plc-g to PIP2), and one has a
relationship of recruitment leading to phos-
phorylation (Plc-g to PIP3). In almost all cases,

the direction of causal influence was correctly
inferred (an exception was Plc-g to PIP3, in
which case the arc was inferred in the reverse
direction). All the influences are contained
within one global model; thus, the causal di-
rection of arcs is often compelled so that these
are consistent with other components in the
model. These global constraints allowed de-
tection of certain causal influences from mole-
cules that were not perturbed in our assay.
For instance, although Raf was not perturbed
in any of the measured conditions, the meth-
od correctly inferred a directed arc from Raf
to Mek, which was expected for the well-
characterized Raf-Mek-Erk signal transduc-
tion pathway. In some cases, the influence of
one molecule on another was mediated by in-
termediate molecules that were not measured
in the data set. In the results, these indirect
connections were detected as well (Fig. 3B,
panel b). For example, the influence of PKA
and PKC on the MAPKs p38 and Jnk likely
proceeded via their respective (unmeasured)
MAPK kinase kinases. Thus, unlike some
other approaches used to elucidate signaling
networks [for example, protein-protein inter-
action maps (23, 24)] that provide static bio-
chemical association maps with no causal
links, our Bayesian network method can de-
tect both direct and indirect causal connections
and therefore provide a more contextual pic-
ture of the signaling network.

Another feature demonstrated in our mod-
el is the ability to dismiss connections that
are already explained by other network arcs
(Fig. 3B, panel c). This is seen in the Raf-
Mek-Erk cascade. Erk, also known as p44/42,
is downstream of Raf and therefore dependent
on Raf, yet no arc appears from Raf to Erk,
because the connection from Raf to Mek and
the connection from Mek to Erk explain the
dependence of Erk on Raf. Thus, an indirect
arc should appear only when one or more
intermediate molecules is not present in the
data set, otherwise the connection will proceed

via this molecule. The intervening molecule
may also be a shared parent. For example,
the phosphorylation statuses of p38 and Jnk
are correlated (fig. S2), yet they are not di-
rectly connected, because their shared parents
(PKC and PKA) mediate the dependence be-
tween them. Although we cannot know wheth-
er an arc in our model represents a direct or
indirect influence, it is unlikely that our model
contains an indirect arc that is mediated by
any molecule observed in our measurements.
Correlation exists between most molecule
pairs in this data set [per Bonferroni corrected
P value (fig. S2)], which can occur with close-
ly connected pathways. Therefore, the relative
lack of arcs in our model (Fig. 3A) contrib-
uted greatly to the accuracy and interpret-
ability of the inferred model.

A more complex example is the influence
of PKC on Mek, which is known to be me-
diated by Raf (Fig. 3B, panel d). PKC is
known to affect Mek through two paths of
influence, each mediated by a different ac-
tive phosphorylated form of the protein Raf.
Although PKC phosphorylates Raf directly
at S499 and S497, this event is not detected
by our measurements, because we use only
an antibody specific to Raf phosphorylation
at S259 (Table 2) (16). Therefore, our algo-
rithm detects an indirect arc from PKC to
Mek that is mediated by the presumed un-
measured intermediate Raf phosphorylated
at S497 and S499 (18). The PKC-to-Raf arc
represents an indirect influence that proceeds
via an unmeasured molecule, presumed to be
Ras (19, 20). We discussed above the ability
of our approach to dismiss redundant arcs. In
this case, there are two paths leading from
PKC to Mek, because each path corresponds
to a separate means of influence from PKC
to Mek: one via Raf phosphorylated at S259
and the other through Raf phosphorylated at
S497 and S499. Thus, neither path is redun-
dant. This result demonstrates the distinction
that this analysis is sensitive to specific phos-

