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Outline
e Probability

o Bayes' rule

o Exponential family

o Probabilistic graphical models

o Entropy, KL divergence, cross entropy

e Functional derivatives

e Practice: MLE vs Maximum entropy



Probability



Why Probability?

e The world is a very uncertain place nicola

thecagse: |
o "What will the weather be like today?” weather |
“Will | like this movie?” man

e We often can't prove something is true, but we can still
ask how likely different outcomes are or ask for the most
likely explanations

R, Kk Korkok
e Predictions need to have associated confidence (w) 2o
o Confidence -> probability

momol
—ir

e Not all machine learning models are probabilistic
o ... but most of them have probabilistic interpretations

[CS60020, Bhattacharya; CSC2515, Wang] 4



Example: topic modeling

[15-780, Kolter]
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Topics

For documents in a large collection of text, model p(Word|Topic),

p(Topic)

“Genetics”

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

“Evolution”

evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

“Disease”
disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

“Computers”
computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations

Figure from (Blei, 2011), shows topics and top words learned
automatically from reading 17,000 Science articles



Example: image segmentation

[15-780, Kolter]

Figure (Nowozin and Lampert, 2012) shows image segmentation
problem, original image on left, where goal is to separate foreground
from background

Middle figure shows a segmentation where each pixel is individually
classified as belonging to foreground or background

Right figure shows a segmentation where the segmentation is
inferred from a probability model over all pixels jointly (encoding
probability that neighboring pixels tend to belong to the same group)



Example: modeling protein networks

A Model inference result

o Phospho-Prote ins
O Phospho-Lipids

O Perturbed in data

Expected 1517

Reported 1717

Reverse d 1

Missed 3

In cellular modeling, can we automatically determine how the
presence or absence of some proteins affects other proteins?

Figure from (Sachs et al., 2005) shows automatically inferred protein
probability network, which captured most of the known interactions
using data-driven methods (far less manual effort than previous

15780, Kolter) MeEthOdS)



Notations

e A random variable x represents outcomes or states of the world.

o We write p(x,) to mean Probability(x = x)

e Sample space: the space of all possible outcomes (may be discrete,

continuous, or mixed)

e p(x) is the probability mass (density) function
o Assigns a number to each point in sample space
o Non-negative, sums (integrates) to 1

o Intuitively: how often does x occur, how much do we believe in x.

[CSC2515, Wang]



Notations

e Joint distribution p(x, y)

o Conditional distribution p(y|x)

p(x,y)
p(x)

o pylx) =
o Expectation:

EIf ()] = ) f(x)p@)

or

E[f (x)] = f FOp(x)dx



Rules of Probability

e Sumrule

p(x) = E P(X, J/) (Marginalize out y)
y

p(x) = E EE P(X5 X550, Xy )

X2 X3 AN
e Product/chain rule

p(x,y)=p(y|x)p(x)
P(XpsesXy) = p(X) p(X, [ X))o p(Xy | Xp5eees X )

[CSC2515, Wang]
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Bayes’ Rule
p(x|y)pr(y)

p(x)

e This gives us a way of “reversing” conditional probabilities

p(y|x) =

e We call p(y) the “prior”, and p(y|x) the “posterior”

e Ex: Bayes’ Rule in machine learning:
o D: data (evidence)
o 0: unknown quantities, such as model parameters, predictions

Likelihood: How likely is the
observed data under the

Posterior belief on the D (D | 9)[? (9) particular unknown quantities 6
unknown quantities —— P(G |D) — (D)
you see data D p Prior belief on the unknown

quantities before you see data D
[10-601B @ CMU] 11



Independence

e Two random variables are said to be independent iff their joint
distribution factors

p(x,y) = p(X)p(y)

e Two random variables are conditionally independent given a third if they
are independent after conditioning on the third

p(x,y|z) = p(x|2)p(y|z)

[CSC2515, Wang] 12



Some common distributions - Gaussian distribution

e Gaussian distribution
(Multivariate)

_1/2 | T <ol
P(x|u,0)= 1 exp{— : (x - ,u)2} P(xlup)= |2772| eXP{—E(X —w) 2 (x - M)}
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[CSC2515, Wang] N |5



Some common distributions - Multinomial distribution

e Multinomial distribution
o Discrete random variable x that takes one of M values {1, ..., M}

O p(le) = T[i, Ziﬂizl

o Out of n independent trials, let k; be the number of times x = i was observed

o The probability of observing a vector of occurrences k = [ky, ..., ky] is given by the
multinomial distribution parametrized by 7

n! ks
p(kim,n) = p(ki,...,Kmlm, ..., Tm, 1) = klzkzz...kng“i

o E.g., describing a text document by the frequency of occurrence of every distinct
word
o Forn =1, a.k.a. categorical distribution
" plx=ilm) =m
* Ink=[ky,...kyl: k;=1,and kj =0forallj#i — a.k.a., one-hot representation of i
[CSC2515, Wang] 14



