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Logistics
● Zhiting’s Office Hour this week:
! Wed, Nov.15, 10:30am 
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Outline
● Graph Neural Networks (GNNs)
● Knowledge Graphs

● 5 paper presentations
! Quynh Le, Somansh Budhwar
! Dawei Li, Ruihan Wang
! Nigel Doering, Adhvaith Vijay
! Shreyan Sood, Wayne Zhang
! Sheetal Srivastava, Anirudha Agrawal
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Graph Neural Networks (GNNs)

Slides adapted from:
• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Recap: Permutation Invariance and Equivariance

5

� Permutation-invariant
݂ ǡܣ ܺ ൌ ݂ ǡ்ܲܺܲܣܲ

� Permutation-equivariant
݂ܲ ǡܣ ܺ ൌ ݂ ǡ்ܲܺܲܣܲ

� Examples:
� ݂ ǡܣ ܺ ൌ ͳ்ܺ : Permutation-invariant 

� Reason: ݂ ǡ்ܲܣܲ ܲܺ ൌ ͳ்ܲܺ ൌ ͳ்ܺ ൌ ݂ ǡܣ ܺ
� ݂ ǡܣ ܺ ൌ ܺ : Permutation-equivariant

� Reason: ݂ ǡ்ܲܣܲ ܲܺ ൌ ܲܺ ൌ ݂ܲ ǡܣ ܺ
� ݂ ǡܣ ܺ ൌ ܺܣ : Permutation-equivariant

� Reason: ݂ ǡ்ܲܣܲ ܲܺ ൌ ்ܺܲܲܣܲ ൌ ܺܣܲ ൌ ݂ܲ ǡܣ ܺ
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Permute the input, the 
output stays the same.

(map a graph to a vector)

Permute the input, output 
also permutes accordingly.
(map a graph to a matrix)



Recap: Graph Convolutional Networks
Idea: EŽĚĞ Ɛ͛�ŶĞŝŐŚďŽƌŚŽŽĚ�ĚĞĨŝŶĞƐ�Ă�

computation graph

53

Determine node 
computation graph

Propagate and
transform information

݅

Learn how to propagate information across the 
graph to compute node features

[Kipf and Welling, ICLR 2017]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
6[Kipf and Welling, ICLR 2017] 



Recap: Neighborhood Aggregation
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� Basic approach: Average information from 
neighbors and apply a neural network

59

(1) average messages 
from neighbors 

(2) apply neural network
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Discussion: Design Space of GNNs

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

8J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020



Ex1: Connectivity

9

Our assumption so far has been 
¡ Raw input graph = computational graph
Reasons for breaking this assumption
§ Feature level: 

§ The input graph lacks features à feature augmentation
§ Structure level:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational 

graph into a GPU
§ It’s just unlikely that the input graph happens to be 

the optimal computation graph for embeddings
10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58



Ex1: Connectivity

10

¡ Graph Feature manipulation
§ The input graph lacks features à feature 

augmentation
¡ Graph Structure manipulation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when 

doing message passing
§ The graph is too large à Sample subgraphs to 

compute embeddings 
§ Will cover later in lecture: Scaling up GNNs

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59



Ex2: Graph Attention Network (GAT)
¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE
§ ?(" = '

< (  is the weighting factor (importance) 
of node (’s message to node +

§ ⟹ ?(" is defined explicitly based on the 
structural properties of the graph (node degree)

§ ⟹	All neighbors ( ∈ *(+) are equally important 
to node + 

&(($) = B(∑"∈< ( ?("D($)&"($&'))

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Attention weights

11

Not all node’s neighbors are equally important 

¡ Let ""# be computed as a byproduct of an 
attention mechanism #:
§ (1) Let F compute attention coefficients G=> across 

pairs of nodes (, + based on their messages:
H(" = F(D($)&"($&'),D($)I(($&'))

§ L-. indicates the importance of M/N	message to node ?

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

!*
("#$)

!+("#$)0*+

O12 = P($(%)%1(%'(),$(%)%2(%'())

● Query, Key, Value
● Alignment 𝒆
● 𝒂 = softmax 𝒆
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Knowledge Graphs (KGs)

Slides adapted from:
• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Outline
● Overview

● Knowledge Graph Completion (Link Prediction)

● Reasoning on Knowledge Graphs
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Heterogeneous Graphs

¡ Heterogeneous graphs: a graph with multiple 
relation types

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4
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Heterogeneous Graphs

15
10/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

Relation types: (node_start, edge, node_end)
¡ We use relation type to describe an edge (as 

opposed to edge type)
¡ Relation type better captures the interaction 

between nodes and edges

(Paper, Cite, Paper)

(Paper, Like, Paper)

(Paper, Cite, Author)

(Paper, Like, Author)

(Author, Cite, Author)

(Author, Like, Author)

(Author, Cite, Paper)

(Author, Like, Paper)

8 possible relation types!



