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Outline
● Graph Neural Networks (GNNs)

● 4 paper presentations
! Swetha Mamidipoodi, Tanvi Joshi
! Giorgia Nicolaou, Lia Ran
! Yuheng Zha, Yuwei Zhang
! Pengcen Jiang, Zhongyang Zhang
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Graph Neural Networks (GNNs)

Slides adapted from:
• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Deep Graph Encoders
● Encoding based on graph neural networks

4

� Today: We will now discuss deep learnig
methods based on graph neural networks 
(GNNs):

� Note: All these deep encoders can be 
combined with node similarity functions 
defined in the Lecture 3.

8

multiple layers of 
non-linear transformations 
based on graph structure

��� ݒ ൌ

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

v.s. Shallow Encoder:
Simplest encoding approach: Encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node 
embedding [what we learn / 
optimize]

indicator vector, all zeroes 
except a one in column 
indicating node v

2/16/2023

��� ݒ ൌ ࢜ܢ ൌ ܈ ڄ ݒ



Graph Neural Networks: Setup

� Assume we have a graph ࡳ:
� ܸ is the vertex set
�  is the adjacency matrix (assume binary)
� ࢄ א Թ  ൈௗ is a matrix of node features
� ܰ ;ܸ a node in :ݒ ݒ : the set of neighbors of ݒ.
� Node features:

� Social networks: User profile, User image
� Biological networks: Gene expression profiles, gene 

functional information
� When there is no node feature in the graph dataset:

� Indicator vectors (one-hot encoding of a node)
� sĞĐƚŽƌ�ŽĨ�ĐŽŶƐƚĂŶƚ�ϭ͗�ϭ͕�ϭ͕�͙ ͕�ϭ

3310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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A Naïve Approach

� Join adjacency matrix and features
� Feed them into a deep neural net:

� Issues with this idea:
� Issues with this idea:

� ܱሺȁܸȁሻ parameters
� Not applicable to graphs of different sizes
� Sensitive to node ordering

34
End-to-end learning on graphs with GCNs Thomas Kipf
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Feat

A naïve approach
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� Take adjacency matrix     and feature matrix   

� Concatenate them  

� Feed them into deep (fully connected) neural net 

� Done?

Problems:

� Huge number of parameters 
� No inductive learning possible

?A

C

B

D

E

[A ,X ]
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Permutation Invariance
� Graph does not have a canonical order of the nodes!

39
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� Graph does not have a canonical order of the nodes!
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Graph and node representations 
should be the same for Order plan 1

and Order plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Permutation Invariance
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Permutation Invariance
tŚĂƚ�ĚŽĞƐ�ŝƚ�ŵĞĂŶ�ďǇ�͞ŐƌĂƉŚ�ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ�ŝƐ�
ƐĂŵĞ�ĨŽƌ�ƚǁŽ�ŽƌĚĞƌ�ƉůĂŶƐ͍͟�
� Consider we learn a function ݂ that maps a 

graph ܩ ൌ ሺǡࢄሻ to a vector Թௗ then
݂ ଵࢄଵǡ ൌ ݂ ଶࢄଶǡ

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41
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 is the adjacency matrix
ࢄ is the node feature matrix

For two order plans,
output of ݂ should 

be the same!
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Permutation Invariance
tŚĂƚ�ĚŽĞƐ�ŝƚ�ŵĞĂŶ�ďǇ�͞ŐƌĂƉŚ�ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ�ŝƐ�
ƐĂŵĞ�ĨŽƌ�ƚǁŽ�ŽƌĚĞƌ�ƉůĂŶƐ͍͟�
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graph ܩ ൌ ሺǡࢄሻ to a vector Թௗ then
݂ ଵࢄଵǡ ൌ ݂ ଶࢄଶǡ
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 is the adjacency matrix
ࢄ is the node feature matrix

For two order plans,
output of ݂ should 

be the same!
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tŚĂƚ�ĚŽĞƐ�ŝƚ�ŵĞĂŶ�ďǇ�͞ŐƌĂƉŚ�ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ�ŝƐ�
ƐĂŵĞ�ĨŽƌ�ƚǁŽ�ŽƌĚĞƌ�ƉůĂŶƐ͍͟�
� Consider we learn a function ݂ that maps a 

graph ܩ ൌ ሺǡࢄሻ to a vector Թௗ. 
� Then, if ݂ ࢄǡ ൌ ݂ ǡ ࢄ for any order 

plan ݅ and ݆ , we formally say ݂ is a permutation 
invariant function.

