DSC250: Advanced Data Mining

Graph Neural Networks Knowledge Graphs

Zhiting Hu Lecture 14, November 13, 2023

HALICIOĞLU DATA SCIENCE INSTITUTE

Logistics

- Zhiting's Office Hour this week:
 - Wed, Nov.15, 10:30am

Outline

- Graph Neural Networks (GNNs)
- Knowledge Graphs
- 5 paper presentations
 - Quynh Le, Somansh Budhwar
 - Dawei Li, Ruihan Wang
 - Nigel Doering, Adhvaith Vijay
 - Shreyan Sood, Wayne Zhang
 - Sheetal Srivastava, Anirudha Agrawal

Graph Neural Networks (GNNs)

Slides adapted from:

• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Recap: Permutation Invariance and Equivariance

Permutation-invariant

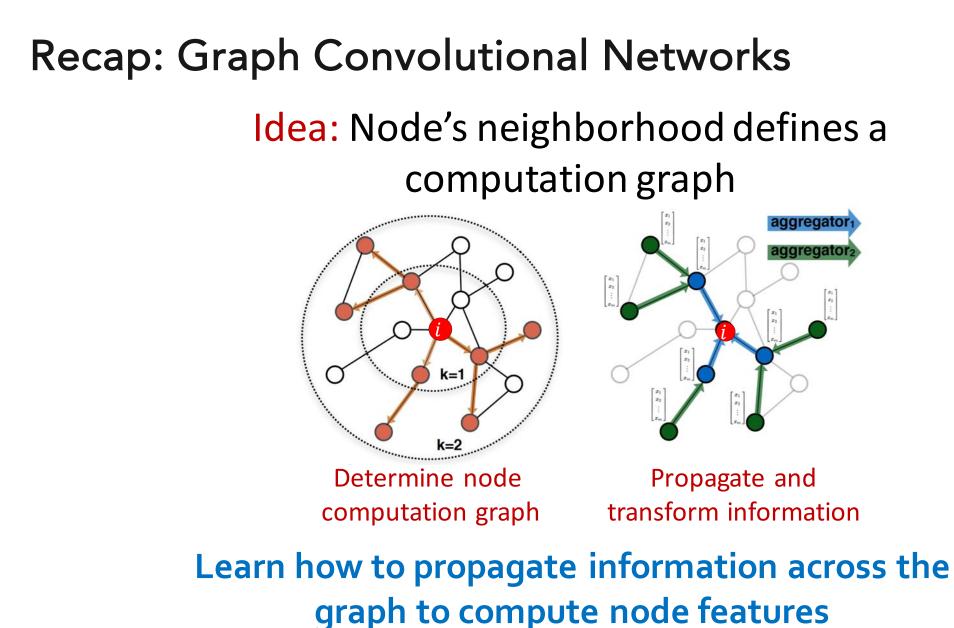
$$f(A,X) = f(PAP^T, PX)$$

Permute the input, the output stays the same. (map a graph to a vector)

Permutation-equivariant

$$\mathbf{P}f(A,X) = f(\mathbf{P}A\mathbf{P}^T,\mathbf{P}X)$$

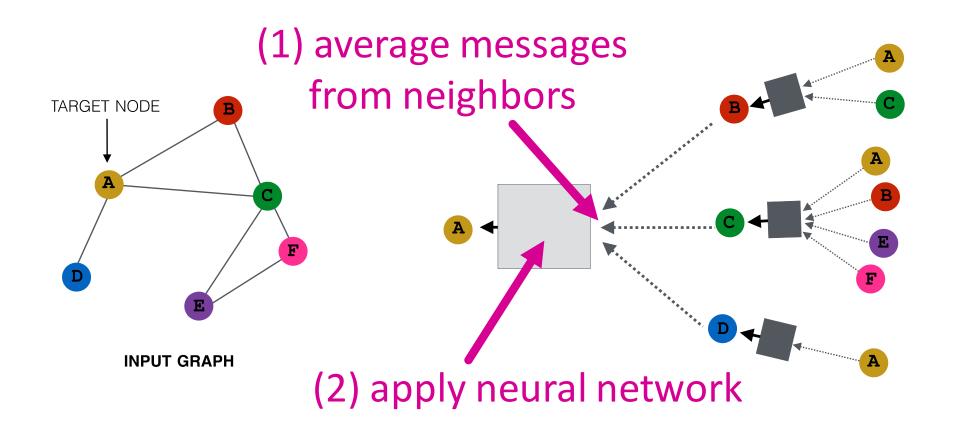
Permute the input, output also permutes accordingly. (map a graph to a matrix)

