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Outline
● Node Embedding
● Graph Neural Networks (GNNs)

● 4 paper presentations
! Robert Nerem, Vivek Ramchandran
! Eugene Kim
! Shibo Hao, Yi Gu
! Yingyu Lin, Yiyang Bi
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Node Embedding

Slides adapted from:
• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Graph Representation Learning
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Goal: Efficient task-independent feature 
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4
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Node Embedding
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� Task: Map nodes into an embedding space
� Similarity of embeddings between nodes indicates 

their similarity in the network. For example:
� Both nodes are close to each other (connected by an edge)

� Encode network information
� Potentially used for many downstream predictions

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Vec

Թௗembeddings

� Node classification
� Link prediction
� Graph classification
� Anomalous node detection
� Clustering
� «�

Tasks



Example Node Embedding
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� Ϯ��ĞŵďĞĚĚŝŶŐ�ŽĨ�ŶŽĚĞƐ�ŽĨ�ƚŚĞ��ĂĐŚĂƌǇ͛Ɛ�
Karate Club network:

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Example

� Zachary͛s Karate Network:

18

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.



Node Embedding: Setup

� Assume we have a graph G:
� V is the vertex set.
� A is the adjacency matrix (assume binary).
� For simplicity: No node features or extra 

information is used

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 82/16/2023
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Node Embedding

� Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 92/16/2023
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Node Embedding
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Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Goal:

Need to define!

2/16/2023

in the original network Similarity of the embedding
���������� ǡݑ ݒ ൎ ௨ܢ௩஋ܢ



Node Embedding: Key Components

� Encoder: maps each node to a low-dimensional 
vector

� Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of ݑ and ݒ in 
the original network

dot product between node 
embeddings

2/16/2023

Decoder

��� ݒ ൌ ௩ܢ

���������� ǡݑ ݒ ൎ ௨ܢ௩஋ܢ

node in the input graph

d-dimensional 
embedding
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Node Embedding: Key Components
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Similarity of ݑ and ݒ in 
the original network

dot product between node 
embeddings
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Decoder

��� ݒ ൌ ௩ܢ

���������� ǡݑ ݒ ൎ ௨ܢ௩஋ܢ

node in the input graph

d-dimensional 
embedding
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“Shallow” Encoder

Simplest encoding approach: Encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node 
embedding [what we learn / 
optimize]

indicator vector, all zeroes 
except a one in column 
indicating node v

2/16/2023

��� ݒ ൌ ࢜ܢ ൌ ܈ ڄ ݒ
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“Shallow” Encoder

13

Simplest encoding approach: encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node

2/16/2023



“Shallow” Encoder
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Simplest encoding approach: Encoder is just an 
embedding-lookup

Each node is assigned a unique 
embedding vector

(i.e., we directly optimize 
the embedding of each node)

Many methods: DeepWalk, node2vec

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15



Node Embedding: Key Components

� Encoder: maps each node to a low-dimensional 
vector

� Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network
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Similarity of ݑ and ݒ in 
the original network

dot product between node 
embeddings
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Decoder

��� ݒ ൌ ௩ܢ

���������� ǡݑ ݒ ൎ ௨ܢ௩஋ܢ

node in the input graph

d-dimensional 
embedding

15



Similarity Function based on Random Walk
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2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

Given a graph and a starting 
point, we select a neighbor of 
it at random, and move to this 
neighbor; then we select a 
neighbor of this point at 
random, and move to it, etc. 
The (random) sequence of 
points visited this way is a 
random walk on the graph.

Step 1 Step 2

Step 3 Step 4

Step 5

16

Random walk on graph:



Similarity Function based on Random Walk
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Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

probability that u
and v co-occur on a 
random walk over 

the graph

2/16/2023



Why Random Walk?

1. Expressivity: Flexible stochastic definition of 
node similarity that incorporates both local 
and higher-order neighborhood information
Idea: if random walk starting from node ݑ
visits ݒ with high probability, ݑ and ݒ are 
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node 
pairs when training; only need to consider 
pairs that co-occur on random walks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 242/16/2023
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Limitations of Random Walk Embedding (1)Limitations of node embeddings via matrix 
factorization and random walks

� Cannot obtain embeddings for nodes not in the 
training set

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64
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Training set A newly added node 5 at test time 
(e.g., new user in a social network)

Cannot compute its embedding 
with DeepWalk / node2vec. Need to 
recompute all node embeddings.

