DSC250: Advanced Data Mining

Graph Neural Networks

Zhiting Hu
Lecture 13, November 9, 2023

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE

Outline
e Graph Neural Networks (GNNs)

e 4 paper presentations

Swetha Mamidipoodi, Tanvi Joshi
Giorgia Nicolaou, Lia Ran

Yuheng Zha, Yuwei Zhang
Pengcen Jiang, Zhongyang Zhang

O O O O

Graph Neural Networks (GNNs)

Slides adapted from:
« Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Deep Graph Encoders

e Encoding based on graph neural networks

multiple layers of
ENC(v) = non-inear transformations
based on graph structure

v.s. Shallow Encoder:

ENC(w) =2z,=Z- v

Graph Neural Networks: Setup

Assume we have a graph G:
V is the vertex set
A is the adjacency matrix (assume binary)
X € RIVIX4 is 3 matrix of node features

v:anode in V; N(v): the set of neighbors of v.

Node features:
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information
When there is no node feature in the graph dataset:

Indicator vectors (one-hot encoding of a node)
Vector of constant1:[1, 1, ..., 1]

A Naive Approach

Join adjacency matrix and features
Feed them into a deep neural net:

hidden layer 1 hidden layer 2 hidden layer 3
e »»f\ — -~
_ AN AN

—

~ e~ -~
S TIHA So. AT SNES, T T
77 R, XA \7\2”'/

E Feat

¢ \ RS

10
0 0

0o 1 | >
1 1

1

%
7

© 2 Aalfalo »

B C D
1 1 1
0o 0 1
0o o0 1
1 1 0
1 0 1

0
1
0
1
0

0

L) — TN ¥

Issues with this idea:

O(|V|) parameters
Not applicable to graphs of different sizes
Sensitive to node ordering

Permutation Invariance

= Graph does not have a canonical order of the nodes!
Node features X; Adjacency matrix 44
ABCDEF

Order plan 1

M m ONn ™ >

Node features X, Adjacency matrix A4,

Order plan 2 ABCDEFTF

M m ONn ™ >

Permutation Invariance

= Graph does not have a canonical order of the nodes!
Node feature X, Adjacency matrix 4,

Order plana

Graph and node representations
should be the same for

Permutation Invariance

What does it mean by “graph representationis
same for two order plans”?
Consider we learn a function f that maps a
graph G = (4,X) to a vector R% then
f(Al:Xl) - f(AZJXZ) Ais the adjacency matrix

X is the node feature matrix

Order plani1: 44, X, Order plan2: 4,, X,

For two order plans,
output of f should
be the same!

Permutation Invariance

What does it mean by “graph representation is
same for two order plans”?
Consider we learn a function f that maps a
graph G = (A4,X) to a vector R%. 4 ot
Then, if f(4;,X;) = f(Aj,Xj) for any order
plani and j, we formally say [is a permutation

Fora graph with |VV| nodes, there

invariant function. are V]! differentorder plans.
Definition: For any graph function f: RIVIXm o
RIVIXIVI 5 R4, £ is permutation-invariant if
f(4,X) = f(PAPY, PX) for any permutation P.

Permutation P: a shuffle of the node order
 Example: (AB,C)->(B.C.A)

Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢.

Order plan1: 44, X, Order plan 2: A5, X,

=1
2 N

f(A, X)) = f(Az X3) =

'nmUﬁwZD

- N

Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢,

Orderplani1: 44, X4 Order plan 2: 4,5, X,

Representation vector
of the brown node A

f(Al'Xl) —

Representation vector
of the brown node E

For two order plans, the vector of node at
the same position in the graph is the same!

m m O N W

Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢,

Orderplani1: 44, X4 Order plan 2: 4,5, X,

A
B

Representation vector

of the green node C f(Az, XZ) — |E

Representation vector
of the green node D

|

For two order plans, the vector of node at
the same position in the graph is the same! F

Permutation Equivariance

For node representation
Consider we learn a function f that maps a
graph G = (A, X) to a matrix R"™*¢
If the output vector of a node at the same
position in the graph remains unchanged for any
order plan, we say f is permutation
equivariant.

