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Recommender System (RecSys)

Slides adapted from:
• Y. Sun, CS 247: Advanced Data Mining
• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Recommendation as Link Prediction
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¡ Given
§ Past user-item interactions

¡ Task
§ Predict new items each user will 

interact in the future.
§ Can be cast as link prediction 

problem.
§ Predict new user-item interaction 

edges given the past edges.
§ For ! ∈ #, % ∈ &, we need to get 

a real-valued score '(!, %).
11/14/23 6Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Top-K Recommendation

¡ For each user, we recommend % items.
§ For recommendation to be effective, * needs to 

be much smaller than the total number of items 
(up to billions)

§ + is typically in the order of 10—100.
¡ The goal is to include as many positive items 

as possible in the top-% recommended items.
§ Positive items = Items that the user will interact 

with in the future.
¡ Evaluation metric: Recall@% (defined next)
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Evaluation Metric: Recall@K
¡ For each user &, 
§ Let ,! be a set of positive items the user will interact 

in the future.
§ Let -! be a set of items recommended by the model.

§ In top-! recommendation, |#(| = !.
§ Items that the user has already interacted are excluded.

11/14/23 9Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Evaluation Metric: Recall@K
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¡ Recall@) for user & is *" ∩ ," / *" .
§ Higher value indicates more positive items are 

recommended in top-+ for user !.

¡ The final Recall@% is computed by averaging 
the recall values across all users.
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Methods
● Collaborative filtering

● Content-based recommendation

● Hybrid methods
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Collaborative Filtering (CF)

¡ Underlying idea: 
Collaborative filtering
§ Recommend items for a 

user by collecting 
preferences of many 
other similar users.

§ Similar users tend to 
prefer similar items.

¡ Key question: How to 
capture similarity 
between users/items?

11/14/23 27Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Collaborative Filtering (CF): MethodsMajor Methods for CF
•Memory-based Collaborative Filtering
•User-based CF
• Compute similarity between users and active 

users, and use similar users’ ratings as prediction
• Item-based CF
• Compute similarity between items, and predict 

similar rating to similar items that the active user 
has rated before

•Model-based Collaborative Filtering
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• The rating matrix is directly 
used to find neighbors / 
make predictions

• Does not scale for most real-
world scenarios
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Model-based Collaborative Filtering
• User-based CF is said to be "memory-based"
• the rating matrix is directly used to find neighbors / make 

predictions
• does not scale for most real-world scenarios
• large e-commerce sites have tens of millions of customers 

and millions of items
• Model-based approaches
• based on an offline pre-processing or "model-learning" phase
• at run-time, only the learned model is used to make 

predictions
• models are updated / re-trained periodically
• large variety of techniques used 
• model-building and updating can be computationally 

expensive
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Embedding-Based Models
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¡ To get the top-% items, 
we need a score function 
for user-item interaction:
§ For ! ∈ #, % ∈ &, we need

to get a real-valued scalar 
score(!, %).

§ * items with the largest 
scores for a given user !
(excluding already-
interacted items) are then 
recommended.
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Embedding-Based Models
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¡ We consider embedding-
based models for scoring user-
item interactions.
§ For each user ! ∈ #, let ; ∈ ℝ$

be its =-dimensional embedding.
§ For each item % ∈ &, let > ∈ ℝ$

be its =-dimensional embedding. 
§ Let '% ⋅,⋅ : ℝ$×ℝ$ → ℝ be a 

parametrized function.
§ Then, score !, % ≡ '% ;, >

11/14/23 14Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Embedding-Based Models: Training Objective
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¡ Embedding-based models have three kinds of 
parameters:
§ An encoder to generate user embeddings ; !∈+
§ An encoder to generate item embeddings > ,∈-
§ Score function '% ⋅,⋅

¡ Training objective: Optimize the model 
parameters to achieve high recall@% on seen 
(i.e., training) user-item interactions
§ We hope this objective would lead to high 

recall@+ on unseen (i.e., test) interactions.
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Embedding-Based Models: Surrogate Loss Functions

¡ The original training objective (recall@%) is 
not differentiable.
§ Cannot apply efficient gradient-based optimization.

¡ Two surrogate loss functions are widely-used 
to enable efficient gradient-based 
optimization.
§ Binary loss
§ Bayesian Personalized Ranking (BPR) loss

¡ Surrogate losses are differentiable and should 
align well with the original training objective.

11/14/23 16Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Why Embedding Models Work?
¡ Embedding-based models can capture 

similarity of users/items!
§ Low-dimensional embeddings cannot simply 

memorize all user-item interaction data.
§ Embeddings are forced to capture similarity 

between users/items to fit the data.
§ This allows the models to make effective prediction 

on unseen user-item interactions.

11/14/23 28Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Conventional Embedding-based CF

¡ Conventional collaborative 
filtering model is based on 
shallow encoders:
§ No user/item features.
§ Use shallow encoders for users 

and items:
§ For every ' ∈ . and ( ∈ 0, we 

prepare shallow learnable 
embeddings 1, 2 ∈ ℝQ.