Fig. 3. Bayesian network inference
results. (A) Network inferred from
flow cytometry data represents ex-
pected outcomes. This network rep-
resents a model average from 500
high-scoring results. High-confidence
arcs, appearing in at least 85% of
the networks, are shown. For clarity,
the names of the molecules are used
to represent the measured phospho-
rylation sites (Table 2). (B) Inferred
network demonstrates several fea-
tures of Bayesian networks. (a) Arcs
in the network may correspond to
direct events or (b) indirect influ-
ences. (c) When intermediate mol-
ecules are measured in the data
set, indirect influences rarely appear as an additional arc. No additional
arc is added between Raf and Erk because the dependence between Raf
and Erk is dismissed by the connection between Raf and Mek, and be-
tween Mek and Erk (for instance, see Fig. 1C). (d) Connections in the
model contain phosphorylation site–specificity information. Because Raf

phosphorylation on S497 and S499 was not measured in our data set,
the connection between PKC and the measured Raf phosphorylation site
(S259) is indirect, likely proceeding via Ras. The connection between PKC
and the undetected Raf phosphorylation on S497 and S499 is seen as an
arc between PKC and Mek.

R E S E A R C H A R T I C L E S

22 APRIL 2005 VOL 308 SCIENCE www.sciencemag.org526
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Notations

● A random variable 𝒙 represents outcomes or states of the world.

! We write 𝑝(𝒙!) to mean Probability(𝒙 = 	𝒙!)

● Sample space: the space of all possible outcomes (may be discrete, 

continuous, or mixed)

● 𝑝(𝒙) is the probability mass (density) function

! Assigns a number to each point in sample space

! Non-negative, sums (integrates) to 1

! Intuitively: how often does 𝒙 occur, how much do  we believe in 𝒙.

8[CSC2515, Wang]



Notations

● Joint distribution 𝑝 𝒙, 𝒚

● Conditional distribution 𝑝 𝒚|𝒙

! 𝑝 𝒚|𝒙 = " 𝒙,𝒚
" 𝒙

 

● Expectation:

9

𝔼 𝑓(𝒙) ='
𝒙
𝑓(𝒙)	𝑝 𝒙

𝔼 𝑓(𝒙) = *
𝒙
𝑓 𝒙 𝑝 𝒙 𝑑𝑥

or



Rules of Probability
● Sum rule

● Product/chain rule

10[CSC2515, Wang]

(Marginalize out 𝑦)



Bayes’ Rule

● This gives us a way of “reversing” conditional probabilities
● We call 𝑝(𝒚) the “prior”, and 𝑝 𝒚|𝒙  the “posterior”
● Ex: Bayes’ Rule in machine learning:
! 𝒟: data (evidence)
! 𝜽: unknown quantities, such as model parameters, predictions

11

𝑝 𝒚|𝒙 =
𝑝 𝒙|𝒚 𝑝(𝒚)

𝑝 𝒙
=

𝑝 𝒙|𝒚 𝑝(𝒚)
∑𝒚! 𝑝 𝒙|𝒚′ 𝒑(𝒚′)

𝑝 𝜽|𝒟 =
𝑝 𝒟|𝜽 𝑝(𝜽)

𝑝 𝒟
=

𝑝 𝒙|𝒚 𝑝(𝒚)
∑𝒚! 𝑝 𝒙|𝒚′ 𝒑(𝒚′)

Posterior belief on the 
unknown quantities 
you see data 𝒟 

Likelihood: How likely is the 
observed data under the 
particular unknown quantities 𝜽 

Prior belief on the unknown 
quantities before you see data 𝒟 

[10-601B @ CMU]



Independence
● Two random variables are said to be independent iff their joint 

distribution factors

● Two random variables are conditionally independent given a third if they 
are independent after conditioning on the third

12

𝑝 𝒙, 𝒚 = 𝑝 𝒙 𝑝(𝒚)

𝑝 𝒙, 𝒚|𝒛 = 𝑝 𝒙|𝒛 𝑝(𝒚|𝒛)

[CSC2515, Wang]



Some common distributions - Gaussian distribution
● Gaussian distribution

13

(Multivariate)

[CSC2515, Wang]