Definition: For any node function f: RIVI*™ x
RIVIXIVI o RIVIXm £ is permutation-
equivariantif Pf(4,X) = f(PAPT,PX) for any
permutation P. 14

Summary: Permutation Invariance and Equivariance

Permutation-invariant Permute the input, the

output stays the same.

f(A, X) — f(PAPT, PX) (map a graph to a vector)
Permutation-equivariant e he ot oot
Pf(A, X) — f(PAPT, PX) ezlso permutes acc,ordingly.

map a graph to a matrix)

15

Summary: Permutation Invariance and Equivariance

Permutation-invariant Permute the input, the

output stays the same.

f(A, X) — f(PAPT, PX) (map a graph to a vector)
Permutation-equivariant

Permute the input, output

Pf(A, X) — f(PAPT, PX) a(lso permutes accordingly.

map a graph to a matrix)

Examples:
f(AX) = : Permutation-invariant
Reason: f(PAPT,PX) = 1TPX = = f(4,X)
f(A,X) = X : Permutation-equivariant
Reason: f(PAPT,PX) = PX = Pf(4,X)
f(4,X) = : Permutation-equivariant

Reason: f(PAPT,PX) = PAPTPX = PAX = Pf(4A,X)

16

Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

[Bronstein, ICLR 2021 keynote] 17

Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
No.

input leads to different
outputs!

Switching the order of the

18

Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
= No.

m O O W »
a2
- - OO0 -~
© 2~ oo~ O
- O = = -
o = ol-alo

This explains why

19

Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

e Next: Design GNNs that are permutation equivariant / invariant by
passing and aggregating information from neighbors

20

Graph Convolutional Networks

ldea: Node’s neighborhood defines a
computation graph

2

e

- n
2
z

Determine node Propagate and
computation graph transform information
Learn how to propagate information across the

graph to compute node features
[Kipf and Welling, ICLR 2017]

21

ldea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods

TARGETl NODE) ‘A‘: ------------------- ©

oy
INPUTGRAPH T e ‘

22

ldea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

INPUT GRAPH

Neural networks

23

ldea: Aggregate Neighbors

Intuition: Network neighborhood defines a
computation graph

Every node defines a computation
graph based on its neighborhood!

INPUT GRAPH

o ® o ® ® ®
1 1 L I
]]] u] m
.%.:.é % .%m‘s&. i .% §. (S
S% 4% WdYe L A4 X%
S e R T LA T S U L A

Deep Model: Many Layers
Model can be of arbitrary depth:

Nodes have embeddings at each layer
Layer-0 embedding of node v is its input feature, x,,

Layer-k embedding gets information from nodes that
are k hops away

Layer-0
Layer-1 B XA
TARGET NODE ‘ .A‘ ‘ XC
- Layer-2 .- n XA
‘ ‘ A ‘ XB
® B < e ol ® Xp
® ® ® Xp
INPUT GRAPH ‘.' A

XA

25

Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

TARGET NODE

l

?

‘4-

INPUT GRAPH

26

Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

(1) average messages
TARGET NoDE from neighbors PR CERP

l g
*
*
‘ ‘
*
*
*
*
*
. o
. o
0” -
- o
- =
.’ >

INPUT GRAPH ‘.‘ """""""""" A
(2) apply neural network

GCN: Invariance and Equivariance

What are the invariance and equivariance
properties for a GCN?
Given a node, the GCN that computes its
embedding is permutation invariant

Shared NN weights
\

o Hl-»

Target Node

Permutation invariant
28

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation
is permutation equivariant

Node feature X Adjacency matrix 4, Embeddings H;
A B CDEF

e

A D
= D

Order
plan 1

E

F G

mMmoOoNn o>

Target Node Permute the input, the output also permutes

accordingly - permutation equivariant
Node feature X, Adjacency matrix A, Embeddings H,