Exponential family

e A distribution
pe(x) = h(x) exp{@ -T(x)}/Z(0)

is an exponential family distribution

o 0 € R%: natural (canonical) parameter

o T(x) € R: sufficient statistics, features of data x

o Z(0) = Yy yh(x)exp{@ - T(x)}: normalization factor

e Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

15



Example: Multivariate Gaussian Distribution

e For a continuous vector random variable x € Rk

. (zn)"’l"’lz“ eXp{_;(x_” ”@g

R { | (_1 T) N 1Mo}mentparameter
_Wexp—gtrf, xx Hux X—s U 2 - og\Zl

p(x

e Exponential family representation

[ 1 1
0= |1y 5 vec (Z_l)] = [0, vec (03)], 8, =X 'pand 0, = —52_1

T(x) = :-a:;vec (zz")]

1 1 1
A(0) = 5#23—1# +log [Bf = = tr (626167 ) — 5 log (—265)

h(z) = (2m) /2
16



Probabilistic Graphical Models



Example

@ Consider three binary-valued random variables

Xl, XQ, X3 Val(X,) — {O, ].}

@ Let outcome space €2 be the cross-product of their states:

Q2 = Val(X;1) x Val(Xz) x Val(X3)
@ Xj(w) is the value for X; in the assignment w € Q2
@ Specify p(w) for each outcome w € 2 by a big table:

X1 X2 X3 P(X1, X2, X3)
0O 0 O 11
0 O 1 .02

1 1 1 |.05
@ How many parameters do we need to specify?
[PGM 2013, NYU, Sontag] 23 _1
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Marginalization

@ Suppose X and Y are random variables with distribution p(X, Y)
X: Intelligence, Val(X) = {“Very High"”, “High" }

Y: Grade, Val(Y)={"a", “b"
@ Joint distribution specified by:

h

0.15

X

vh

Y a |07
b | 0.1

e p(Y=a)=7=0.85

@ More generally, suppose we have a joint distribution p(Xi, ..

Then,

0.05

DD IED D) I B

[PGM 2013, NYU, Sontag] Xi—1 Xi+1

LX),
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Conditioning

@ Suppose X and Y are random variables with distribution p(X, Y)
X: Intelligence, Val(X) = {"Very High”, “High" }
Y: Grade, Val(Y)={"a", "b"}
X
vh | h
Y a| 07015
b| 0.1] 0.05

@ Can compute the conditional probability
p(Y = a, X = vh)

p(X = vh)
p(Y = a, X = vh)

p(Y=a|X=vh) =

p(Y = a,X = vh) + p(Y = b, X = vh)

0.7
= = 0.875.

[PGM 2013, NYU, Sontag] 0.7+0.1




Example: Medical diagnosis

@ Variable for each symptom (e.g. “fever”, “cough”, “fast breathing”,

“shaking”, “nausea”, "“vomiting")

@ Variable for each disease (e.g. “pneumonia”, “flu”, “common cold”,

“bronchitis”, “tuberculosis”)

@ Diagnosis is performed by inference in the model:

p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

@ One famous model, Quick Medical Reference (QMR-DT), has 600
diseases and 4000 findings

[PGM 2013, NYU, Sontag]

23



Representing the distribution

@ Naively, could represent multivariate distributions with table of

probabilities for each outcome (assignment)
@ How many outcomes are there in QMR-DT? 24600
e Estimation of joint distribution would require a huge amount of data

@ Inference of conditional probabilities, e.g.
p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

would require summing over exponentially many variables’ values

@ Moreover, defeats the purpose of probabilistic modeling, which is to
make predictions with previously unseen observations

[PGM 2013, NYU, Sontag]

24



Structure through independence

o If X1,...,X, are independent, then

p(xi, ..., xn) = p(x1)p(x2) - - - p(xn)
@ 2" entries can be described by just n numbers (if |Val(X;)| = 2)!