� Definition: For any graph function ݂ ǣ Թ  ൈ ൈ
Թ  ൈȁȁ ՜ Թௗ, ݂ is permutation-invariant if 
݂ ǡܣ ܺ ൌ ݂ ǡ்ܲܺܲܣܲ for any permutation ܲ.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

For a graph with ȁܸȁ nodes, there 
are ȁܸȁǨ different order plans.

 is the adjacency matrix
ࢄ is the node feature matrix

Permutation ܲ : a shuffle of the node order
Example: (A,B,C)->(B,C,A)



Permutation Equivariance
For node representation: We learn a function ݂
that maps nodes of ܩ to a matrix Թൈௗ.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43
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Permutation Equivariance
For node representation: We learn a function ݂
that maps nodes of ܩ to a matrix Թൈௗ.
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For node representation: We learn a function ݂
that maps nodes of ܩ to a matrix Թൈௗ.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44
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Representation vector 
of the brown node A

Representation vector 
of the brown node EFor two order plans, the vector of node at 

the same position in the graph is the same!



For node representation: We learn a function ݂
that maps nodes of ܩ to a matrix Թൈௗ.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45
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For two order plans, the vector of node at 
the same position in the graph is the same!

Order plan 1: ǡ ࢄ Order plan 2: ǡ ࢄ

݂ ଵǡ ଵࢄ ൌ ݂ ଶǡ ଶࢄ ൌ
Representation vector 
of the green node C

Representation vector 
of the green node D

Permutation Equivariance
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Permutation Equivariance

14

For node representation
� Consider we learn a function ݂ that maps a 

graph ܩ ൌ ሺǡࢄሻ to a matrix Թൈௗ

� If the output vector of a node at the same 
position in the graph remains unchanged for any 
order plan, we say ݂ is permutation 
equivariant.

� Definition: For any node function ݂ ǣ Թ  ൈ ൈ
Թ  ൈȁȁ ՜ Թ  ൈ , ݂ is permutation-
equivariant if ݂ܲ ǡܣ ܺ ൌ ݂ ǡ்ܲܺܲܣܲ for any 
permutation ܲ .

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46



Summary: Permutation Invariance and Equivariance

15

� Permutation-invariant
݂ ǡܣ ܺ ൌ ݂ ǡ்ܲܺܲܣܲ

� Permutation-equivariant
݂ܲ ǡܣ ܺ ൌ ݂ ǡ்ܲܺܲܣܲ

� Examples:
� ݂ ǡܣ ܺ ൌ ͳ்ܺ : Permutation-invariant 

� Reason: ݂ ǡ்ܲܣܲ ܲܺ ൌ ͳ்ܲܺ ൌ ͳ்ܺ ൌ ݂ ǡܣ ܺ
� ݂ ǡܣ ܺ ൌ ܺ : Permutation-equivariant

� Reason: ݂ ǡ்ܲܣܲ ܲܺ ൌ ܲܺ ൌ ݂ܲ ǡܣ ܺ
� ݂ ǡܣ ܺ ൌ ܺܣ : Permutation-equivariant

� Reason: ݂ ǡ்ܲܣܲ ܲܺ ൌ ்ܺܲܲܣܲ ൌ ܺܣܲ ൌ ݂ܲ ǡܣ ܺ
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

Permute the input, the 
output stays the same.

