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Node Embedding

Slides adapted from:
« Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Graph Representation Learning

Goal: Efficient task-independent feature
learning for machine learning with graphs!
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Node Embedding

Similarity of embeddings between nodes indicates
their similarity in the network. For example:

Both nodes are close to each other (connected by an edge)
Encode network information

Potentially used for many downstream predictions

Vec Tasks
» Node classification
* Link prediction
- ~ / » Graph classification

,  Anomalous node detection
embeddings R4 . Clustering



Example Node Embedding

2D embedding of nodes of the Zachary’s

Karate Club network:
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Node Embedding: Setup

Assume we have a graph G:
V is the vertex set.
A is the adjacency matrix (assume binary).

For simplicity: No node features or extra
information is used

(0 1 0 1)

A—l O 0 1

V:{1, 2, 3, 4} 0 0 0 1
(1 1 1 0



Node Embedding

= Goalis to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph
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Node Embedding

Goal; similarity(u,v) ~ zlz,
in the original network Similarity of the embedding

| Needto define! |

original network embedding space



Node Embedding: Key Components

Encoder: maps each node to a low-dimensional

vector d-dimensional
ENC(v) =z, embedding

node in the input graph

specifies how the
relationshipsin vector space map to the
relationshipsin the original network

similarity(u,v) = z)z, Decoder
Similarity of w and v in dot product between node

the original network embeddings
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Node Embedding: Key Components

Encoder: maps each node to a low-dimensional

vector d-dimensional
ENC(v) =z, embedding

node in the input graph



"Shallow” Encoder

Simplest encoding approach: Encoder is just an
embedding-lookup

ENClv) =z,=7Z v

dx |V matrix, each column is a node
ZeR Vi embedding [what we learn/
optimize]

iIndicator vector, all zeroes
v e 1V '

except a one in column

iIndicating node v
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"Shallow” Encoder

Simplest encoding approach: encoder is just an
embedding-lookup

embedding

matrix

\
Z

embedding vector for a

specific node

N

~
one column per node

Dimension/size
> of embeddings
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"Shallow” Encoder

Simplest encoding approach: Encoder is just an
embedding-lookup

Each node is assigned a unique
embedding vector
(i.e., we directly optimize
the embedding of each node)

Many methods: DeepWalk, node2vec
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Node Embedding: Key Components

specifies how the
relationshipsin vector space map to the
relationshipsin the original network

similarity(u,v) = z)z, Decoder
Similarity of w and v in dot product between node

the original network embeddings
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Similarity Function based on Random Walk

Random walk on graph:

Step 5
\

()

11

Given a graph and a starting
point, we select a neighbor of
it at random, and move to this
neighbor; then we select a
neighbor of this point at
random, and move to it, etc.
The (random) sequence of
points visited this way is a

random walk on the graph.
16



Similarity Function based on Random Walk

probability that u
z;[;zv ~ and v Cco-0ccuron a

random walk over
the graph

17



Why Random Walk?

Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information
Idea: if random walk starting from node u
visits v with high probability, u and v are
similar (high-order multi-hop information)

Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks
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Limitations of Random Walk Embedding (1)

Cannot obtain embeddings for nodes not in the

training set

Training set

~§~
-

A newly added node 5 at test time
(e.g., new user in a social network)

Cannot compute its embedding
with DeepWalk / node2vec. Need to
recompute all node embeddings.

19



Limitations of Random Walk Embedding (2)

Cannot capture structural similarity:

Node 1 and 11 are structurally similar — part of
one triangle, degree 2, ...
However, they have very different embeddings.

It’s unlikely that a random walk will reach
node 11 from node 1.

20



Limitations of Random Walk Embedding (3)

Cannot utilize node, edge and graph features

Feature vector
(e.g. protein properties in a
I / protein-protein interaction graph)

I DeepWalk / node2vec
I embeddings do not incorporate
such node features

Solution to these limitations: Deep Representation
Learning and Graph Neural Networks
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Summary

Shallow encoder: embedding lookup

Parameters to optimize: Z which contains node
embeddings z, for all nodes u € V

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize z.z,, for node pairs (u, v)
that are similar
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Discussion: How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

Should two nodes have a similar embedding if
they...

are linked?

share neighbors?

have similar “structural roles”?
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Graph Neural Networks (GNNs)

Slides adapted from:
« Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Deep Graph Encoders

e Encoding based on graph neural networks

multiple layers of
ENC(v) = non-inear transformations
based on graph structure

v.s. Shallow Encoder:

ENC(w) =2z,=Z- v
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Deep Graph Encoders

Graph
convolutions

&

éo

Regularization, Graph
convolutions

Activation
function

/

Output: Node embeddings.
Also, we can embed subgraphs,
and graphs
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Graphs are more complex than images / text

Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

Networks Images

No fixed node ordering or reference point
Often dynamic and have multimodal features
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Graph Neural Networks: Setup

Assume we have a graph G:
I is the vertex set
A is the adjacency matrix (assume binary)

X € R!VIX4 is 3 matrix of node features

v:anode in V; N(v): the set of neighbors of v.

Node features:
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information
When there is no node feature in the graph dataset:

Indicator vectors (one-hot encoding of a node)
Vector of constant1:[1, 1, ..., 1]
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A Naive Approach

Join adjacency matrix and features
Feed them into a deep neural net:

hidden layer 1 hidden layer 2 hidden layer 3
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Issues with this idea:

O(|V|) parameters
Not applicable to graphs of different sizes
Sensitive to node ordering
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Permutation Invariance

= Graph does not have a canonical order of the nodes!
Node features X;  Adjacency matrix 44
ABCDEF

Order plan 1

M m ONn ™ >

Node features X, Adjacency matrix A4,

Order plan 2 ABCDEFTF

M m ONn ™ >
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Permutation Invariance

= Graph does not have a canonical order of the nodes!
Node feature X, Adjacency matrix 4,

Order plana

Graph and node representations
should be the same for
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Permutation Invariance

What does it mean by “graph representationis
same for two order plans”?
Consider we learn a function f that maps a
graph G = (4,X) to a vector R% then
f(Al:Xl) - f(AZJXZ) Ais the adjacency matrix

X is the node feature matrix

Order plani1: 44, X, Order plan2: 4,, X,

For two order plans,
output of f should
be the same!
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Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢.

Order plan1: 44, X, Order plan 2: A5, X,

=1
2 N

f(A, X)) = f(Az X3) =

'nmUﬁwZD
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Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢,

Orderplani1: 44, X4 Order plan 2: 4,5, X,

Representation vector
of the brown node A

f(Al'Xl ) —

Representation vector
of the brown node E

For two order plans, the vector of node at
the same position in the graph is the same!
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Permutation Equivariance

For node representation: We learn a function f
that maps nodes of G to a matrix R™*¢,

Orderplani1: 44, X4 Order plan 2: 4,5, X,

A
B

Representation vector

of the green node C f(Az, XZ) — |E

Representation vector
of the green node D

|

For two order plans, the vector of node at
the same position in the graph is the same! F



Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
No.

input leads to different
outputs!

Switching the order of the
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Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
= No.
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This explains why

37




Graph Neural Networks Overview

e GNNs consist of multiple permutation equivariant / invariant functions

e Next: Permutation equivariant / invariant by passing and aggregating
information from neighbors
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Graph Convolutional Networks

ldea: Node’s neighborhood defines a
computation graph
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Determine node Propagate and
computation graph transform information

Learn how to propagate information across the
graph to compute node features
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