
DSC250: Advanced Data Mining

Recommeder System

Zhiting Hu
Lecture 17, November 28, 2023

Logistics

2

Outline
● Recommender System

● 5 paper presentations
! Gabriel Pila, Vivek S
! Sai Kaushik Soma, Harsha Vardhan gangala
! Barry Xiong, Fei Teng
! Ishita Khatri, Yashi Shukla
! Swetha Arunraj, Mohammed Alblooshi

3

4

Recommender System (RecSys)

Slides adapted from:
• Y. Sun, CS 247: Advanced Data Mining
• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Recommendation as Link Prediction

8

¡ Given
§ Past user-item interactions

¡ Task
§ Predict new items each user will

interact in the future.
§ Can be cast as link prediction

problem.
§ Predict new user-item interaction

edges given the past edges.
§ For ! ∈ #, % ∈ &, we need to get

a real-valued score '(!, %).
11/14/23 6Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

?

?

??

Top-K Recommendation

¡ For each user, we recommend % items.
§ For recommendation to be effective, * needs to

be much smaller than the total number of items
(up to billions)

§ + is typically in the order of 10—100.
¡ The goal is to include as many positive items

as possible in the top-% recommended items.
§ Positive items = Items that the user will interact

with in the future.
¡ Evaluation metric: Recall@% (defined next)

11/14/23 8Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

10

Evaluation Metric: Recall@K
¡ For each user &,
§ Let ,! be a set of positive items the user will interact

in the future.
§ Let -! be a set of items recommended by the model.

§ In top-! recommendation, |#(| = !.
§ Items that the user has already interacted are excluded.

11/14/23 9Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

'! (!
Recommended
items

Positive items

11

Evaluation Metric: Recall@K

12

¡ Recall@) for user & is *" ∩ ," / *" .
§ Higher value indicates more positive items are

recommended in top-+ for user !.

¡ The final Recall@% is computed by averaging
the recall values across all users.

11/14/23 10Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

'! (!
Recommended
items

Positive items %(∩ #(

Methods
● Collaborative filtering

● Content-based recommendation

● Hybrid methods

13

Methods
● Collaborative filtering

● Content-based recommendation

● Hybrid methods

14

Collaborative Filtering (CF)

¡ Underlying idea:
Collaborative filtering
§ Recommend items for a

user by collecting
preferences of many
other similar users.

§ Similar users tend to
prefer similar items.

¡ Key question: How to
capture similarity
between users/items?

11/14/23 27Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Items
interacted
by both
users "
and "’

%

%′
Similar
users

Likely edge

15

Collaborative Filtering (CF): MethodsMajor Methods for CF
•Memory-based Collaborative Filtering
•User-based CF
• Compute similarity between users and active

users, and use similar users’ ratings as prediction
• Item-based CF
• Compute similarity between items, and predict

similar rating to similar items that the active user
has rated before

•Model-based Collaborative Filtering

12

16

Collaborative Filtering (CF): MethodsMajor Methods for CF
•Memory-based Collaborative Filtering
•User-based CF
• Compute similarity between users and active

users, and use similar users’ ratings as prediction
• Item-based CF
• Compute similarity between items, and predict

similar rating to similar items that the active user
has rated before

•Model-based Collaborative Filtering

12

17

• The rating matrix is directly
used to find neighbors /
make predictions

• Does not scale for most real-
world scenarios

Collaborative Filtering (CF): MethodsMajor Methods for CF
•Memory-based Collaborative Filtering
•User-based CF
• Compute similarity between users and active

users, and use similar users’ ratings as prediction
• Item-based CF
• Compute similarity between items, and predict

similar rating to similar items that the active user
has rated before

•Model-based Collaborative Filtering

12

18

Major Methods for CF
•Memory-based Collaborative Filtering
•User-based CF
• Compute similarity between users and active

users, and use similar users’ ratings as prediction
• Item-based CF
• Compute similarity between items, and predict

similar rating to similar items that the active user
has rated before

•Model-based Collaborative Filtering

12

Model-based Collaborative Filtering
• User-based CF is said to be "memory-based"
• the rating matrix is directly used to find neighbors / make

predictions
• does not scale for most real-world scenarios
• large e-commerce sites have tens of millions of customers

and millions of items
• Model-based approaches
• based on an offline pre-processing or "model-learning" phase
• at run-time, only the learned model is used to make

predictions
• models are updated / re-trained periodically
• large variety of techniques used
• model-building and updating can be computationally

expensive

19

Embedding-Based Models

19

¡ To get the top-% items,
we need a score function
for user-item interaction:
§ For ! ∈ #, % ∈ &, we need

to get a real-valued scalar
score(!, %).