@ However, this is not a very useful model — observing a variable X;

cannot influence our predictions of X

o If Xi,...,X, are conditionally independent given Y, denoted as
X; L X_; I Y, then
n
P(y,Xl, s 7Xn) — P(y)P(Xl ‘ )/)HP(XI | XLy ,Xi_1,)/)
=2

= p()pCa | y) [ ] p(xi | y).
=2

[PGM 2013, NYU, Sontag]

25



Bayesian networks (directed PGMs)

e A Bayesian network is specified by a directed acyclic graph
G = (V, E) with:
@ One node i € V for each random variable X;
@ One conditional probability distribution (CPD) per node, p(X; | Xpa(i)),
specifying the variable’s probability conditioned on its parents’ values
@ Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x1,...xn) = H P(Xi | Xpa(/))
eV

@ Powerful framework for designing algorithms to perform probability
computations

[PGM 2013, NYU, Sontag] 26



Example

@ Consider the following Bayesian network:

d() dl i i
0.6 0.4

g
i%d° [ 03 )
i%d" | 0.05 .
i%d°1 0.9 |0.08] 002 % sO | st
i%d' 105 |03 |02 i% 095 | 0.05
i' o2 |08
1° 1!
ghlo1 |09
g?2l04 |06
g2 1099 | 0.01

@ What is its joint distribution?
p(x1,...xp) = H p(xi | XPa(i))
ieVv
[PGM 2013, NYU, Sontag] p(d, I, 8,5, /) — p(d)p(i)p(g ‘ / d)p(s ’ i)P(/ ‘ g)



More Examples

p(x1,...xp) = H p(Xi | Xpa(i))

eV

Will my car start this morning?

Starter
Alternator
Radio
FuelPump
Distributor Leak
Engine@Qranks
BatteryPgwer char
BatteyyState
SparkPlugs
BateryAge Fanpelt

GasInTank

[Sontag] Heckerman et al., Decision-Theoretic Troubleshooting, 1995 28



More Examples

p(Xl, .. Xn) = H P(Xi | XPa(i))

eV
What is the differential diagnosis?
I SO,
b D

HRBP HR HR SAT
EKG

Fy. 1 The ALARM network representing causal relationships ts shown with diagnostic (@), tntermedtate (Q) and
measurement ( Q) nodes. CO: cardiac output, CVP: central venous pressure, LVED volume: left ventricular end-
diastolic volume, LV failure: left ventricular fatlure, MV: minute ventilation, PA Sat: pulmonary artery axygen satu-
ration, PAP: pulmonary artery pressure, PCWP: pulmonary captilary wedge pressure, Pres: breathing pressure, RR:

[Sontag] Beinlich et al., The ALARM Monitoring System, 1989
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Entropy
e Shannon entropy H(p) = —2 p(x)log p(x)

o The average level of "information", "surprise", or "uncertainty" inherent to
the variable x 's possible outcomes

31



KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two
distributions p(x) and q(x)

KL(g() [ () = Z a(x) log-

o a.k.a. Relative entropy
o KL>=0 (Jensen’s inequality)
o Intuitively:
= |f g is high and p is high, then we are happy (i.e. low KL divergence)
= |f q is high and p is low then we pay a price (i.e. high KL divergence).
= |f g is low then we don't care (i.e. also low KL divergence, regardless of p)
o not a true “distance”:
= not commutative (symmetric) KL(p||q) ! = KL(q||p)
= doesn't satisfy triangle inequality

p(x)

32



KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two
distributions p(x) and q(x)

a0
KL(q() || p(x)) = 2 () log 2

o a.k.a. Relative entropy

e Maximum likelihood estimation (MLE) is minimizing the KL divergence
between the empirical data distribution and the model distribution

KL(B () || po(x)) = —Ep) | log pe(x) ] + H(B(x))
Cross entropy

33



Key Takeaways
e Probability p(x)

p(x|y)r(y)
p(x)

e Bayes' rule p(y|x) =

o prior, posterior

e Exponential family:
o Gaussian, multinomial, categorical, ...

e Probabilistic graphical models: Bayesian networks

e KL Divergence
o relation to Cross-entropy KL(q(x) || p(x)) = 2 q(x) log
X

q(x)
p(x)

34



Functional Derivatives



Functional derivative
e V,—H(q)=logg+1

e Functional F(y): an operator that takes a function y(x) and returns an
output value F

e Functional derivative (aka, variational derivative): relates a change in a
Functional F(y) to a change in the function y

36



Functional derivative

o Recall the conventional derivative —

o Taylor expansion
y(z+e) =y(z) + e+ O(€)

e Functional derivative

o How much a functional F[y] changes when we make a small change en(x) to
the function y(x)
OF

Fly(z) +en(z)] = Fly(z)] + ¢ / 5y ()

o A function y(x) that maximizes (or minimizes) a functional F[y] must satisfy

SF
6y(x)

n(z)dz + O(€?)

= 0 for all x

37



Functional derivative

Fly(a) + en(@)] = Fly(a)) + < [ 50sn(a) do -+ O(e)

e Consider a functional that is defined by an integral over a function
G(y,x)
Fly] = | G(y,x)dx

e Consider variations in the function y(x),

aG
Fly + en(0)] = Fly(o] + € f 75 100dx + 0(e?)