19



Limitations of Random Walk Embedding (2)

20

� Cannot capture structural similarity:

� Node 1 and 11 are structurally similar ʹ part of 
ŽŶĞ�ƚƌŝĂŶŐůĞ͕�ĚĞŐƌĞĞ�Ϯ͕�͙

� However, they have very different embeddings.
� /ƚ͛Ɛ�ƵŶůŝŬĞůǇ�ƚŚĂƚ�Ă�ƌĂŶĚŽŵ�ǁĂůŬ�ǁŝůů�ƌĞĂĐŚ�

node 11 from node 1.

� DeepWalk and node2vec do not capture 
structural similarity.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65
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Limitations of Random Walk Embedding (3)

21

� Cannot utilize node, edge and graph features

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66
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Feature vector
(e.g. protein properties in a 
protein-protein interaction graph)

DeepWalk / node2vec 
embeddings do not incorporate 
such node features

Solution to these limitations: Deep Representation 
Learning and Graph Neural Networks
(To be covered in depth next)



Summary

� Encoder + Decoder Framework
� Shallow encoder: embedding lookup
� Parameters to optimize: ܈ which contains node 

embeddings ܢ௨ for all nodes ݑ א ܸ
� We will cover deep encoders in the GNNs

� Decoder: based on node similarity.
� Objective: maximize ܢ௩஋ܢ௨ for node pairs ሺݑǡ ሻݒ

that are similar

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16
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Discussion: How to Define Node Similarity?

� Key choice of methods is how they define node 
similarity.

� Should two nodes have a similar embedding if 
they͙
� are linked?
� share neighbors?
� ŚĂǀĞ�ƐŝŵŝůĂƌ�͞ƐƚƌƵĐƚƵƌĂů�ƌŽůĞƐ͍͟

� We will now learn node similarity definition that uses 
random walks, and how to optimize embeddings for 
such a similarity measure.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17
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Graph Neural Networks (GNNs)

Slides adapted from:
• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Deep Graph Encoders
● Encoding based on graph neural networks

25

� Today: We will now discuss deep learnig
methods based on graph neural networks 
(GNNs):

� Note: All these deep encoders can be 
combined with node similarity functions 
defined in the Lecture 3.

8

multiple layers of 
non-linear transformations 
based on graph structure

��� ݒ ൌ

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

v.s. Shallow Encoder:
Simplest encoding approach: Encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node 
embedding [what we learn / 
optimize]

indicator vector, all zeroes 
except a one in column 
indicating node v

2/16/2023

��� ݒ ൌ ࢜ܢ ൌ ܈ ڄ ݒ



Deep Graph Encoders

26
9

f

Output: Node embeddings. 
Also, we can embed subgraphs, 
and graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Graphs are more complex than images / text
But networks are far more complex!

� Arbitrary size and complex topological structure (i.e., 
no spatial locality like grids)

� No fixed node ordering or reference point
� Often dynamic and have multimodal features

12

vs.

Networks Images

Text

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Graph Neural Networks: Setup

� Assume we have a graph ࡳ:
� ܸ is the vertex set
� ࡭ is the adjacency matrix (assume binary)
� ࢄ א Թ ௏ ൈௗ is a matrix of node features
� ܰ ;ܸ a node in :ݒ ݒ : the set of neighbors of ݒ.
� Node features:

� Social networks: User profile, User image
� Biological networks: Gene expression profiles, gene 

functional information
� When there is no node feature in the graph dataset:

� Indicator vectors (one-hot encoding of a node)
� sĞĐƚŽƌ�ŽĨ�ĐŽŶƐƚĂŶƚ�ϭ͗�΀ϭ͕�ϭ͕�͙ ͕�ϭ΁

3310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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A Naïve Approach

� Join adjacency matrix and features
� Feed them into a deep neural net:

� Issues with this idea:
� Issues with this idea:

� ܱሺȁܸȁሻ parameters
� Not applicable to graphs of different sizes
� Sensitive to node ordering

34
End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

� Take adjacency matrix     and feature matrix   

� Concatenate them  

� Feed them into deep (fully connected) neural net 

� Done?

Problems:

� Huge number of parameters 
� No inductive learning possible

?A

C

B

D

E

[A ,X ]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29



Permutation Invariance
� Graph does not have a canonical order of the nodes!

