DSC250: Advanced Data Mining

Recommeder System

Zhiting Hu Lecture 18, November 30, 2023

HALICIOĞLU DATA SCIENCE INSTITUTE

Logistics

- Mid-quarter evaluation
 - Google form: see Piazza
 - Please complete by EOD Monday Dec.4

Outline

- Recommender System
- 5 paper presentations
 - Jiongli Zhu, Shuying Li
 - Henry Wang, James Chen
 - Neha Mittal, Rijul Sherathia
 - Akansha Lalwani, Divyansh Srivastava
 - Harin, Golokesh

Recommender System (RecSys)

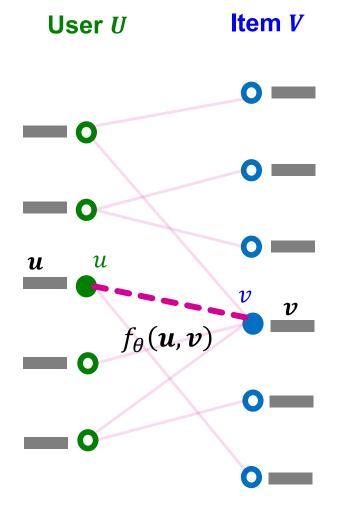
Slides adapted from:

- Y. Sun, CS 247: Advanced Data Mining
- Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Recap: Embedding-Based Models

- We consider embeddingbased models for scoring useritem interactions.
 - For each user $u \in U$, let $u \in \mathbb{R}^D$ be its *D*-dimensional embedding.
 - For each item $v \in V$, let $v \in \mathbb{R}^D$ be its *D*-dimensional embedding.
 - Let $f_{\theta}(\cdot, \cdot) : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$ be a parametrized function.

• Then, score
$$(u, v) \equiv f_{\theta}(u, v)$$



Recap: Limitations of Shallow Encoders

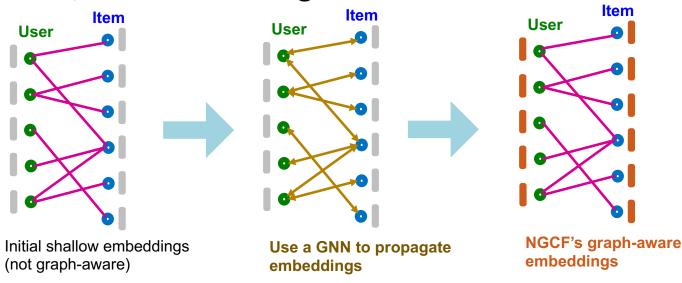
- The model itself does not explicitly capture graph structure
 - The graph structure is *only implicitly* captured in the training objective.
- Only the first-order graph structure (i.e., edges) is captured in the training objective.
 - High-order graph structure (e.g., K-hop paths between two nodes) is not explicitly captured.

Recap: We want a model that ...

- We want a model that...
 - explicitly captures graph structure (beyond implicitly through the training objective)
 - captures high-order graph structure (beyond the first-order edge connectivity structure)
- GNNs are a natural approach to achieve both!
 - Neural Graph Collaborative Filtering (NGCF) [Wang et al. 2019]
 - LightGCN [He et al. 2020]
 - A simplified and improved version of NGCF

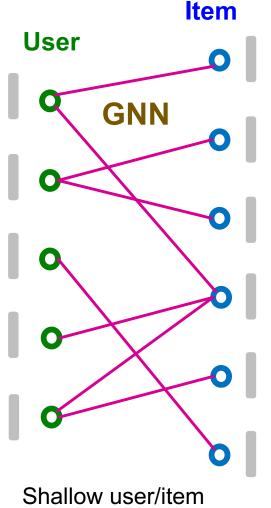
NGCF: Overview

- Neural Graph Collaborative Filtering (NGCF) explicitly incorporates high-order graph structure when generating user/item embeddings.
- Key idea: Use a GNN to generate graph-aware user/item embeddings.