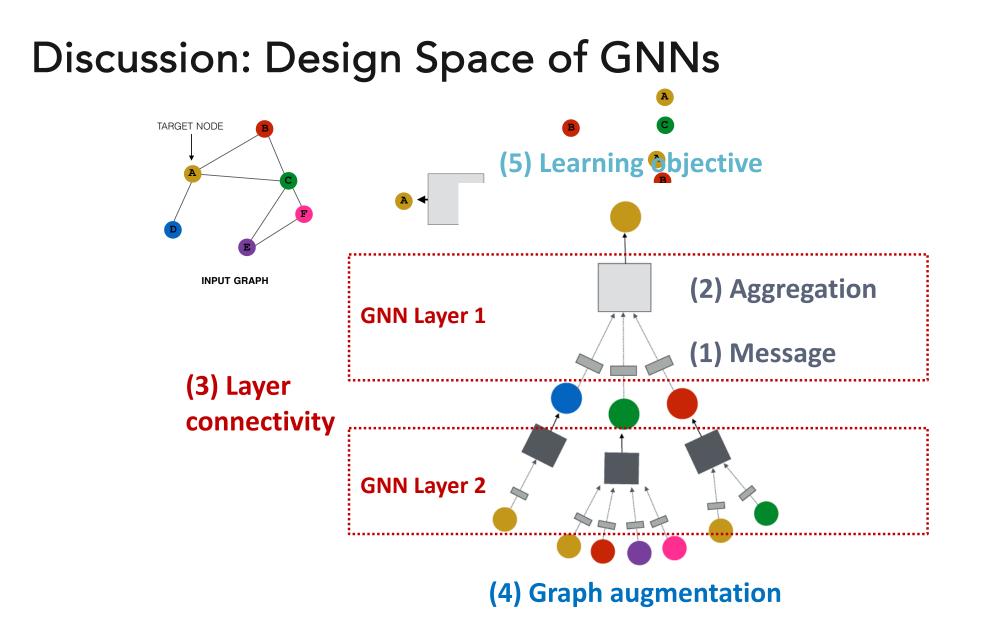


[Kipf and Welling, ICLR 2017]

Recap: Neighborhood Aggregation

 Basic approach: Average information from neighbors and apply a neural network





J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Ex1: Connectivity

Our assumption so far has been Raw input graph = computational graph Reasons for breaking this assumption

- Feature level:
 - The input graph lacks features \rightarrow feature augmentation

Structure level:

- The graph is too sparse \rightarrow inefficient message passing
- The graph is too dense \rightarrow message passing is too costly
- The graph is too large → cannot fit the computational graph into a GPU
- It's just unlikely that the input graph happens to be the optimal computation graph for embeddings

Ex1: Connectivity

Graph Feature manipulation

- The input graph lacks features -> feature augmentation
- Graph Structure manipulation

 - The graph is too dense -> Sample neighbors when doing message passing
 - The graph is too large -> Sample subgraphs to compute embeddings
 - Will cover later in lecture: Scaling up GNNs

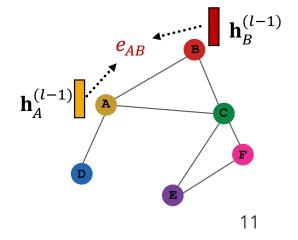
Ex2: Graph Attention Network (GAT)

In GCN

- $\alpha_{vu} = \frac{1}{|N(v)|}$ is the weighting factor (importance) of node *u*'s message to node *v*
- $\Rightarrow \alpha_{vu}$ is defined **explicitly** based on the structural properties of the graph (node degree)
- ⇒ All neighbors $u \in N(v)$ are equally important to node v