39

A
C

B

E
F

D

A

B

C

D

E

F

Node features ࢄ૚ Adjacency matrix ࡭૚

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node features ࢄ૛ Adjacency matrix ࡭૛

A
B
C
D
E
F

A B C D E FOrder plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30



� Graph does not have a canonical order of the nodes!
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D

E

F

Node feature ࢄ૚ Adjacency matrix ࡭૚

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node feature ࢄ૛ Adjacency matrix ࡭૛

A
B
C
D
E
F

A B C D E FOrder plan 2

Graph and node representations 
should be the same for Order plan 1

and Order plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Permutation Invariance

31



Permutation Invariance
tŚĂƚ�ĚŽĞƐ�ŝƚ�ŵĞĂŶ�ďǇ�͞ŐƌĂƉŚ�ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ�ŝƐ�
ƐĂŵĞ�ĨŽƌ�ƚǁŽ�ŽƌĚĞƌ�ƉůĂŶƐ͍͟�
� Consider we learn a function ݂ that maps a 

graph ܩ ൌ ሺ࡭ǡࢄሻ to a vector Թௗ then
݂ ଵࢄଵǡ࡭ ൌ ݂ ଶࢄଶǡ࡭

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

A
C

B

E
F

D

E
D

F

B
A

C

Order plan 1: ࡭૚ǡ ૚ࢄ Order plan 2: ࡭૛ǡ ૛ࢄ

࡭ is the adjacency matrix
ࢄ is the node feature matrix

For two order plans,
output of ݂ should 

be the same!
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Permutation Equivariance
For node representation: We learn a function ݂
that maps nodes of ܩ to a matrix Թ௠ൈௗ.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43
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E
F

D

E
D

F

B
A

C

A

B
C
D
E
F

A

B
C
D
E
F

Order plan 1: ࡭૚ǡ ૚ࢄ Order plan 2: ࡭૛ǡ ૛ࢄ

݂ ଵǡ࡭ ଵࢄ ൌ ݂ ଶǡ࡭ ଶࢄ ൌ

33



Permutation Equivariance
For node representation: We learn a function ݂
that maps nodes of ܩ to a matrix Թ௠ൈௗ.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43
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C

B

E
F

D

E
D

F
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C

A

B
C
D
E
F
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B
C
D
E
F

Order plan 1: ࡭૚ǡ ૚ࢄ Order plan 2: ࡭૛ǡ ૛ࢄ

݂ ଵǡ࡭ ଵࢄ ൌ ݂ ଶǡ࡭ ଶࢄ ൌ
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For node representation: We learn a function ݂
that maps nodes of ܩ to a matrix Թ௠ൈௗ.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44
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B
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C

A

B
C
D
E
F

A

B
C
D
E
F

Order plan 1: ࡭૚ǡ ૚ࢄ Order plan 2: ࡭૛ǡ ૛ࢄ

݂ ଵǡ࡭ ଵࢄ ൌ ݂ ଶǡ࡭ ଶࢄ ൌ

Representation vector 
of the brown node A

Representation vector 
of the brown node EFor two order plans, the vector of node at 

the same position in the graph is the same!



For node representation: We learn a function ݂
that maps nodes of ܩ to a matrix Թ௠ൈௗ.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45
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D

E
D

F

B
A

C

A

B
C
D
E
F

A

B
C
D
E
F

For two order plans, the vector of node at 
the same position in the graph is the same!

Order plan 1: ࡭૚ǡ ૚ࢄ Order plan 2: ࡭૛ǡ ૛ࢄ

݂ ଵǡ࡭ ଵࢄ ൌ ݂ ଶǡ࡭ ଶࢄ ൌ
Representation vector 
of the green node C

Representation vector 
of the green node D

Permutation Equivariance
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Graph Neural Networks Overview
● GNNs consist of multiple permutation equivariant / invariant functions

36

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
� No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Switching the order of the 
input leads to different 

outputs!



Graph Neural Networks Overview
● GNNs consist of multiple permutation equivariant / invariant functions
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Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
� No.
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Switching the order of the 
input leads to different 

outputs!

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?
� No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

This explains why the naïve MLP approach 
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach
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� Take adjacency matrix     and feature matrix   

� Concatenate them  

� Feed them into deep (fully connected) neural net 

� Done?

Problems:

� Huge number of parameters 
� No inductive learning possible

?A

C

B

D

E

[A ,X ]



Graph Neural Networks Overview
● GNNs consist of multiple permutation equivariant / invariant functions

● Next: Permutation equivariant / invariant by passing and aggregating 
information from neighbors

38



Graph Convolutional Networks
Idea: EŽĚĞ Ɛ͛�ŶĞŝŐŚďŽƌŚŽŽĚ�ĚĞĨŝŶĞƐ�Ă�

computation graph

53

Determine node 
computation graph

Propagate and
transform information

݅

Learn how to propagate information across the 
graph to compute node features

[Kipf and Welling, ICLR 2017]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Questions?