NGCF

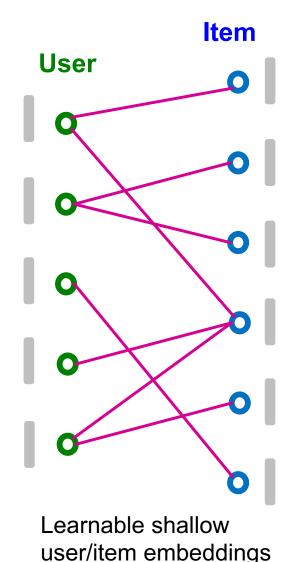
- Given: User-item bipartite graph.
- NGCF framework:
 - Prepare shallow learnable embedding for each node.
 - Use multi-layer GNNs to propagate embeddings along the bipartite graph.
 - High-order graph structure is captured.
 - Final embeddings are *explicitly* graphaware!
- Two kinds of learnable params are jointly learned:
 - Shallow user/item embeddings
 - GNN's parameters



embeddings (learnable)

NGCF: Initial Node Embeddings

- Set the shallow
 learnable embeddings as the initial node features:
 - For every user $u \in U$, set $h_u^{(0)}$ as the user's shallow embedding.
 - For every item v ∈ V, set
 h_v⁽⁰⁾ as the item's shallow embedding.



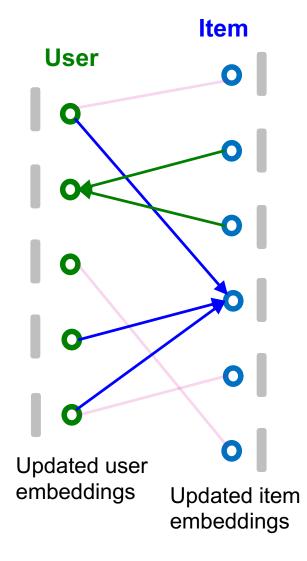
NGCF: Neighbor Aggregation

Iteratively update node embeddings using neighboring embeddings. $h_{v}^{(k+1)} = \text{COMBINE}\left(h_{v}^{(k)}, \text{AGGR}\left(\left\{h_{u}^{(k)}\right\}_{u \in N(v)}\right)\right)$ $h_{u}^{(k+1)} = \text{COMBINE}\left(h_{u}^{(k)}, \text{AGGR}\left(\left\{h_{v}^{(k)}\right\}_{v \in N(u)}\right)\right)$

High-order graph structure is captured through iterative neighbor aggregation.

Different architecture choices are possible for AGGR and COMBINE.

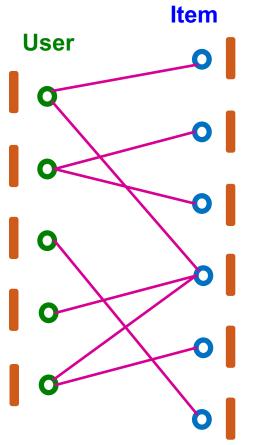
- $AGGR(\cdot)$ can be $MEAN(\cdot)$
- COMBINE(x, y) can be ReLU(Linear(Concat(x, y)))



NGCF: Final Embeddings and Score Function

- After K rounds of neighbor aggregation, we get the final user/item embeddings h^(K)_u and h^(K)_v.
- For all $u \in U$, $v \in V$, we set $u \leftarrow h_u^{(K)}$, $v \leftarrow h_v^{(K)}$.
- Score function is the inner product

$$score(u, v) = u^T v$$



Final user/item embeddings (graph-aware)

NGCF: Summary

- Conventional collaborative filtering uses shallow user/item embeddings.
 - The embeddings do *not explicitly* model graph structure.
 - The training objective does not model high-order graph structure.
- NGCF uses a GNN to propagate the shallow embeddings.
 - The embeddings are explicitly aware of highorder graph structure.

