DSC250: Advanced Data Mining

Recommeder System

Zhiting Hu Lecture 17, November 28, 2023

HALICIOĞLU DATA SCIENCE INSTITUTE

Logistics

Outline

- Recommender System
- 5 paper presentations
 - Gabriel Pila, Vivek S
 - Sai Kaushik Soma, Harsha Vardhan gangala
 - Barry Xiong, Fei Teng
 - Ishita Khatri, Yashi Shukla
 - Swetha Arunraj, Mohammed Alblooshi

Recommender System (RecSys)

Slides adapted from:

- Y. Sun, CS 247: Advanced Data Mining
- Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Recommendation as Link Prediction

- Given
 - Past user-item interactions
- Task
 - Predict new items each user will interact in the future.
 - Can be cast as link prediction problem.
 - Predict new user-item interaction edges given the past edges.
 - For $u \in U, v \in V$, we need to get a real-valued score f(u, v).

Top-K Recommendation

- For each user, we recommend *K* items.
 - For recommendation to be effective, K needs to be much smaller than the total number of items (up to billions)
 - *K* is typically in the order of 10−100.
- The goal is to include as many positive items as possible in the top-K recommended items.
 - Positive items = Items that the user will interact with in the future.
- Evaluation metric: Recall@K (defined next)

Evaluation Metric: Recall@K

• For each user *u*,

- Let P_u be a set of positive items the user will interact in the future.
- Let R_u be a set of items recommended by the model.
 - In top-*K* recommendation, $|R_u| = K$.
 - Items that the user has already interacted are excluded.

Evaluation Metric: Recall@K

- **Recall**@*K* for user *u* is $|P_u \cap R_u|/|P_u|$.
 - Higher value indicates more positive items are recommended in top-K for user u.

The final Recall@K is computed by averaging the recall values across all users.

Methods

- Collaborative filtering
- Content-based recommendation
- Hybrid methods

Methods

- Collaborative filtering
- Content-based recommendation
- Hybrid methods

Collaborative Filtering (CF)

- Underlying idea: Collaborative filtering
 - Recommend items for a user by collecting preferences of many other similar users.
 - Similar users tend to prefer similar items.
- Key question: How to capture similarity between users/items?

Collaborative Filtering (CF): Methods

- Memory-based Collaborative Filtering
 - User-based CF
 - Compute similarity between users and active users, and use similar users' ratings as prediction
 - Item-based CF
 - Compute similarity between items, and predict similar rating to similar items that the active user has rated before
- Model-based Collaborative Filtering

Collaborative Filtering (CF): Methods

- Memory-based Collaborative Filtering
 - User-based CF
 - Compute similarity between users and active users, and use similar users' ratings as prediction
 - Item-based CF
 - Compute similarity between items, and predict similar rating to similar items that the active user has rated before
- Model-based Collaborative Filtering

- The rating matrix is directly used to find neighbors / make predictions
- Does not scale for most realworld scenarios

Collaborative Filtering (CF): Methods

- Memory-based Collaborative Filtering
- Model-based Collaborative Filtering
 - based on an offline pre-processing or "model-learning" phase
 - at run-time, only the learned model is used to make predictions
 - models are updated / re-trained periodically
 - large variety of techniques used
 - model-building and updating can be computationally expensive

Embedding-Based Models

- To get the top-*K* items, we need a score function for user-item interaction:
 - For $u \in U, v \in V$, we need to get a real-valued scalar score(u, v).
 - K items with the largest scores for a given user u (excluding alreadyinteracted items) are then recommended.

Embedding-Based Models

- We consider embeddingbased models for scoring useritem interactions.
 - For each user $u \in U$, let $u \in \mathbb{R}^D$ be its *D*-dimensional embedding.
 - For each item $v \in V$, let $v \in \mathbb{R}^D$ be its *D*-dimensional embedding.
 - Let $f_{\theta}(\cdot, \cdot): \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$ be a parametrized function.

• Then, score
$$(u, v) \equiv f_{\theta}(u, v)$$

Embedding-Based Models: Training Objective

- Embedding-based models have three kinds of parameters:
 - An encoder to generate user embeddings $\{u\}_{u \in U}$
 - An encoder to generate item embeddings $\{v\}_{v \in V}$
 - Score function $f_{\theta}(\cdot, \cdot)$
- Training objective: Optimize the model parameters to achieve high recall@K on seen (i.e., training) user-item interactions
 - We hope this objective would lead to high recall@K on unseen (i.e., test) interactions.

Embedding-Based Models: Surrogate Loss Functions

- The original training objective (recall@K) is not differentiable.
 - Cannot apply efficient gradient-based optimization.
- Two surrogate loss functions are widely-used to enable efficient gradient-based optimization.
 - Binary loss
 - Bayesian Personalized Ranking (BPR) loss
- Surrogate losses are differentiable and should align well with the original training objective.

Why Embedding Models Work?

- Embedding-based models can capture similarity of users/items!
 - Low-dimensional embeddings *cannot* simply memorize all user-item interaction data.
 - Embeddings are forced to capture similarity between users/items to fit the data.
 - This allows the models to make effective prediction on *unseen* user-item interactions.

Conventional Embedding-based CF

- Conventional collaborative filtering model is based on shallow encoders:
 - Use shallow encoders for users and items:
 - For every $u \in U$ and $v \in V$, we prepare shallow learnable embeddings $u, v \in \mathbb{R}^{D}$.
 - Score function for user u and item v is $f_{\theta}(\boldsymbol{u}, \boldsymbol{v}) \equiv \boldsymbol{z}_{\boldsymbol{u}}^{T} \boldsymbol{z}_{\boldsymbol{v}}$.