Some common distributions - Multinomial distribution
● Multinomial distribution
! Discrete random variable 𝒙 that takes one of 𝑀 values {1, … ,𝑀}
! 𝑝(𝒙 = 𝑖) 	= 	𝜋&,         ∑& 𝜋& = 1

! Out of 𝑛 independent trials, let 𝑘& be the number of times 𝒙 = 𝑖	was observed 
! The probability of observing a vector of occurrences 𝒌 = 𝑘', … , 𝑘(  is given by the 

multinomial distribution parametrized by 𝝅

! E.g., describing a text document by the frequency of occurrence of every distinct 
word 

! For 𝑛 = 1, a.k.a. categorical distribution
§ 𝑝 𝒙 = 𝑖	 𝝅) 	= 	𝜋!
§ In 𝒌 = 𝑘", … , 𝑘# : 	𝑘! = 1, and 𝑘$ = 0 for all 𝑗 ≠ 𝑖	 → 	 𝑎. 𝑘. 𝑎. , one-hot representation of 𝑖     

14[CSC2515, Wang]



Exponential family
● A distribution

is an exponential family distribution

! 𝜽 ∈ 𝑅%: natural (canonical) parameter 

! 𝑇 𝒙 ∈ 𝑅%: sufficient statistics, features of data 𝒙

! 𝑍 𝜽 = ∑&,( ℎ 𝒙 exp 𝜽	 ⋅ 𝑇 𝒙 : normalization factor

● Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,... 

15

𝑝" 𝒙 = ℎ 𝒙 	exp 𝜽	 ⋅ 𝑇 𝒙 	/𝑍(𝜽)



Example: Multivariate Gaussian Distribution 
● For a continuous vector random variable 𝒙 ∈ 𝑅#

● Exponential family representation

16
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Probabilistic Graphical Models



Example

19

Example

Consider three binary-valued random variables

X1, X2, X3 Val(Xi ) = {0, 1}

Let outcome space ⌦ be the cross-product of their states:

⌦ = Val(X1) ⇥ Val(X2) ⇥ Val(X3)

Xi (!) is the value for Xi in the assignment ! 2 ⌦
Specify p(!) for each outcome ! 2 ⌦ by a big table:

x1 x2 x3 p(x1, x2, x3)
0 0 0 .11
0 0 1 .02

...
1 1 1 .05

How many parameters do we need to specify?

23 � 1
David Sontag (NYU) Graphical Models Lecture 1, January 31, 2013 23 / 44

[PGM 2013, NYU, Sontag]



Marginalization

20

Marginalization

Suppose X and Y are random variables with distribution p(X , Y )
X : Intelligence, Val(X ) = {“Very High”, “High”}
Y : Grade, Val(Y ) = {“a”, “b”}

Joint distribution specified by:

X

Y
vh h

a 0.7 0.15
b 0.1 0.05

p(Y = a) = ?= 0.85

More generally, suppose we have a joint distribution p(X1, . . . , Xn).
Then,

p(Xi = xi ) =
X

x1

X

x2

· · ·
X

xi�1

X

xi+1

· · ·
X

xn

p(x1, . . . , xn)

David Sontag (NYU) Graphical Models Lecture 1, January 31, 2013 24 / 44

[PGM 2013, NYU, Sontag]



Conditioning

21

Conditioning

Suppose X and Y are random variables with distribution p(X , Y )
X : Intelligence, Val(X ) = {“Very High”, “High”}
Y : Grade, Val(Y ) = {“a”, “b”}

X

Y
vh h

a 0.7 0.15
b 0.1 0.05

Can compute the conditional probability

p(Y = a | X = vh) =
p(Y = a, X = vh)

p(X = vh)

=
p(Y = a, X = vh)

p(Y = a, X = vh) + p(Y = b, X = vh)

=
0.7

0.7 + 0.1
= 0.875.

