DSC250: Advanced Data Mining

Knowledge Graphs Recommeder System

Zhiting Hu Lecture 16, November 21, 2023

HALICIOĞLU DATA SCIENCE INSTITUTE

Logistics

- Zhiting's Office Hour this week:
 - Wed, Nov.22, 11:30am
 - Friday Nov.24: Thanksgiving holidays

Outline

- Knowledge Graphs
- Recommender System
- 5 paper presentations
 - Trevor Tuttle, Cyril Gorlla
 - Baraa Zekeria
 - Shobhit Dronamraju, Morgan Kelley
 - Shreya Pakala, Tejo Nandini Baddula
 - Ananay Sharma, Swapnil Ghosh

Knowledge Graphs (KGs)

Slides adapted from:

• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Recap: Task: Predictive Queries

- We need a way to answer path-based queries over an incomplete knowledge graph.
- We want our approach to implicitly impute and account for the incomplete KG.
- Task: <u>Predictive queries</u>
 - Want to be able to answer arbitrary queries while implicitly imputing for the missing information
 - Generalization of the link prediction task

Recap: A General Idea

Map queries into embedding space. Learn to reason in that space

- Embed query into a single **point** in the Euclidean space: answer nodes are close to the query.
- Query2Box: Embed query into a hyper-rectangle (box) in the Euclidean space: answer nodes are enclosed in the box.

[Embedding Logical Queries on Knowledge Graphs. Hamilton, et al., NeurIPS 2018] [Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. Ren, et al., ICLR 2020]

- Key idea: Embed queries!
 - Generalize TransE to multi-hop reasoning.
 - **Recap: TransE:** Translate **h** to **t** using **r** with score function $f_r(h, t) = -||\mathbf{h} + \mathbf{r} \mathbf{t}||$.
 - Another way to interpret this is that:
 - Query embedding: q = h + r
 - Goal: query embedding q is close to the answer embedding t

$$f_q(t) = -\|\mathbf{q} - \mathbf{t}\|$$

Guu, et al., Traversing knowledge graphs in vector space, EMNLP 2015.

Key idea: Embed queries!

Generalize TransE to multi-hop reasoning.

Given a path query $q = (v_a, (r_1, ..., r_n))$,

$$\mathbf{q} = \mathbf{v}_a + \mathbf{r}_1 + \dots + \mathbf{r}_n$$

The embedding process only involves vector addition, independent of # entities in the KG!

Guu, et al., Traversing knowledge graphs in vector space, EMNLP 2015.

Embed path queries in vector space.

- Question: "What proteins are associated with adverse events caused by Fulvestrant?"
- Query: (e:Fulvestrant, (r:Causes, r:Assoc)) Follow the query plan:

Query Plan

Embedding Process

Fulvestrant o

Embed path queries in vector space.

- Question: "What proteins are associated with adverse events caused by Fulvestrant?"
- Query: (e:Fulvestrant, (r:Causes, r:Assoc)) Follow the query plan:

Query Plan

Embedding Process

Guu, et al., Traversing knowledge graphs in vector space, EMNLP 2015.

Embed path queries in vector space.

- Question: "What proteins are associated with adverse events caused by Fulvestrant?"
- Query: (e:Fulvestrant, (r:Causes, r:Assoc)) Follow the query plan:

Guu, et al., Traversing knowledge graphs in vector space, EMNLP 2015.

Insights:

- We can train TransE to optimize knowledge graph completion objective (Lecture 11)
- Since TransE can naturally handle compositional relations, it can handle path queries by translating in the latent space for multiple hops using addition of relation embeddings.

Recommender System (RecSys)

Slides adapted from:

- Y. Sun, CS 247: Advanced Data Mining
- Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Recommender System Examples

You may also like

Code: WNF6221

£299.99

Related hotels...

@@@@@ 1.170 Reviews London, England

Show Prices

Olympic Gold Medal

MOST POPULAR RECOMMENDED

How to Break NRA's Grip on Politics: Michael R.