§ * items with the largest
scores for a given user !
(excluding already-
interacted items) are then
recommended.

11/14/23 13Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User " Item #

'

()

(*

(+

(,

(-

(.

score ", $# = 2.0

3.0

4.0

−2.3

0.7

Already-
interacted
item

For ; = 2, recommended items
for user " would be $$, $% .

Embedding-Based Models

20

¡ We consider embedding-
based models for scoring user-
item interactions.
§ For each user ! ∈ #, let ; ∈ ℝ$

be its =-dimensional embedding.
§ For each item % ∈ &, let > ∈ ℝ$

be its =-dimensional embedding.
§ Let '% ⋅,⋅ : ℝ$×ℝ$ → ℝ be a

parametrized function.
§ Then, score !, % ≡ '% ;, >

11/14/23 14Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User " Item #

!! ", $

&
'

(
)

Embedding-Based Models: Training Objective

21

¡ Embedding-based models have three kinds of
parameters:
§ An encoder to generate user embeddings ; !∈+
§ An encoder to generate item embeddings > ,∈-
§ Score function '% ⋅,⋅

¡ Training objective: Optimize the model
parameters to achieve high recall@% on seen
(i.e., training) user-item interactions
§ We hope this objective would lead to high

recall@+ on unseen (i.e., test) interactions.

11/14/23 15Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Embedding-Based Models: Surrogate Loss Functions

¡ The original training objective (recall@%) is
not differentiable.
§ Cannot apply efficient gradient-based optimization.

¡ Two surrogate loss functions are widely-used
to enable efficient gradient-based
optimization.
§ Binary loss
§ Bayesian Personalized Ranking (BPR) loss

¡ Surrogate losses are differentiable and should
align well with the original training objective.

11/14/23 16Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

22

Why Embedding Models Work?
¡ Embedding-based models can capture

similarity of users/items!
§ Low-dimensional embeddings cannot simply

memorize all user-item interaction data.
§ Embeddings are forced to capture similarity

between users/items to fit the data.
§ This allows the models to make effective prediction

on unseen user-item interactions.

11/14/23 28Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

23

Conventional Embedding-based CF

¡ Conventional collaborative
filtering model is based on
shallow encoders:
§ No user/item features.
§ Use shallow encoders for users

and items:
§ For every ' ∈ . and (∈ 0, we

prepare shallow learnable
embeddings 1, 2 ∈ ℝQ.

§ Score function for user ! and
item % is '% ;, > ≡ K(DK).

11/14/23 31Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Learnable shallow
user/item embeddings

24

Limitations of Shallow Encoders

¡ The model itself does not explicitly capture
graph structure
§ The graph structure is only implicitly captured in

the training objective.
¡ Only the first-order graph structure (i.e.,

edges) is captured in the training objective.
§ High-order graph structure (e.g., +-hop paths

between two nodes) is not explicitly captured.

11/14/23 32Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
25

We want a model that …

¡ We want a model that…
§ explicitly captures graph structure (beyond

implicitly through the training objective)
§ captures high-order graph structure (beyond the

first-order edge connectivity structure)
¡ GNNs are a natural approach to achieve both!
§ Neural Graph Collaborative Filtering (NGCF) [Wang et

al. 2019]

§ LightGCN [He et al. 2020]

§ A simplified and improved version of NGCF

11/14/23 33Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

26

NGCF: Overview
¡ Neural Graph Collaborative Filtering (NGCF)
explicitly incorporates high-order graph structure
when generating user/item embeddings.

¡ Key idea: Use a GNN to generate graph-aware
user/item embeddings.