David Sontag (NYU) Graphical Models Lecture 1, January 31, 2013 25 / 44

[PGM 2013, NYU, Sontag]



Example: Medical diagnosis

Variable for each symptom (e.g. “fever”, “cough”, “fast breathing”,
“shaking”, “nausea”, “vomiting”)

Variable for each disease (e.g. “pneumonia”, “flu”, “common cold”,
“bronchitis”, “tuberculosis”)

Diagnosis is performed by inference in the model:

p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

One famous model, Quick Medical Reference (QMR-DT), has 600
diseases and 4000 findings

David Sontag (NYU) Graphical Models Lecture 1, January 31, 2013 26 / 44

Example: Medical diagnosis

23[PGM 2013, NYU, Sontag]



Representing the distribution

Naively, could represent multivariate distributions with table of
probabilities for each outcome (assignment)

How many outcomes are there in QMR-DT? 24600

Estimation of joint distribution would require a huge amount of data

Inference of conditional probabilities, e.g.

p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

would require summing over exponentially many variables’ values

Moreover, defeats the purpose of probabilistic modeling, which is to
make predictions with previously unseen observations

David Sontag (NYU) Graphical Models Lecture 1, January 31, 2013 27 / 44

Representing the distribution

24[PGM 2013, NYU, Sontag]



Structure through independence

25

Structure through independence

If X1, . . . , Xn are independent, then

p(x1, . . . , xn) = p(x1)p(x2) · · · p(xn)

2n entries can be described by just n numbers (if |Val(Xi )| = 2)!

However, this is not a very useful model – observing a variable Xi

cannot influence our predictions of Xj

If X1, . . . , Xn are conditionally independent given Y , denoted as
Xi ? X�i | Y , then

p(y , x1, . . . , xn) = p(y)p(x1 | y)
nY

i=2

p(xi | x1, . . . , xi�1, y)

= p(y)p(x1 | y)
nY

i=2

p(xi | y).

This is a simple, yet powerful, model

David Sontag (NYU) Graphical Models Lecture 1, January 31, 2013 28 / 44

[PGM 2013, NYU, Sontag]



Bayesian networks (directed PGMs)

26

Bayesian networks
Reference: Chapter 3

A Bayesian network is specified by a directed acyclic graph
G = (V , E ) with:

1 One node i 2 V for each random variable Xi
2 One conditional probability distribution (CPD) per node, p(xi | xPa(i)),

specifying the variable’s probability conditioned on its parents’ values

Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x1, . . . xn) =
Y

i2V

p(xi | xPa(i))

Powerful framework for designing algorithms to perform probability
computations

David Sontag (NYU) Graphical Models Lecture 1, January 31, 2013 30 / 44

[PGM 2013, NYU, Sontag]



Example

27

Example

Consider the following Bayesian network:

Grade

Letter

SAT

IntelligenceDifficulty

d1d0

0.6 0.4

i1i0

0.7 0.3

i0

i1

s1s0

0.95

0.2

0.05

0.8

g1

g2

g2

l1l 0

0.1

0.4

0.99

0.9

0.6

0.01

i0,d0

i0,d1

i0,d0

i0,d1

g2 g3g1

0.3

0.05

0.9

0.5

0.4

0.25

0.08

0.3

0.3

0.7

0.02

0.2

What is its joint distribution?

p(x1, . . . xn) =
Y

i2V

p(xi | xPa(i))

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)

David Sontag (NYU) Graphical Models Lecture 1, January 31, 2013 31 / 44

[PGM 2013, NYU, Sontag]



More examples

p(x1, . . . xn) =
Y

i2V

p(xi | xPa(i))

Will my car start this morning?

Heckerman et al., Decision-Theoretic Troubleshooting, 1995

David Sontag (NYU) Graphical Models Lecture 1, January 31, 2013 32 / 44

More Examples

28[Sontag]



More Examples

29

More examples

p(x1, . . . xn) =
Y

i2V

p(xi | xPa(i))

What is the di↵erential diagnosis?