Not all node's neighbors are equally important

- Query, Key, Value
- Alignment *e*
- **a** = softmax(**e**)



Knowledge Graphs (KGs)

Slides adapted from:

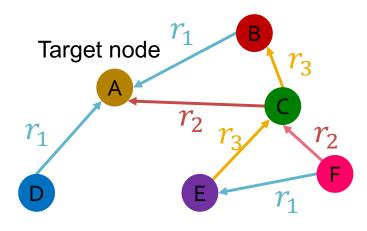
• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Outline

- Overview
- Knowledge Graph Completion (Link Prediction)
- Reasoning on Knowledge Graphs

Heterogeneous Graphs

Heterogeneous graphs: a graph with multiple relation types



Input graph

Heterogeneous Graphs

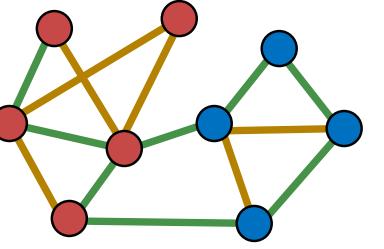
8 possible relation types!

(Paper, Cite, Paper)

(Paper, Like, Paper)

(Paper, Cite, Author)

(Paper, Like, Author)



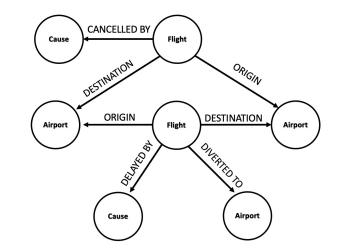
(Author, Cite, Author) (Author, Like, Author) (Author, Cite, Paper) (Author, Like, Paper)

Relation types: (node_start, edge, node_end)

- We use relation type to describe an edge (as opposed to edge type)
- Relation type better captures the interaction between nodes and edges

Heterogeneous Graphs





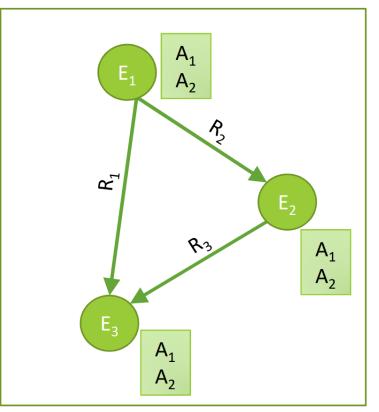
Biomedical Knowledge Graphs

Example node: Migraine Example relation: (fulvestrant, Treats, Breast Neoplasms) Example node type: Protein Example edge type: Causes

Knowledge Graph

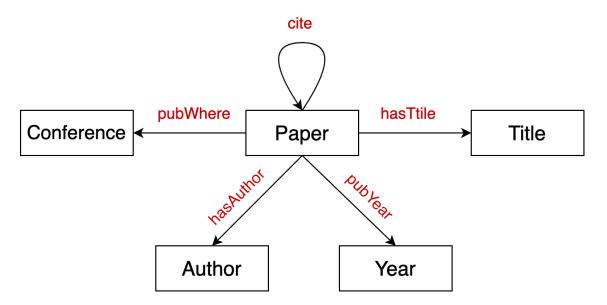
Knowledge in graph form:

- Capture entities, types, and relationships
- Nodes are entities
- Nodes are labeled with their types
- Edges between two nodes capture relationships between entities
- KG is an example of a heterogeneous graph



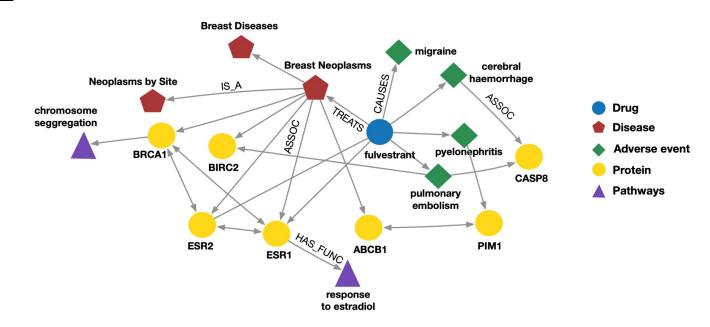
Example: Bibliographic Networks

- Node types: paper, title, author, conference, year
- Relation types: pubWhere, pubYear, hasTitle, hasAuthor, cite