Issues of Collaborative Filtering

- Cold Start: There needs to be enough other users already in the system to find a match.
- Sparsity: If there are many items to be recommended, even if there are many users, the user/ratings matrix is sparse, and it is hard to find users that have rated the same items.
- First Rater: Cannot recommend an item that has not been previously rated.
 - New items
 - Esoteric items
- Popularity Bias: Cannot recommend items to someone with unique tastes.
 - Tends to recommend popular items.

Methods

- Collaborative filtering
- Content-based recommendation
- Hybrid methods

Content-based Recommendation

- Collaborative filtering does NOT require any information about content,
 - However, it might be reasonable to exploit such information
 - E.g. recommend fantasy novels to people who liked fantasy novels in the past
- What do we need:
 - Information about the available items such as the genre ("content")
 - user profile describing what the user likes (the preferences)
- The task:
 - Learn user preferences
 - Locate/recommend items that are "similar" to the user preferences

Content-based Recommendation

	Title	Genre	Author	Type	Price	Keywords
	The Night of the Gun	Memoir	David Carr	Paperback	29.90	Press and jour- nalism, drug addiction, per- sonal memoirs, New York
User profile	The Lace Reader	Fiction, Mystery	Brunonia Barry	Hardcover	49.90	American contem- porary fiction, de- tective, historical
	Into the Fire	Romance, Suspense	Suzanne Brock- mann	Hardcover	45.90	American fic- tion, Murder, Neo-nazism
	Title	Genre	Author	Type	Price	Keywords
ltem		Fiction, Suspense	Brunonia Barry, Ken Follet,	Paperback	25.65	detective, murder, New York

- Simple approach
 - Compute the similarity of an unseen item with the user profile based on the keyword overlap (e.g. using the Dice coefficient)
 - $sim(b_i, b_j) = \frac{2 * |keywords(b_i) \cap keywords(b_j)|}{|keywords(b_i)| + |keywords(b_j)|}$
- Other advanced similarity measure

Methods

- Collaborative filtering
- Content-based recommendation

• Hybrid methods

- Combining both user-item interaction and other external sources of information
- E.g., Factorization Machines

Conclusions

This Course: Summary

- 1) Text mining
 - Topic models
 - LDA, Expectation Maximization, variational inference
 - Language models
 - Text representation learning (embedding)
- 2) Graph/network mining
 - Node embedding
 - Graph neural networks
 - Knowledge graphs and reasoning
- 3) Recommender systems
 - Collaborative filtering
 - Embedding-based methods
 - Graph neural networks for recommendation
 - Content-based recommendation
 - Hybrid methods

Data Mining Society

- 1989 IJCAI Workshop on Knowledge Discovery in Databases
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD'95-98)
 - Journal of Data Mining and Knowledge Discovery (1997)
- ACM SIGKDD conferences since 1998 and SIGKDD Explorations
- More conferences on data mining
 - PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001), etc.
- ACM Transactions on KDD starting in 2007

Conferences and Journals on Data Mining

- KDD Conferences
 - ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
 - SIAM Data Mining Conf. (SDM)
 - (IEEE) Int. Conf. on Data Mining (ICDM)
 - European Conf. on Machine Learning and Principles and practices of Knowledge Discovery and Data Mining (ECML-PKDD)
 - Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)
 - Int. Conf. on Web Search and Data Mining (WSDM)

- Other related conferences
 - DB conferences: ACM SIGMOD,
 VLDB, ICDE, EDBT, ICDT, ...
 - Web and IR conferences: WWW, SIGIR, WSDM
 - ML conferences: ICML, NIPS
 - PR conferences: CVPR,
- Journals
 - Data Mining and Knowledge
 Discovery (DAMI or DMKD)
 - IEEE Trans. On Knowledge and Data Eng. (TKDE)
 - KDD Explorations
 - ACM Trans. on KDD

Questions?