Beinlich et al., The ALARM Monitoring System, 1989
David Sontag (NYU) Graphical Models Lecture 1, January 31, 2013 33 / 44

[Sontag]
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Entropy



Entropy
● Shannon entropy

! The average level of "information", "surprise", or "uncertainty" inherent to 
the variable 𝒙	's possible outcomes

31

𝐻 𝑝 = −8
𝒙
𝑝 𝒙 log	𝑝 𝒙



KL Divergence
● Kullback-Leibler (KL) divergence: measures the closeness of two 

distributions 𝑝(𝒙) and 𝑞(𝒙)

! a.k.a. Relative entropy
! KL >= 0  (Jensen’s inequality)
! Intuitively:
§ If 𝑞 is high and 𝑝 is high, then we are happy (i.e. low KL divergence) 
§ If 𝑞 is high and 𝑝 is low then we pay a price (i.e. high KL divergence).
§ If 𝑞 is low then we don’t care (i.e. also low KL divergence, regardless of 𝑝) 

! not a true “distance”: 
§ not commutative (symmetric) KL p||q 	! = KL(q||p)
§ doesn’t satisfy triangle inequality

32

KL 𝑞 𝒙 	||	𝑝(𝒙) =8
𝒙
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KL Divergence
● Kullback-Leibler (KL) divergence: measures the closeness of two 

distributions 𝑝(𝒙) and 𝑞(𝒙)

! a.k.a. Relative entropy

● Maximum likelihood estimation (MLE) is minimizing the KL divergence 
between the empirical data distribution and the model distribution
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KL 𝑞 𝒙 	||	𝑝(𝒙) =8
𝒙

𝑞 𝒙 	log
𝑞(𝒙)
𝑝(𝒙)

KL ?𝑝(𝒙)	||	𝑝"(𝒙) = −𝔼 %& 𝒙 	log	𝑝" 𝒙 	 + 𝐻( ?𝑝(𝒙))	

Cross entropy



Key Takeaways
● Probability 𝑝(𝒙) 

● Bayes’ rule
! prior, posterior

● Exponential family:
! Gaussian, multinomial, categorical, …

● Probabilistic graphical models: Bayesian networks

● KL Divergence
! relation to Cross-entropy
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KL 𝑞 𝒙 	||	𝑝(𝒙) =8
𝒙

𝑞 𝒙 	log
𝑞(𝒙)
𝑝(𝒙)

𝑝 𝒚|𝒙 =
𝑝 𝒙|𝒚 𝑝(𝒚)

𝑝 𝒙
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Functional Derivatives



Functional derivative
●  

● Functional 𝐹(𝑦): an operator that takes a function 𝑦(𝑥) and returns an 
output value 𝐹 

● Functional derivative (aka, variational derivative): relates a change in a 
Functional 𝐹 𝑦  to a change in the function 𝑦
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∇' −ℍ 𝑞 = log	𝑞 + 1



Functional derivative
● Recall the conventional derivative ()(*
! Taylor expansion

● Functional derivative
! How much a functional 𝐹[𝑦] changes when we make a small change 𝜀𝜂(𝑥) to 

the function 𝑦(𝑥)

! A function 𝑦(𝑥)	that maximizes (or minimizes) a functional 𝐹[𝑦]	 must satisfy 
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= 0 for all 𝑥	



Functional derivative

● Consider a functional that is defined by an integral over a function 
𝐺 𝑦, 𝑥

● Consider variations in the function 𝑦(𝑥), 

38

𝐹[𝑦] = L𝐺 𝑦, 𝑥 𝑑𝑥

𝐹 𝑦 + 𝜖𝜂 𝑥 = 𝐹 𝑦 𝑥 + 𝜖L
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Functional derivative

● Consider a functional that is defined by an integral over a function 
𝐺 𝑦, 𝑥

! Ex.1, −ℍ 𝑞 = ∫ 𝑞(𝑥)	log	𝑞(𝑥)	𝑑𝑥
§ 𝐺 = 𝑞 𝑥 log	𝑞(𝑥)