Example: Bio Knowledge Graphs

- Node types: drug, disease, adverse event, protein, pathways
- Relation types: has_func, causes, assoc, treats,
 - is_a



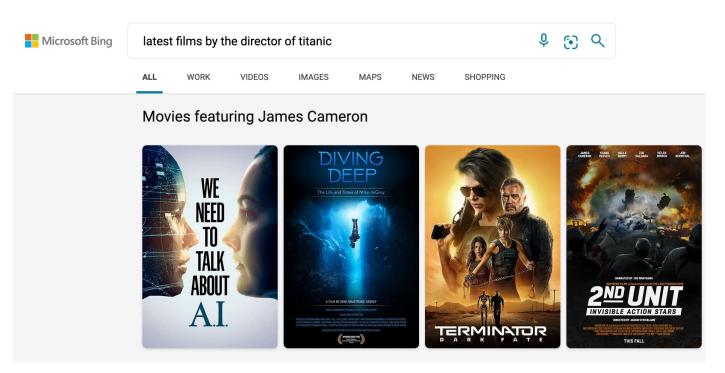
KGs in Practice

Examples of knowledge graphs

- Google Knowledge Graph
- Amazon Product Graph
- Facebook Graph API
- IBM Watson
- Microsoft Satori
- Project Hanover/Literome
- LinkedIn Knowledge Graph
- Yandex Object Answer

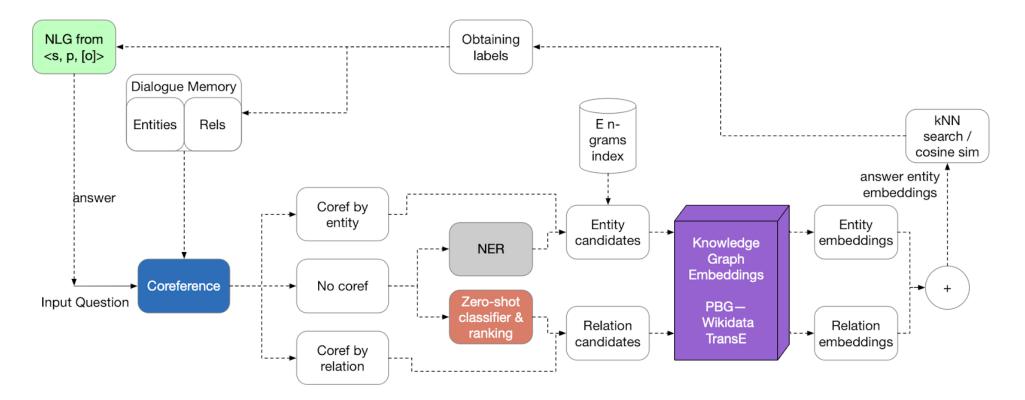
Applications of KGs

Serving information:



Applications of KGs

Question answering and conversation agents



KG Datasets

Publicly available KGs:

FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.

Common characteristics:

- Massive: Millions of nodes and edges
- Incomplete: Many true edges are missing

Given a massive KG, enumerating all the possible facts is intractable!

Can we predict plausible BUT missing links?

Example: Freebase

Freebase

- ~80 million entities
- ~38K relation types
- ~3 billion facts/triples

93.8% of persons from Freebase have no place of birth and 78.5% have no nationality!

Datasets: FB15k/FB15k-237

A complete subset of Freebase, used by researchers to learn KG models

Dataset	Entities	Relations	Total Edges
FB15k	14,951	1,345	592,213
FB15k-237	14,505	237	310,079

[1] Paulheim, Heiko. "Knowledge graph refinement: A survey of approaches and evaluation methods." Semantic web 8.3 (2017): 489-508.

[2] Min, Bonan, et al. "Distant supervision for relation extraction with an incomplete knowledge base." Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2013.