11/14/23 34Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Initial shallow embeddings
(not graph-aware)

User
Item

Use a GNN to propagate
embeddings

User
Item

NGCF’s graph-aware
embeddings

27

NGCF

28

¡ Given: User-item bipartite graph.
¡ NGCF framework:

§ Prepare shallow learnable embedding
for each node.

§ Use multi-layer GNNs to propagate
embeddings along the bipartite graph.
§ High-order graph structure is captured.

§ Final embeddings are explicitly graph-
aware!

¡ Two kinds of learnable params are
jointly learned:
§ Shallow user/item embeddings
§ GNN’s parameters

11/14/23 35Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Shallow user/item
embeddings (learnable)

GNN

NGCF: Initial Node Embeddings

¡ Set the shallow
learnable embeddings as
the initial node features:
§ For every user ! ∈ #, set
$!(#) as the user’s shallow
embedding.

§ For every item % ∈ &, set
$%(#) as the item’s shallow
embedding.

11/14/23 36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Learnable shallow
user/item embeddings

29

NGCF: Neighbor Aggregation

30

¡ Iteratively update node
embeddings using
neighboring embeddings.

11/14/23 37Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Updated user
embeddings Updated item

embeddings

R"(45$) = COMBINE R"(4), AGGR R!4 !∈7(")

R!(45$) = COMBINE R!(4), AGGR R"4 "∈7(!)

Different architecture choices are possible for
AGGR and COMBINE.
• AGGR(⋅) can be MEAN ⋅
• COMBINE(P, Q) can be

ReLU Linear(Concat(P, Q))

High-order graph structure is captured
through iterative neighbor aggregation.

NGCF: Final Embeddings and Score Function

31

¡ After % rounds of neighbor
aggregation, we get the final
user/item embeddings 6!(.)
and 6/(.).

¡ For all " ∈ 5, $ ∈ 7, we set
& ← 6!(.), 2 ← 6/(.).

¡ Score function is the inner
product

score ", $ = &02
11/14/23 38Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Final user/item
embeddings (graph-aware)

NGCF: Summary

32

¡ Conventional collaborative filtering uses
shallow user/item embeddings.
§ The embeddings do not explicitly model graph

structure.
§ The training objective does not model high-order

graph structure.
¡ NGCF uses a GNN to propagate the shallow

embeddings.
§ The embeddings are explicitly aware of high-

order graph structure.

11/14/23 39Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Issues of Collaborative Filtering

33

Issues of CF
• Cold Start: There needs to be enough other users

already in the system to find a match.
• Sparsity: If there are many items to be recommended,

even if there are many users, the user/ratings matrix
is sparse, and it is hard to find users that have rated
the same items.
• First Rater: Cannot recommend an item that has not

been previously rated.
• New items
• Esoteric items

• Popularity Bias: Cannot recommend items to
someone with unique tastes.
• Tends to recommend popular items.

31

Methods
● Collaborative filtering

● Content-based recommendation

● Hybrid methods

34

Content-based RecommendationContent-based recommendation
• Collaborative filtering does NOT require any information

about content,
• However, it might be reasonable to exploit such information
• E.g. recommend fantasy novels to people who liked fantasy

novels in the past

• What do we need:
• Information about the available items such as the genre

("content")
• user profile describing what the user likes (the preferences)

• The task:
• Learn user preferences
• Locate/recommend items that are "similar" to the user

preferences
35

Content-based Recommendation

36

Content representation and item similarities

• Simple approach
• Compute the similarity of an unseen item with the user profile based on the

keyword overlap (e.g. using the Dice coefficient)

• sim(bi, bj) =
ଶ ௞௘௬௪௢௥ௗ௦|כ ௕௜ ௞௘௬௪௢௥ௗ௦ת ௕௝ |
௞௘௬௪௢௥ௗ௦ ௕௜ ା|௞௘௬௪௢௥ௗ௦ ௕௝ |

• Other advanced similarity measure

User profile

Item

Methods
● Collaborative filtering

● Content-based recommendation

● Hybrid methods
! Combining both user-item interaction and other external sources of

information
! E.g., Factorization Machines

37

Questions?