Heterogeneous Graphs

10/16/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Event GraphsBiomedical Knowledge Graphs
Example node: SFO
Example relation: (UA689, Origin, 
LAX) 
Example node type: Flight
Example edge type: Destination

Example node: Migraine
Example relation: (fulvestrant, 
Treats, Breast Neoplasms) 
Example node type: Protein
Example edge type: Causes 16



Knowledge Graph
Knowledge in graph form:
§ Capture entities, types, and relationships

¡ Nodes are entities
¡ Nodes are labeled with 
their types
¡ Edges between two nodes
capture relationships 
between entities
¡ KG is an example of a 
heterogeneous graph

10/19/23 6Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Example: Bibliographic Networks

¡ Node types: paper, title, author, conference, 
year 

¡ Relation types: pubWhere, pubYear, hasTitle, 
hasAuthor, cite

10/19/23 7Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Example: Bio Knowledge Graphs

19

¡ Node types: drug, disease, adverse event, 
protein, pathways

¡ Relation types: has_func, causes, assoc, treats, 
is_a

10/19/23 8Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



KGs in Practice
Examples of knowledge graphs
¡ Google Knowledge Graph 
¡ Amazon Product Graph
¡ Facebook Graph API 
¡ IBM Watson 
¡ Microsoft Satori 
¡ Project Hanover/Literome 
¡ LinkedIn Knowledge Graph 
¡ Yandex Object Answer 

10/19/23 9Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20



Applications of KGs

¡ Serving information: 

10/19/23 10Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Image credit: Bing
21



Applications of KGs

¡ Question answering and conversation agents

10/19/23 11Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Image credit: Medium
22



KG Datasets

¡ Publicly available KGs:
§ FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.

¡ Common characteristics:
§ Massive: Millions of nodes and edges
§ Incomplete: Many true edges are missing

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Given a massive KG, 
enumerating all the 

possible facts is 
intractable!

Can we predict plausible 
BUT missing links?

23



Example: Freebase

24

¡ Freebase
§ ~80 million entities
§ ~38K relation types
§ ~3 billion facts/triples

¡ Datasets: FB15k/FB15k-237
§ A complete subset of Freebase, used by 

researchers to learn KG models

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

93.8% of persons from Freebase 
have no place of birth and 78.5% 
have no nationality!

[1] Paulheim, Heiko. "Knowledge graph refinement: A survey of approaches and evaluation methods." Semantic web 8.3 (2017): 489-508.
[2] Min, Bonan, et al. "Distant supervision for relation extraction with an incomplete knowledge base." Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies. 2013.



Outline
● Overview

● Knowledge Graph Completion (Link Prediction)

● Reasoning on Knowledge Graphs

25



KG Completion Task

Given an enormous KG, can we complete the KG?
§ For a given (head, relation), we predict missing tails.

§ (Note this is slightly different from link prediction task)

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

missing relation: 
genre

genre

genre

genre
genre

genre

Influence

Influence
Influence

Influence

Influence

J.R.R Tolkien

C.S. Lewis

J.K. Rowling

Lloyd Alexander

Stephen King

Alan Poe

Science Fiction

Fantasy

Tragicomedy

Example task: predict the 
tail “Science Fiction” for 
(“J.K. Rowling”, “genre”)

26



KG Representation

¡ Edges in KG are represented as triples (ℎ, $, %)
§ head (ℎ) has relation $  with tail (%)

¡ Key Idea: 
§ Model entities and relations in embedding space ℝ!

§ Associate entities and relations with shallow embeddings
§ Note we do not learn a GNN here!

§ Given a triple (ℎ, $, %), the goal is that the embedding 
of (ℎ, $) should be close to the embedding of %.
§ How to embed ℎ, # ?
§ How to define score $$ ℎ, % ?

§ Score "!	is high if ℎ, &, '  exists, else "! is low

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17
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Many KG Embedding Methods¡ Many KG embedding Models:

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

28



TransE for KG Completion
¡ Intuition: Translation

For a triple (ℎ, $, %), let ', (, ) ∈ ℝ!  
be embedding vectors.

¡ TransE: ' + ( ≈ ) if the given link exists else ' +
( ≠ )

Entity scoring function: /" ℎ, % = −||' + ( − )||

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

(
)* Obama

Nationality
U.S.A

embedding vectors 
will appear in 
boldface

Bordes et al., Translating embeddings for modeling multi-relational data, NeurIPS 2013.

29Bordes et al., Translating embeddings for modeling multi-relational data, NeurIPS 2013.



Connectivity Patterns in KG

30

¡ Relations in a heterogeneous KG have 
different properties:
§ Example:

§ Symmetry: If the edge (ℎ, "Roommate", %) exists in KG, 
then the edge (%, "Roommate", ℎ) should also exist.

§ Inverse relation: If the edge (ℎ, "Advisor", %) exists in KG, 
then the edge %, "Advisee", ℎ  should also exist.

¡ Can we categorize these relation patterns?
¡ Are KG embedding methods (e.g., TransE) 

expressive enough to model these patterns?