Order » D ABCDEF
lan 2 &
P

D

: (D
- D

M m ONn W >

Target Node

29

GCN: Invariance and Equivariance

Considering all nodes in a graph,

Is permutation equivariant

Node feature X

Detailed reasoning: ‘ —e
1. The rows of input node features and

output embeddings are aligned

2. We know computing the embedding E
of a given node with GCN is invariant. F D

GCN computation

Adjacencymatrix 4, Embeddings H;
ABCDEFTF A

B

|

mMmm N ©W >

3. So, after permutation, the location Permute the input, the output also permutes

of a given node in the input node accordingly - permutation equivariant
.. Node feature X, Adjacency matrix A, Embeddings H,
feature matrix is changed, and the the | PN ABCDEF

output embedding of a given node 3
stays the same (the colors of node
feature and embedding are matched) D
This is permutation equivariant c GEED
F D

m m ONn W >

30

How to Train A GNN

How do we train the GCN to
generate embeddings?

Z A ‘ < > TTTTTTPTTTPPTTITTY ‘4'.

Need to define a loss function on the embeddings.

31

How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss

L (see also Slide 15):
min L(y, f(z,))

y: node label
L could be L2 if y is real number, or cross entropy

if y is categorical
Unsupervised setting:

No node label available
Use the graph structure as the supervision!

How to Train A GNN

Node embedding z,, is a function of input graph
Supervised setting: we want to minimize the loss

L (see also Slide 15):

min L(y, f (2,))
y: hode label
L could be L2 if y is real number, or cross entropy
if y is categorical . .
Unsubervised settine: Similar” nodes have similar
P & embeddings (discussed in last
No node label available lecture) D

Use the graph structure as the supervision!

Model Design: Overview

(1) Define a neighborhood
aggregation function

ZA"'

\

(2) Define a loss function on the
embeddings

34

Model Design: Overview

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

INPUT GRAPH

35

Model Design: Overview

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

INPUT GRAPH

36

Inductive Capability

The same aggregation parameters are shared
for all nodes:

The number of model parameters is sublinear in
|V'| and we can generalize to unseen nodes!

@
B shared parameters
A (%4 B
® 200 AT K. o
P ./‘ 4 . ‘ shared parameters . ‘
... ‘ L .
'Y g T o®
INPUT GRAPH Compute graph for node A Compute graph for node B

37

Inductive Capability: New Nodes

Z
1
AVAN AVAN AVAN
| | <
—— T T
Generate embedding
Train with snapshot New node arrives for new node

Many application settings constantly encounter
previously unseen nodes:

E.g., Reddit, YouTube, Google Scholar
Need to generate new embeddings “on the fly”

38

Inductive Capability: New Graphs

— 7 Zu
Train on one graph Generalize to new graph
Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate

embeddings on newly collected data about organism B
39

Discussion: Design Space of GNNs

TARGET NODE

l

(5) Learning objective

S — oot

(2) Aggregation

INPUT GRAPH

. GNN Layer 1

\ ’ (1) Message

(3) Layer

(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurlPS 2020 40

Ex1: Connectivity

Our assumption so far has been
Raw input graph = computational graph
Reasons for breaking this assumption
Feature level:
= The input graph lacks features = feature augmentation

Structure level:

= The graph is too sparse 2 inefficient message passing

= The graph is too dense = message passing is too costly

= The graph is too large = cannot fit the computational
graph into a GPU

It’s just unlikely that the input graph happens to be

the optimal computation graph for embeddings
41

Ex1: Connectivity

Graph Feature manipulation

The input graph lacks features > feature
augmentation

Graph Structure manipulation
The graph is too sparse = Add virtual nodes / edges
The graph is too dense = Sample neighbors when
doing message passing

The graph is too large 2 Sample subgraphs to
compute embeddings

= Will cover later in lecture: Scaling up GNNs

42

Ex2: Graph Attention Network (GAT)
In GCN

1
| a —

vk INW)|

of node u’s message to node v

is the weighting factor (importance)

" = a,, is defined explicitly based on the
structural properties of the graph (node degree)

= = All neighbors u € N(v) are equally important
to node v

Not all node’s neighbors are equally important

e Query, Key, Value
e Alignmente

e a = softmax(e)