Growth in U.S. Slows as Consumers Restrain Spending

14

Recommender System Examples

in

🚸 🦈 🛍 🧯 0	6:54 Jobs	s you may be interested in ^{Beta}	Email Alerts See More
Recommended for You	۹.	Technical Sales Manager - Europe	×
RECOMMENDED APPS		Thermal Transfer Products - Home office	
Linkedin Linkedin I	Johnson	Senior Program Manager (f/m) Johnson Controls - Germany-NW-Burscheid	×
Popular with Founsquare users	Free		
fahoo! Messenger Plug-in fahoo! Inc	Gro	ups You May Like More »	
Popular with Yahoo! Messenger users	Free	Advances in Preference Handling	
Firefox Beta	0	 Join 	
Aozila		FP7 Information and	
Nopular with Firefox users	Free	Communication Technologies (ICT)	
KeededApz	0	Join	
Popular with Hotmail users	Free		
Stars Live Wallpaper	0		
Popular with Blooming Night Live Volpager users	Eme Pi	CCISCI [®] -Webalben Startseite Meine Fotos Erkunden	1. Hochladen
	Empfo	ohlene Fotos Alle anzeigen	

Why Recommender Systems?

- Value for the customer
 - Find things that are interesting
 - Narrow down the set of choices
 - Help me explore the space of options
 - Discover new things
 - Entertainment
 - •
- Value for the provider
 - Additional and probably unique personalized service for the customer
 - Increase trust and customer loyalty
 - Increase sales, click trough rates, conversion etc.
 - Opportunities for promotion, persuasion
 - Obtain more knowledge about customers

Recommendation as Matrix Completion

Recommendation as Matrix Completion

Users	Moviel	Movie2	Movie3	Movie4	Movie5	Movie6	
Userl	?	?	4	?	1	?	
User2	2	5	2	?	?	2	•••
User3	?	?	5	3	2	4	•••
User4	1	?	?	4	?	?	•••
User5	2	3	?	?	?	?	••••

Explicit Feedback vs. Implicit Feedback

- Explicit Feedback
 - Know the ratings
- Implicit Feedback
 - only know whether user and item has interacted
 - Like (1) vs. unknown (0)

18

7

Recommendation as Link Prediction

- Recommender system can be naturally modeled as a bipartite graph
 - A graph with two node types:
 users and items.
 - Edges connect users and items
 - Indicates user-item interaction (e.g., click, purchase, review etc.)
 - Often associated with timestamp (timing of the interaction).

Recommendation as Link Prediction

- Given
 - Past user-item interactions
- Task
 - Predict new items each user will interact in the future.
 - Can be cast as link prediction problem.
 - Predict new user-item interaction edges given the past edges.
 - For $u \in U, v \in V$, we need to get a real-valued score f(u, v).

Modern Recommender System

- **Problem:** Cannot evaluate f(u, v) for every user u item v pair. Example
- Solution: 2-stage process:

Example f(u, v): $f(u, v) = z_u \cdot z_v$

Top-K Recommendation

- For each user, we recommend *K* items.
 - For recommendation to be effective, K needs to be much smaller than the total number of items (up to billions)
 - *K* is typically in the order of 10−100.
- The goal is to include as many positive items as possible in the top-K recommended items.
 - Positive items = Items that the user will interact with in the future.
- Evaluation metric: Recall@K (defined next)

Evaluation Metric: Recall@K

• For each user *u*,

- Let P_u be a set of positive items the user will interact in the future.
- Let R_u be a set of items recommended by the model.
 - In top-*K* recommendation, $|R_u| = K$.
 - Items that the user has already interacted are excluded.

Evaluation Metric: Recall@K

- **Recall**@*K* for user *u* is $|P_u \cap R_u|/|P_u|$.
 - Higher value indicates more positive items are recommended in top-K for user u.

The final Recall@K is computed by averaging the recall values across all users.

Methods

- Collaborative filtering
- Content-based recommendation
- Hybrid methods

Methods

- Collaborative filtering
- Content-based recommendation
- Hybrid methods

Collaborative Filtering (CF)

- Underlying idea: Collaborative filtering
 - Recommend items for a user by collecting preferences of many other similar users.
 - Similar users tend to prefer similar items.
- Key question: How to capture similarity between users/items?

Questions?