Limitations of Shallow Encoders

- The model itself does not explicitly capture graph structure
 - The graph structure is *only implicitly* captured in the training objective.
- Only the first-order graph structure (i.e., edges) is captured in the training objective.
 - High-order graph structure (e.g., K-hop paths between two nodes) is not explicitly captured.

We want a model that ...

- We want a model that...
 - explicitly captures graph structure (beyond implicitly through the training objective)
 - captures high-order graph structure (beyond the first-order edge connectivity structure)
- GNNs are a natural approach to achieve both!
 - Neural Graph Collaborative Filtering (NGCF) [Wang et al. 2019]
 - LightGCN [He et al. 2020]
 - A simplified and improved version of NGCF

NGCF: Overview

- Neural Graph Collaborative Filtering (NGCF) explicitly incorporates high-order graph structure when generating user/item embeddings.
- Key idea: Use a GNN to generate graph-aware user/item embeddings.

NGCF

- Given: User-item bipartite graph.
- NGCF framework:
 - Prepare shallow learnable embedding for each node.
 - Use multi-layer GNNs to propagate embeddings along the bipartite graph.
 - High-order graph structure is captured.
 - Final embeddings are *explicitly* graphaware!
- Two kinds of learnable params are jointly learned:
 - Shallow user/item embeddings
 - GNN's parameters

embeddings (learnable)

NGCF: Initial Node Embeddings

- Set the shallow
 learnable embeddings as the initial node features:
 - For every user $u \in U$, set $h_u^{(0)}$ as the user's shallow embedding.
 - For every item v ∈ V, set
 h_v⁽⁰⁾ as the item's shallow embedding.

Learnable shallow user/item embeddings

NGCF: Neighbor Aggregation

Iteratively update node embeddings using neighboring embeddings. $h_{v}^{(k+1)} = \text{COMBINE}\left(h_{v}^{(k)}, \text{AGGR}\left(\left\{h_{u}^{(k)}\right\}_{u \in N(v)}\right)\right)$ $h_{u}^{(k+1)} = \text{COMBINE}\left(h_{u}^{(k)}, \text{AGGR}\left(\left\{h_{v}^{(k)}\right\}_{v \in N(u)}\right)\right)$

High-order graph structure is captured through iterative neighbor aggregation.

Different architecture choices are possible for AGGR and COMBINE.

- $AGGR(\cdot)$ can be $MEAN(\cdot)$
- COMBINE(x, y) can be ReLU(Linear(Concat(x, y)))

NGCF: Final Embeddings and Score Function

- After K rounds of neighbor aggregation, we get the final user/item embeddings h_u^(K) and h_v^(K).
- For all $u \in U$, $v \in V$, we set $u \leftarrow h_u^{(K)}$, $v \leftarrow h_v^{(K)}$.
- Score function is the inner product

$$score(u, v) = u^T v$$

Final user/item embeddings (graph-aware)

NGCF: Summary

- Conventional collaborative filtering uses shallow user/item embeddings.
 - The embeddings do *not explicitly* model graph structure.
 - The training objective does not model high-order graph structure.
- NGCF uses a GNN to propagate the shallow embeddings.
 - The embeddings are explicitly aware of highorder graph structure.

Issues of Collaborative Filtering

- Cold Start: There needs to be enough other users already in the system to find a match.
- Sparsity: If there are many items to be recommended, even if there are many users, the user/ratings matrix is sparse, and it is hard to find users that have rated the same items.
- First Rater: Cannot recommend an item that has not been previously rated.
 - New items
 - Esoteric items
- Popularity Bias: Cannot recommend items to someone with unique tastes.
 - Tends to recommend popular items.

Methods

- Collaborative filtering
- Content-based recommendation
- Hybrid methods

Content-based Recommendation

- Collaborative filtering does NOT require any information about content,
 - However, it might be reasonable to exploit such information
 - E.g. recommend fantasy novels to people who liked fantasy novels in the past
- What do we need:
 - Information about the available items such as the genre ("content")
 - *user profile* describing what the user likes (the preferences)
- The task:
 - Learn user preferences
 - Locate/recommend items that are "similar" to the user preferences

Content-based Recommendation

	Title	Genre	Author	Type	Price	Keywords
User profile	The Night of the Gun	Memoir	David Carr	Paperback	29.90	Press and jour- nalism, drug addiction, per- sonal memoirs, New York
	The Lace Reader	Fiction, Mystery	Brunonia Barry	Hardcover	49.90	American contem- porary fiction, de- tective, historical
	Into the Fire	Romance, Suspense	Suzanne Brock- mann	Hardcover	45.90	American fic- tion, Murder, Neo-nazism
	Title	Genre	Author	Туре	Price	Keywords
Item		Fiction, Suspense	Brunonia Barry, Ken Follet,	Paperback 2	25.65	detective, murder, New York

- Simple approach
 - Compute the similarity of an unseen item with the user profile based on the keyword overlap (e.g. using the Dice coefficient)
 - $sim(b_i, b_j) = \frac{2 * |keywords(b_i) \cap keywords(b_j)|}{|keywords(b_i)| + |keywords(b_j)|}$
- Other advanced similarity measure

Methods

- Collaborative filtering
- Content-based recommendation

• Hybrid methods

- Combining both user-item interaction and other external sources of information
- E.g., Factorization Machines

Questions?