38



Functional derivative

Fly(z) + en(@)] = Fly(x)] + e / oF

6y(x)

n(z) dz + O(€?)

e Consider a functional that is defined by an integral over a function
G(y,x)
Fly] = | G(y,x)dx

o Ex.1, —H(q) = J q(x) log q(x) dx
G = q(x)log q(x)
e Consider variations in the function y(x),

Fly + en(o)] = Fly(o)] + e f 2 G0dx + 0(€2)

39



Practice: Maximum likelihood vs Maxi
Splige]e)



Supervised Maximum Likelihood

e Model to be learned pg(x)

e Observe full data D = { x* }
o i.i.d: independent, identically distributed

e Maximum Likelihood Estimation (MLE)
o The most classical learning algorithm

min — By _p | logpe(x") |

e MLE is closely connected to the Maximum Entropy (MaxEnt) principle

41



Recap: Exponential Family

e A distribution
pe(x) = h(x) exp{@ -T(x)} /Z(0)

is an exponential family distribution

o 0 € R%: natural (canonical) parameter

o T(x) € R: sufficient statistics, features of data x

o Z(0) = Yy yh(x)exp{@ - T(x)}: normalization factor

e Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

42



Maximum Likelihood for Exponential Family

m(x) : the number of times x is observed in D

Zm ) log p( | 6)

=) m(x) (Z 0;Ti(x) — log Z(H)>
=Y " m(x) Z 0:;T;(x) — Nlog Z(6)

e Take gradient and setto O

= 1Y p(@ | OTi(@)= m](v""):ri(m) S:

4 R

At MLE, the expectations of
the sufficient statistics under

the model must match
empirical feature average

/

43



Maximum Entropy (MaxEnt)

e Given D, to estimate p(x)

e We can approach the problem from an entirely different point of view.
Begin with some fixed feature expectations:

Ex p(xX)T;(x) = Ex m]E/x) T;(x) = «a;

e There may exist many distributions which satisfy them. Which one should
we select?
o MaxEnt principle: the most uncertain or flexible one, i.e., the one with

rr.waX|.mum entropy o max H(p Zp ) log p(a
e This yields a new optimization problem: | »

o This is a variational definition of a distribution!
S. L. Zp

> plw) =




Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L = — > p()logp(x) — Z 0 (Z p(x)Ti(x) — ai) — <Zp(iv) = 1)

45



Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L = —Y p(x) logp(w ZQ (Zp —ozz-) — (Zp(w) N

oL
8p(w)—1+logp ZHT
p () = e Lexp {Z Gifi(w)}
Z(0) =et 1t = Zexp {Z Hifi(a:)} (since Zp*(:c) = 1)

p(x|0) =

46
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Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L:—Zp( log p(x ZQ (Zp —Oéi) —,u(Zp(m)—l)

O.u px)

8;?([;)_1+10gp ZHT / \

e So feature constraints

() = el ox 0, f, + MaxEnt =
pw) =t p{zi: f(w)} exponential family.
Z(0) =et 1t = Zexp {Z Qifi(a:)} (since Zp*(a:) =1

e Problem is strictly
convex w.r.t. p(x), so

solution is unique.

p(x|0) =

47



Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max %r)‘ L= —Zp( log p(x 29 (Zp _az’> — (Zp(fv) = 1)
eXp{ZHT } \

e So feature constraints
+ MaxEnt =

p(z | 0) =

plug p(x|@) back into L, and since }., mlflx) T;(x) == a;: exponential family.
- .- : e Problem is strictly
max L(0) =) m(x) > 6,T;(x) — Nlog Z(6) convex w.r.t. p(x), so
¢ z i solution is unique.
e Recovers precisely the MLE problem of exponential family K /

(Homework) 48



Constraints from Data

e We have seen a case of convex duality:

o In one case, we assume exponential family and show that Maximum
Likelihood implies model expectations must match empirical expectations.

o In the other case, we assume model expectations must match empirical
feature counts and show that MaxEnt implies exponential family distribution.

49



A more general MaxEnt problem

min KL(p(x)||h(z))

S @) log oy = ~H() — Y pl@) log (@)

S.t. Zp(a:)Tz(a:) = ;4

50



Summary

e Maximum entropy is dual to maximum likelihood of exponential family
distributions

e This provides an alternative view of the problem of fitting a model into
data:

o The data instances in the training set are treated as constraints, and the
learning problem is treated as a constrained optimization problem.

o We'll revisit this optimization-theoretic view of learning repeatedly in the
future!

max H(p Z p(x)logp(x

51



Key Takeaways

e Probability
o Bayes' rule
o Exponential family
o Probabilistic graphical models: Bayesian networks

o KL divergence
e Functional derivative

e Convex duality between MLE and MaxEnt (optional)
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