(map a graph to a vector)

Permute the input, output 
also permutes accordingly.
(map a graph to a matrix)



Summary: Permutation Invariance and Equivariance
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� Permutation-invariant
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Permute the input, the 
output stays the same.

(map a graph to a vector)

Permute the input, output 
also permutes accordingly.
(map a graph to a matrix)



Graph Neural Networks Overview
● GNNs consist of multiple permutation equivariant / invariant functions

17

� Graph neural networks consist of multiple 
permutation equivariant / invariant functions.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

[Bronstein, ICLR 2021 keynote]

[Bronstein, ICLR 2021 keynote] 



Graph Neural Networks Overview
● GNNs consist of multiple permutation equivariant / invariant functions

18

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
� No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Switching the order of the 
input leads to different 

outputs!



Graph Neural Networks Overview
● GNNs consist of multiple permutation equivariant / invariant functions

19

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
� No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Switching the order of the 
input leads to different 

outputs!

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
� No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

This explains why the naïve MLP approach 
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf
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Feat

A naïve approach

8

� Take adjacency matrix     and feature matrix   

� Concatenate them  

� Feed them into deep (fully connected) neural net 

� Done?

Problems:

� Huge number of parameters 
� No inductive learning possible

?A
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D
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[A ,X ]



Graph Neural Networks Overview
● GNNs consist of multiple permutation equivariant / invariant functions

● Next: Design GNNs that are permutation equivariant / invariant by 
passing and aggregating information from neighbors

20



Graph Convolutional Networks
Idea: EŽĚĞ Ɛ͛�ŶĞŝŐŚďŽƌŚŽŽĚ�ĚĞĨŝŶĞƐ�Ă�

computation graph

53

Determine node 
computation graph

Propagate and
transform information

݅

Learn how to propagate information across the 
graph to compute node features

[Kipf and Welling, ICLR 2017]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
21[Kipf and Welling, ICLR 2017] 



Idea: Aggregate Neighbors

22

� Key idea: Generate node embeddings based 
on local network neighborhoods 

5410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Idea: Aggregate Neighbors

23

� Key idea: Generate node embeddings based 
on local network neighborhoods 

5410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

� Intuition: Nodes aggregate information from 

their neighbors using neural networks

55

Neural networks
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Idea: Aggregate Neighbors

24

� Intuition: Network neighborhood defines a 
computation graph

56

Every node defines a computation 
graph based on its neighborhood!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Deep Model: Many Layers
� Model can be of arbitrary depth:

� Nodes have embeddings at each layer
� Layer-0 embedding of node ݒ is its input feature, ݒݔ
� Layer-݇ embedding gets information from nodes that 

are ݇ hops away

57

Layer-2

Layer-1
Layer-0

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Neighborhood Aggregation

� Neighborhood aggregation: Key distinctions 
are in how different approaches aggregate 
information across the layers

58

?

?

?

?

What is in the box?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Neighborhood Aggregation

27

� Basic approach: Average information from 
neighbors and apply a neural network

59

(1) average messages 
from neighbors 

(2) apply neural network
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



GCN: Invariance and Equivariance
What are the invariance and equivariance
properties for a GCN?
� Given a node, the GCN that computes its 

embedding is permutation invariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61
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Target Node

D A
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B

C

Shared NN weights

Average ŽĨ�ŶĞŝŐŚďŽƌ Ɛ͛�ƉƌĞǀŝŽƵƐ�ůĂǇĞƌ�
embeddings - Permutation invariant 

28



GCN: Invariance and Equivariance

29

� Considering all nodes in a graph, GCN computation 
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62
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accordingly - permutation equivariant
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GCN: Invariance and Equivariance

30

� Considering all nodes in a graph, GCN computation 
is permutation equivariant

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62
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� Considering all nodes in a graph, GCN computation 
is permutation equivariant 

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Embeddingsܪଵ

Embeddingsܪଶ

Detailed reasoning:
1. The rows of input node features and 
output embeddings are aligned
2. We know computing the embedding 
of a given node with GCN is invariant.
3. So, after permutation, the location
of a given node in the input node 
feature matrix is changed, and the the 
output embedding of a given node 
stays the same (the colors of node 
feature and embedding are matched)

This is permutation equivariant

Permute the input, the output also permutes 
accordingly - permutation equivariant

A
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D
E
F

A
B
C
D
E
F



How to Train A GNN

31

ࢠ

How do we train the GCN to 
generate embeddings?