Outline

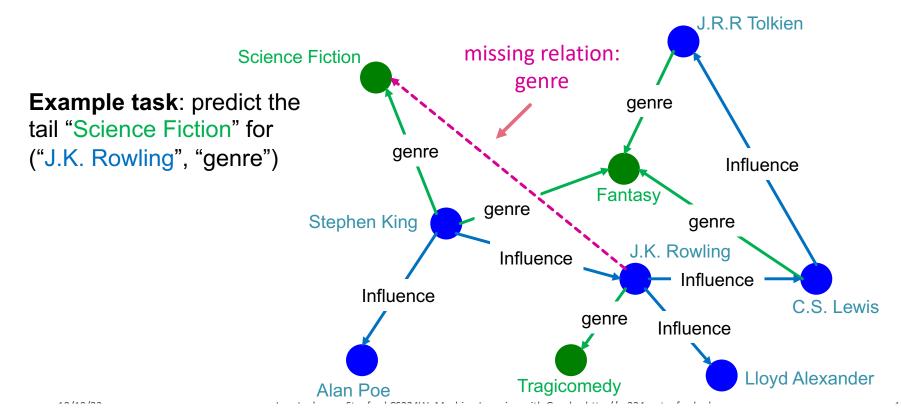
- Overview
- Knowledge Graph Completion (Link Prediction)
- Reasoning on Knowledge Graphs

KG Completion Task

Given an enormous KG, can we complete the KG?

• For a given (head, relation), we predict missing tails.

(Note this is slightly different from link prediction task)



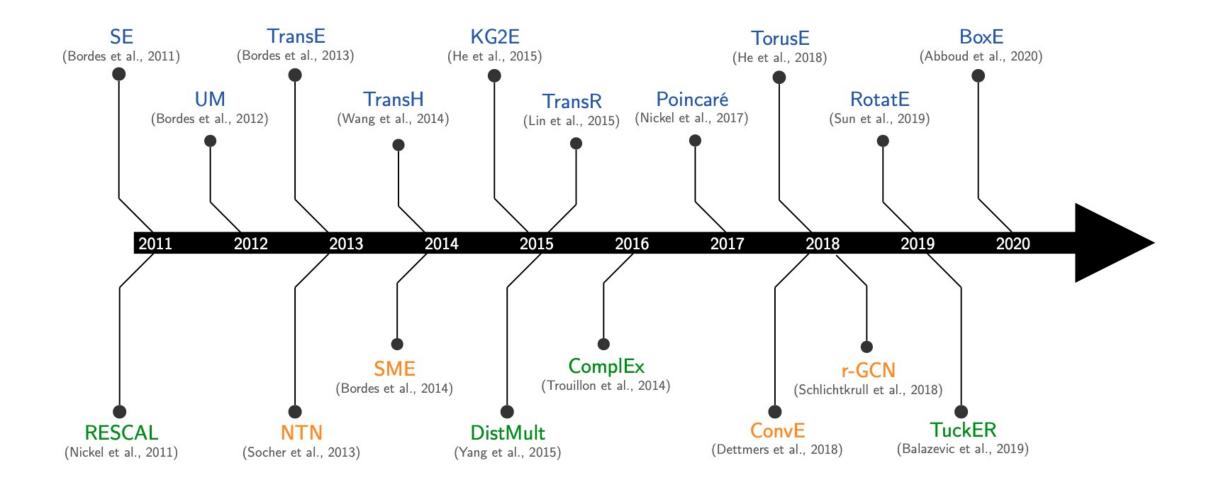
KG Representation

- Edges in KG are represented as triples (h, r, t)
 - head (h) has relation (r) with tail (t)

Key Idea:

- Model entities and relations in embedding space \mathbb{R}^d
 - Associate entities and relations with shallow embeddings
 - Note we do not learn a GNN here!
- Given a triple (h, r, t), the goal is that the embedding of (h, r) should be close to the embedding of t.
 - How to embed (h, r)?
 - How to define score $f_r(h, t)$?
 - Score f_r is high if (h, r, t) exists, else f_r is low