§ Score function for user ! and 
item % is '% ;, > ≡ K(DK).

11/14/23 31Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Limitations of Shallow Encoders

¡ The model itself does not explicitly capture 
graph structure
§ The graph structure is only implicitly captured in 

the training objective.
¡ Only the first-order graph structure (i.e., 

edges) is captured in the training objective.
§ High-order graph structure (e.g., +-hop paths 

between two nodes) is not explicitly captured.

11/14/23 32Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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We want a model that …

¡ We want a model that…
§ explicitly captures graph structure (beyond 

implicitly through the training objective)
§ captures high-order graph structure (beyond the 

first-order edge connectivity structure)
¡ GNNs are a natural approach to achieve both!
§ Neural Graph Collaborative Filtering (NGCF) [Wang et 

al. 2019]

§ LightGCN [He et al. 2020]

§ A simplified and improved version of NGCF

11/14/23 33Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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NGCF: Overview
¡ Neural Graph Collaborative Filtering (NGCF) 
explicitly incorporates high-order graph structure 
when generating user/item embeddings.

¡ Key idea: Use a GNN to generate graph-aware 
user/item embeddings.

11/14/23 34Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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NGCF
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¡ Given: User-item bipartite graph.
¡ NGCF framework:

§ Prepare shallow learnable embedding 
for each node.

§ Use multi-layer GNNs to propagate 
embeddings along the bipartite graph.
§ High-order graph structure is captured.

§ Final embeddings are explicitly graph-
aware!

¡ Two kinds of learnable params are 
jointly learned:
§ Shallow user/item embeddings
§ GNN’s parameters

11/14/23 35Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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NGCF: Initial Node Embeddings

¡ Set the shallow 
learnable embeddings as 
the initial node features:
§ For every user ! ∈ #, set 
$!(#) as the user’s shallow 
embedding.

§ For every item % ∈ &, set 
$%(#) as the item’s shallow 
embedding.

11/14/23 36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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NGCF: Neighbor Aggregation
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¡ Iteratively update node 
embeddings using 
neighboring embeddings.

11/14/23 37Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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R!(45$) = COMBINE R!(4), AGGR R"4 "∈7(!)

Different architecture choices are possible for 
AGGR and COMBINE. 
• AGGR(⋅) can be MEAN ⋅
• COMBINE(P, Q) can be 

ReLU Linear(Concat(P, Q))

High-order graph structure is captured 
through iterative neighbor aggregation.



NGCF: Final Embeddings and Score Function
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¡ After % rounds of neighbor 
aggregation, we get the final 
user/item embeddings 6!(.)
and 6/(.).

¡ For all " ∈ 5, $ ∈ 7, we set
& ← 6!(.), 2 ← 6/(.).

¡ Score function is the inner 
product

score ", $ = &02
11/14/23 38Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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NGCF: Summary
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¡ Conventional collaborative filtering uses 
shallow user/item embeddings.
§ The embeddings do not explicitly model graph 

structure.
§ The training objective does not model high-order 

graph structure.
¡ NGCF uses a GNN to propagate the shallow 

embeddings.
§ The embeddings are explicitly aware of high-

order graph structure.

11/14/23 39Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Issues of Collaborative Filtering
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Issues of CF
• Cold Start: There needs to be enough other users 

already in the system to find a match.
• Sparsity: If there are many items to be recommended, 

even if there are many users, the user/ratings matrix 
is sparse, and it is hard to find users that have rated 
the same items.
• First Rater: Cannot recommend an item that has not 

been previously rated.
• New items
• Esoteric items

• Popularity Bias: Cannot recommend items to 
someone with unique tastes. 
• Tends to recommend popular items.
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Methods
● Collaborative filtering

● Content-based recommendation

● Hybrid methods
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Content-based RecommendationContent-based recommendation
• Collaborative filtering does NOT require any information 

about content,
• However, it might be reasonable to exploit such information
• E.g. recommend fantasy novels to people who liked fantasy 

novels in the past

• What do we need:
• Information about the available items such as the genre 

("content") 
• user profile describing what the user likes (the preferences)

• The task:
• Learn user preferences
• Locate/recommend items that are "similar" to the user 

preferences
35



Content-based Recommendation
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Content representation and item similarities

• Simple approach
• Compute the similarity of an unseen item with the user profile based on the 

keyword overlap (e.g. using the Dice coefficient)

• sim(bi, bj) = 
ଶ ௞௘௬௪௢௥ௗ௦|כ ௕௜ ௞௘௬௪௢௥ௗ௦ת ௕௝ |
௞௘௬௪௢௥ௗ௦ ௕௜ ା|௞௘௬௪௢௥ௗ௦ ௕௝ |

• Other advanced similarity measure

User profile

Item 



Methods
● Collaborative filtering

● Content-based recommendation

● Hybrid methods
! Combining both user-item interaction and other external sources of 

information
! E.g., Factorization Machines
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Questions?