● Consider variations in the function 𝑦(𝑥),
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𝐹[𝑦] = L𝐺 𝑦, 𝑥 𝑑𝑥

𝐹 𝑦 + 𝜖𝜂 𝑥 = 𝐹 𝑦 𝑥 + 𝜖L
𝜕𝐺
𝜕𝑦

𝜂(𝑥)𝑑𝑥 + 𝑂(𝜖+)
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Practice: Maximum likelihood vs Maximum 
Entropy



Supervised Maximum Likelihood 
● Model to be learned 𝑝" 𝒙
● Observe full data 𝒟 = 	𝒙∗	
! i.i.d: independent, identically distributed 

● Maximum Likelihood Estimation (MLE)
! The most classical learning algorithm 

● MLE is closely connected to the Maximum Entropy (MaxEnt) principle

41

min
"
− 𝔼*∗∼𝒟

1
log	𝑝"(𝒙∗)



Recap: Exponential Family
● A distribution

is an exponential family distribution

! 𝜽 ∈ 𝑅%: natural (canonical) parameter 

! 𝑇 𝒙 ∈ 𝑅%: sufficient statistics, features of data 𝒙

! 𝑍 𝜽 = ∑&,( ℎ 𝒙 exp 𝜽	 ⋅ 𝑇 𝒙 : normalization factor

● Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,... 
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𝑝" 𝒙 = ℎ 𝒙 	exp 𝜽	 ⋅ 𝑇 𝒙 	/𝑍(𝜽)



Maximum Likelihood for Exponential Family
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● Take gradient and set to 0 

𝑚 𝒙  : the number of times 𝒙	is observed in D

At MLE, the expectations of 
the sufficient statistics under 
the model must match 
empirical feature average



Maximum Entropy (MaxEnt)
● Given 𝒟, to estimate 𝑝 𝒙
● We can approach the problem from an entirely different point of view. 

Begin with some fixed feature expectations:

● There may exist many distributions which satisfy them. Which one should 
we select?
! MaxEnt principle: the most uncertain or flexible one, i.e., the one with 

maximum entropy
● This yields a new optimization problem:
! This is a variational definition of a distribution!
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8
𝒙
𝑝 𝒙 𝑇9 𝒙 =8

𝒙

𝑚(𝒙)
𝑁

𝑇9 𝒙 ≔ 𝛼9



Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:
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Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:
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Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:
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● So feature constraints 
+ MaxEnt Þ 
exponential family.

● Problem is strictly 
convex w.r.t. 𝑝(𝒙), so 
solution is unique.
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Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:

plug 𝑝(𝑥|𝜽) back into 𝐿, and since ∑𝒙
.(𝒙)
/
𝑇& 𝒙 ≔ 𝛼&:

● Recovers precisely the MLE problem of exponential family
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● So feature constraints 
+ MaxEnt Þ 
exponential family.

● Problem is strictly 
convex w.r.t. 𝑝(𝒙), so 
solution is unique.

max
),*

 min
"(,)

	

max
"
	𝐿 𝜽

(Homework)



Constraints from Data
● We have seen a case of convex duality:

! In one case, we assume exponential family and show that Maximum 
Likelihood implies model expectations must match empirical expectations.

! In the other case, we assume model expectations must match empirical 
feature counts and show that MaxEnt implies exponential family distribution.
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A more general MaxEnt problem
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Summary
● Maximum entropy is dual to maximum likelihood of exponential family 

distributions
● This provides an alternative view of the problem of fitting a model into 

data:
! The data instances in the training set are treated as constraints, and the 

learning problem is treated as a constrained optimization problem.
! We’ll revisit this optimization-theoretic view of learning repeatedly in the 

future!
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Key Takeaways

● Probability

! Bayes’ rule

! Exponential family

! Probabilistic graphical models: Bayesian networks

! KL divergence

● Functional derivative

● Convex duality between MLE and MaxEnt (optional)
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Questions?


