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Outline

● Recurrent Networks (RNNs)
! Long-range dependency, vanishing gradients
! LSTM
! RNNs in different forms

● Attention Mechanisms
! (Query, Key, Value)
! Attention on Text and Images

● Transformers: Multi-head Attention
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Text Embedding



Word Embedding

● A pre-trained matrix, 
each row is an 
embedding vector of a 
word

4[Courtesy: Vaswani, et al., 2017]

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


Word Embedding

● Problem: word embeddings are applied in a context free manner

5Courtesy: Devlin 2019

open a bank account    on the river bank

      [0.3, 0.2, -0.8, …]



Word Embedding

● Problem: word embeddings are applied in a context free manner

● Solution: Train contextual representations on text corpus

6

open a bank account

[0.9, -0.2, 1.6, …]

on the river bank

[-1.9, -0.4, 0.1, …]

Courtesy: Devlin 2019

open a bank account    on the river bank

      [0.3, 0.2, -0.8, …]



BERT
● BERT: A bidirectional model to extract contextual word embedding 



BERT: Pre-training Procedure
● Dataset:
! Wikipedia (2.5B words) + a collection of free ebooks (800M words)
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BERT: Pre-training Procedure
● Dataset:
! Wikipedia (2.5B words) + a collection of free ebooks (800M words)

● Training procedure
! masked language model (masked LM)
§ Masks some percent of words from the input and has to reconstruct those words 

from context
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BERT: Pre-training Procedure
● Masked LM
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BERT: Pre-training Procedure
● Dataset:
! Wikipedia (2.5B words) + a collection of free ebooks (800M words)

● Training procedure
! masked language model (masked LM)
§ Masks some percent of words from the input and has to reconstruct those words 

from context
! Two-sentence task
§ To understand relationships between sentences
§ Concatenate two sentences A and B and predict whether B actually comes after A 

in the original text
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BERT: Pre-training Procedure

● Two sentence 
task
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BERT: Downstream Fine-tuning 
● Use BERT for sentence classification
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BERT: Downstream Fine-tuning 
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BERT Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAI SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.9 90.4 36.0 73.3 84.9 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 88.1 91.3 45.4 80.0 82.3 56.0 75.2
BERTBASE 84.6/83.4 71.2 90.1 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 91.1 94.9 60.5 86.5 89.3 70.1 81.9

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the
number of training examples. The “Average” column is slightly different than the official GLUE score, since
we exclude the problematic WNLI set. OpenAI GPT = (L=12, H=768, A=12); BERTBASE = (L=12, H=768,
A=12); BERTLARGE = (L=24, H=1024, A=16). BERT and OpenAI GPT are single-model, single task. All
results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.
com/language-unsupervised/.

RTE Recognizing Textual Entailment is a bi-
nary entailment task similar to MNLI, but with
much less training data (Bentivogli et al., 2009).6

WNLI Winograd NLI is a small natural lan-
guage inference dataset deriving from (Levesque
et al., 2011). The GLUE webpage notes that there
are issues with the construction of this dataset, 7

and every trained system that’s been submitted
to GLUE has has performed worse than the 65.1
baseline accuracy of predicting the majority class.
We therefore exclude this set out of fairness to
OpenAI GPT. For our GLUE submission, we al-
ways predicted the majority class.

4.1.1 GLUE Results

To fine-tune on GLUE, we represent the input se-
quence or sequence pair as described in Section 3,
and use the final hidden vector C 2 RH corre-
sponding to the first input token ([CLS]) as the
aggregate representation. This is demonstrated vi-
sually in Figure 3 (a) and (b). The only new pa-
rameters introduced during fine-tuning is a classi-
fication layer W 2 RK⇥H , where K is the num-
ber of labels. We compute a standard classification
loss with C and W , i.e., log(softmax(CW

T )).
We use a batch size of 32 and 3 epochs over

the data for all GLUE tasks. For each task, we ran
fine-tunings with learning rates of 5e-5, 4e-5, 3e-5,
and 2e-5 and selected the one that performed best
on the Dev set. Additionally, for BERTLARGE we
found that fine-tuning was sometimes unstable on

6Note that we only report single-task fine-tuning results in
this paper. Multitask fine-tuning approach could potentially
push the results even further. For example, we did observe
substantial improvements on RTE from multi-task training
with MNLI.