Many KG Embedding Methods



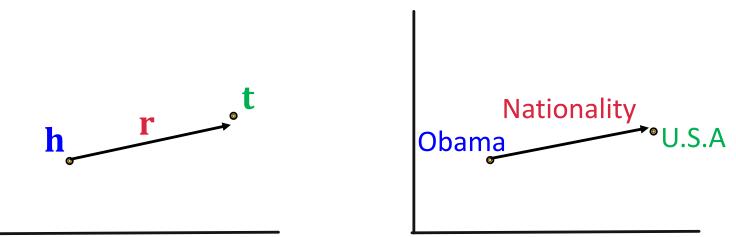
TransE for KG Completion

- Intuition: Translation
 - For a triple (h, r, t), let $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$ be embedding vectors.

```
embedding vectors
will appear in
boldface
```

TransE: $h + r \approx t$ if the given link exists else $h + r \neq t$

Entity scoring function: $f_r(h, t) = -||\mathbf{h} + \mathbf{r} - \mathbf{t}||$



Bordes et al., Translating embeddings for modeling multi-relational data, NeurIPS 2013.

Connectivity Patterns in KG

- Relations in a heterogeneous KG have different properties:
 - Example:
 - Symmetry: If the edge (h, "Roommate", t) exists in KG, then the edge (t, "Roommate", h) should also exist.
 - Inverse relation: If the edge (h, "Advisor", t) exists in KG, then the edge (t, "Advisee", h) should also exist.
- Can we categorize these relation patterns?
- Are KG embedding methods (e.g., TransE) expressive enough to model these patterns?

Four Relationship Patterns

Symmetric (Antisymmetric) Relations:

$$r(h,t) \Rightarrow r(t,h) \ (r(h,t) \Rightarrow \neg r(t,h)) \ \forall h,t$$

- Example:
 - Symmetric: Family, Roommate
 - Antisymmetric: Hypernym (a word with a broader meaning: poodle vs. dog)
- Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

- Example : (Advisor, Advisee)
- Composition (Transitive) Relations:

 $r_1(x, y) \wedge r_2(y, z) \Rightarrow r_3(x, z) \quad \forall x, y, z$

- **Example**: My mother's husband is my father.
- 1-to-N relations:

 $r(h, t_1), r(h, t_2), \dots, r(h, t_n)$ are all True.

• Example: r is "StudentsOf"

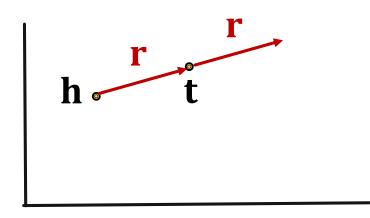
Antisymmetric Relations in TransE

Antisymmetric Relations:

 $r(h,t) \Rightarrow \neg r(t,h) \quad \forall h,t$

Example: Hypernym (a word with a broader meaning: poodle vs. dog)
 TransE can model antisymmetric relations

• $\mathbf{h} + \mathbf{r} = \mathbf{t}$, but $\mathbf{t} + \mathbf{r} \neq \mathbf{h}$



Inverse Relations in TransE

Inverse Relations:

 $r_2(h,t) \Rightarrow r_1(t,h)$

Example : (Advisor, Advisee)

TransE can model inverse relations

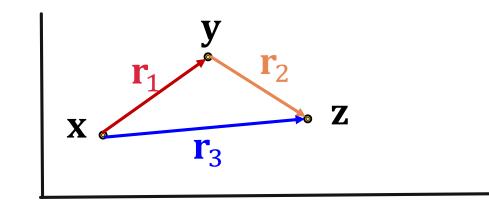
•
$$\mathbf{h} + \mathbf{r}_2 = \mathbf{t}$$
, we can set $\mathbf{r}_1 = -\mathbf{r}_2$

$$h \stackrel{\mathbf{r_1}}{\stackrel{\mathbf{r_2}}{\stackrel{\mathbf{r_2}}{\stackrel{\mathbf{r_2}}}} t$$

Composition in TransE

Composition (Transitive) Relations: r₁(x, y) ∧ r₂(y, z) ⇒ r₃(x, z) ∀x, y, z Example: My mother's husband is my father. TransE can model composition relations√