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24



Four Relationship Patterns
¡ Symmetric (Antisymmetric) Relations:

! ℎ, $ ⇒ ! $, ℎ 	 (!(ℎ, $) ⇒ ¬!($, ℎ))	 ∀ℎ, $
§ Example: 

§ Symmetric: Family, Roommate
§ Antisymmetric: Hypernym (a word with a broader meaning: poodle vs. dog)

¡ Inverse Relations:
!((ℎ, $) ⇒ !)($, ℎ)

§ Example : (Advisor, Advisee)
¡ Composition (Transitive) Relations:

!) +, , ∧ !( ,, . ⇒ !* +, . 	 ∀+, ,, .
§ Example: My mother’s husband is my father.

¡ 1-to-N relations:
! ℎ, $) , ! ℎ, $( , … , !(ℎ, $+) are all True.

§ Example: # is “StudentsOf” 
10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25 31



Antisymmetric Relations in TransE

¡ Antisymmetric Relations:
$(ℎ, %) ⇒ ¬$(%, ℎ)	 ∀ℎ, %

§ Example: Hypernym
¡ TransE can model antisymmetric relations ü
§ ( + * = ), but ) + * ≠ (

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

(
*

)
*

(a word with a broader meaning: poodle vs. dog)

32



Inverse Relations in TransE

¡ Inverse Relations:
$#(ℎ, %) ⇒ $$(%, ℎ)

§ Example : (Advisor, Advisee)
¡ TransE can model inverse relations ü
§ ( + *, = ), we can set *) = −*(

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

(
*- )
*,

33



Composition in TransE

¡ Composition (Transitive) Relations:
$$ 7, 8 ∧ $# 8, : ⇒ $% 7, : 	 ∀7, 8, :

§ Example: My mother’s husband is my father.
¡ TransE can model composition relationsü

(% = ($ + (#

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

/
*) *(

**

0

1

34



Limitations of TransE: Symmetric Relations

¡ Symmetric Relations:
$ ℎ, % ⇒ $ %, ℎ 	 ∀ℎ, %

§ Example: Family, Roommate
¡ TransE cannot model symmetric relations û

     only if ( = 0, ' = )

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

(
)*

For all ℎ, $ that satisfy %(ℎ, $), %($, ℎ) is also 
True, which means ( + * − , = 0 and 
, + * − ( = 0. Then * = 0 and ( = ,, 

however ℎ and $ are two different entities 
and should be mapped to different locations.

35



Limitations of TransE: 1-to-N Relations
¡ 1-to-N Relations:
§ Example: (ℎ, $, %)) and (ℎ, $, %() both exist in the 

knowledge graph, e.g., $ is “StudentsOf”
¡ TransE cannot model 1-to-N relations û
§ )) and )( will map to the same vector, although 

they are different entities

¡ )$ = ' + ( = )#
¡ )$ ≠ )#

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

"

#!
#" $
$contradictory!

36



KG Completion Methods

10/19/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

What we learned so far:
Model Score Embedding Sym. Antisym. Inv. Compos. 1-to-N

TransE − & + ( − ) &, ), ( ∈ ℝ! û ü ü ü û

TransR −‖
‖

."& + (
−.")

&, ) ∈ ℝ! ,
( ∈ ℝ# ,	
." ∈ ℝ#×!

ü ü ü ü ü

DistMult < &, (, ) > &, ), ( ∈ ℝ! ü û û û ü

ComplEx Re(< &, (, ̅) >) &, ), ( ∈ ℂ! ü ü ü û ü

RotateE − & ∘ ( − G &, ), ( ∈ ℂ! ü ü ü ü ü

∘	…Hadamard product:
37



Outline
● Overview

● Knowledge Graph Completion (Link Prediction)

● Reasoning on Knowledge Graphs

38



Reasoning over KGs

¡ Goal: 
§ How to perform multi-hop reasoning over KGs?

¡ Reasoning over Knowledge Graphs
§ Answering multi-hop queries

§ Path Queries
§ Conjunctive Queries

§ Query2Box

10/30/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4 39



Example KG: Biomedecine

10/30/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5
40



Predictive Queries on KG

Can we do multi-hop reasoning, i.e., answer 
complex queries on an incomplete, massive KG?

10/30/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Query  Types Examples: Natural Language Question, Query

One-hop Queries
What adverse event is caused by Fulvestrant?
(e:Fulvestrant, (r:Causes))

Path Queries
What protein is associated with the adverse event caused by 
Fulvestrant?
(e:Fulvestrant, (r:Causes, r:Assoc))

Conjunctive Queries
What is the drug that treats breast cancer and caused headache?
((e:BreastCancer, (r:TreatedBy)), (e:Migraine, (r:CausedBy))

In this lecture, we only focus on answering queries on a KG!
The notation will be detailed next.

One-hop Queries Path Queries Conjunctive Queries 41



Questions?