Need to define a loss function on the embeddings.
6410/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



How to Train A GNN

32

� Node embedding ࢠ௩ is a function of input graph
� Supervised setting: we want to minimize the loss 
ࣦ (see also Slide 15):

���


ࣦሺ࢟ǡ ݂ ௩ࢠ ሻ
� node label :࢟
� ࣦ could be L2 if ࢟ is real number, or cross entropy 

if ࢟ is categorical
� Unsupervised setting:

� No node label available
� Use the graph structure as the supervision!

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



How to Train A GNN

33

� Node embedding ࢠ௩ is a function of input graph
� Supervised setting: we want to minimize the loss 
ࣦ (see also Slide 15):

���


ࣦሺ࢟ǡ ݂ ௩ࢠ ሻ
� node label :࢟
� ࣦ could be L2 if ࢟ is real number, or cross entropy 

if ࢟ is categorical
� Unsupervised setting:

� No node label available
� Use the graph structure as the supervision!

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

“Similar” nodes have similar 
embeddings (discussed in last 
lecture) 



Model Design: Overview

72

(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

ࢠ

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Model Design: Overview

3573

(3) Train on a set of nodes, i.e., 
a batch of compute graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Model Design: Overview

74

(4) Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
36



Inductive Capability

� The same aggregation parameters are shared 
for all nodes:
� The number of model parameters is sublinear in 
ȁܸȁ and we can generalize to unseen nodes!

75

ܹ ܤ

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
37



Inductive Capability: New Nodes

77

Train with snapshot New node arrives
Generate embedding 

for new node

� Many application settings constantly encounter 
previously unseen nodes:

� E.g., Reddit, YouTube, Google Scholar
� Need to generate new embeddings ͞ŽŶ�ƚŚĞ�ĨůǇ͟

�௨

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38



Inductive Capability: New Graphs

39
76

Inductive node embedding          Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate 
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

�௨

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Discussion: Design Space of GNNs

10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

40J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020



Ex1: Connectivity

41

Our assumption so far has been 
¡ Raw input graph = computational graph
Reasons for breaking this assumption
§ Feature level: 

§ The input graph lacks features à feature augmentation
§ Structure level:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational 

graph into a GPU
§ It’s just unlikely that the input graph happens to be 

the optimal computation graph for embeddings
10/4/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58



Ex1: Connectivity

42

¡ Graph Feature manipulation
§ The input graph lacks features à feature 

augmentation
¡ Graph Structure manipulation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when 

doing message passing
§ The graph is too large à Sample subgraphs to 

compute embeddings 
§ Will cover later in lecture: Scaling up GNNs
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Ex2: Graph Attention Network (GAT)
¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE
§ ?(" = '

< (  is the weighting factor (importance) 
of node (’s message to node +

§ ⟹ ?(" is defined explicitly based on the 
structural properties of the graph (node degree)

§ ⟹	All neighbors ( ∈ *(+) are equally important 
to node + 

&(($) = B(∑"∈< ( ?("D($)&"($&'))
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Attention weights

43

Not all node’s neighbors are equally important 

¡ Let ""# be computed as a byproduct of an 
attention mechanism #:
§ (1) Let F compute attention coefficients G=> across 

pairs of nodes (, + based on their messages:
H(" = F(D($)&"($&'),D($)I(($&'))

§ L-. indicates the importance of M/N	message to node ?
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!*
("#$)

!+("#$)0*+

O12 = P($(%)%1(%'(),$(%)%2(%'())

● Query, Key, Value
● Alignment 𝒆
● 𝒂 = softmax 𝒆



Questions?