 $\mathbf{r}_3 = \mathbf{r}_1 + \mathbf{r}_2$



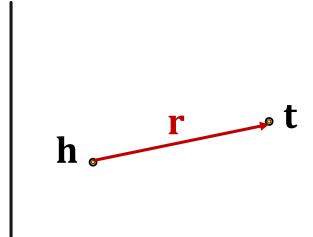
Limitations of TransE: Symmetric Relations

Symmetric Relations:

 $r(h,t) \Rightarrow r(t,h) \quad \forall h,t$

Example: Family, Roommate

TransE cannot model symmetric relations × only if r = 0, h = t



For all *h*, *t* that satisfy r(h, t), r(t, h) is also True, which means $||\mathbf{h} + \mathbf{r} - \mathbf{t}|| = 0$ and $||\mathbf{t} + \mathbf{r} - \mathbf{h}|| = 0$. Then $\mathbf{r} = 0$ and $\mathbf{h} = \mathbf{t}$, however *h* and *t* are two different entities and should be mapped to different locations.

Limitations of TransE: 1-to-N Relations

1-to-N Relations:

- Example: (h, r, t₁) and (h, r, t₂) both exist in the knowledge graph, e.g., r is "StudentsOf"
- TransE cannot model 1-to-N relations ×
 - t₁ and t₂ will map to the same vector, although they are different entities

•
$$\mathbf{t}_1 = \mathbf{h} + \mathbf{r} = \mathbf{t}_2$$

• $\mathbf{t}_1 \neq \mathbf{t}_2$ contradictory!

KG Completion Methods

Model	Score	Embedding	Sym.	Antisym.	Inv.	Compos.	1-to-N
TransE	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	h , t , r $\in \mathbb{R}^k$	×	\checkmark	\checkmark	\checkmark	×
TransR	$-\ \boldsymbol{M}_r\mathbf{h}+\mathbf{r}\\-\boldsymbol{M}_r\mathbf{t}\ $	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^k, \\ \mathbf{r} \in \mathbb{R}^d, \\ \boldsymbol{M}_r \in \mathbb{R}^{d \times k}$	✓	\checkmark	~	\checkmark	\checkmark
DistMult	< h, r, t >	h , t , r $\in \mathbb{R}^k$	\checkmark	×	×	×	\checkmark
ComplEx	Re(< h , r , ī >)	h , t , $\mathbf{r} \in \mathbb{C}^k$	\checkmark	\checkmark	\checkmark	×	\checkmark
RotateE	$-\ \mathbf{h} \circ \mathbf{r} - t\ $	h, t, $\mathbf{r} \in \mathbb{C}^k$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

$$\begin{bmatrix} 3 & 5 & 7 \\ 4 & 9 & 8 \end{bmatrix} \circ \begin{bmatrix} 1 & 6 & 3 \\ 0 & 2 & 9 \end{bmatrix} = \begin{bmatrix} 3 \times 1 & 5 \times 6 & 7 \times 3 \\ 4 \times 0 & 9 \times 2 & 8 \times 9 \end{bmatrix}_{7}^{N}$$

Outline

- Overview
- Knowledge Graph Completion (Link Prediction)
- Reasoning on Knowledge Graphs

Reasoning over KGs

Goal:

How to perform multi-hop reasoning over KGs?

Reasoning over Knowledge Graphs

- Answering multi-hop queries
 - Path Queries
 - Conjunctive Queries
- Query2Box

Example KG: Biomedecine

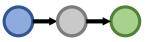


Predictive Queries on KG

Can we do multi-hop reasoning, i.e., answer complex queries on an incomplete, massive KG?

Query Types	Examples: Natural Language Question, Query	
One-hop Queries	What adverse event is caused by Fulvestrant? (e:Fulvestrant, (r:Causes))	
Path Queries	what protein is associated with the adverse event caused by Fulvestrant? (e:Fulvestrant, (r:Causes, r:Assoc))	
Conjunctive Queries	njunctive Queries What is the drug that treats breast cancer and caused headache? ((e:BreastCancer, (r:TreatedBy)), (e:Migraine, (r:CausedBy))	

In this lecture, we only focus on answering queries on a KG! The notation will be detailed next.



One-hop Queries

Path Queries

Conjunctive Queries

41

Questions?