7https://gluebenchmark.com/faq

small data sets (i.e., some runs would produce de-
generate results), so we ran several random restarts
and selected the model that performed best on the
Dev set. With random restarts, we use the same
pre-trained checkpoint but perform different fine-
tuning data shuffling and classifier layer initializa-
tion. We note that the GLUE data set distribution
does not include the Test labels, and we only made
a single GLUE evaluation server submission for
each BERTBASE and BERTLARGE.

Results are presented in Table 1. Both
BERTBASE and BERTLARGE outperform all exist-
ing systems on all tasks by a substantial margin,
obtaining 4.4% and 6.7% respective average accu-
racy improvement over the state-of-the-art. Note
that BERTBASE and OpenAI GPT are nearly iden-
tical in terms of model architecture outside of
the attention masking. For the largest and most
widely reported GLUE task, MNLI, BERT ob-
tains a 4.7% absolute accuracy improvement over
the state-of-the-art. On the official GLUE leader-
board,8 BERTLARGE obtains a score of 80.4, com-
pared to the top leaderboard system, OpenAI GPT,
which obtains 72.8 as of the date of writing.

It is interesting to observe that BERTLARGE sig-
nificantly outperforms BERTBASE across all tasks,
even those with very little training data. The effect
of BERT model size is explored more thoroughly
in Section 5.2.

4.2 SQuAD v1.1

The Standford Question Answering Dataset
(SQuAD) is a collection of 100k crowdsourced
question/answer pairs (Rajpurkar et al., 2016).
Given a question and a paragraph from Wikipedia

8https://gluebenchmark.com/leaderboard
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• Huge improvements over SOTA on 12 NLP task
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Graph Mining

Slides adapted from:
• Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Graph is everywhere

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
2/16/2023

Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com
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Graph is everywhere

18Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Economic Networks

Citation Networks

Communication Networks

2/16/2023

Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning



Graph is everywhere

19
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

2/16/2023



Tasks on Graph

� Node-level prediction
� Link-level prediction
� Graph-level prediction

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6
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Link-level
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Node-level?
?

Graph-level
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Getting Features for Nodes/Links/Graphs
� Design features for nodes/links/graphs
� Obtain features for all training data

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7
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Node features

Graph featuresLink features

א Թ஽
א Թ஽

א Թ஽
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Node-level Tasks

13

? ?

?
?

?
Machine 
Learning

Node classification

ML needs features.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

22



Node-level Features

23

Goal: Characterize the structure and position of 
a node in the network:

� Node degree
� Node centrality
� Clustering coefficient
� Graphlets

2/16/2023 14Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Node feature



Node-level Features (1): Node Degree

24

� The degree ݇௩ of node ݒ is the number of 
edges (neighboring nodes) the node has.

� Treats all neighboring nodes equally.

2/16/2023 15Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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G

݇஺ ൌ ͳ
݇஻ ൌ ʹ

݇஼ ൌ ͵

݇஽ ൌ Ͷ



Node-level Features (2): Node Centrality

25

� Node degree counts the neighboring nodes 
without capturing their importance.

� Node centrality ܿ௩ takes the node importance 
in a graph into account

� Different ways to model importance:
� Engienvector centrality
� Betweenness centrality
� Closeness centrality
� ĂŶĚ�ŵĂŶǇ�ŽƚŚĞƌƐ͙

2/16/2023 16Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Eigenvector centrality



Node-level Features (2): Node Centrality

26

� Eigenvector centrality:
� A node ݒ is important if surrounded by important 

neighboring nodes ݑ א ܰሺݒሻ.
� We model the centrality of node ݒ as the sum of 

the centrality of neighboring nodes:

� Notice that the above equation models centrality 
in a recursive manner. How do we solve it?

2/16/2023 17Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

ߣ is normalization constant (it will turn 
out to be the largest eigenvalue of A)



Node-level Features (2): Node Centrality

27

� Eigenvector centrality:
� A node ݒ is important if surrounded by important 

neighboring nodes ݑ א ܰሺݒሻ.
� We model the centrality of node ݒ as the sum of 

the centrality of neighboring nodes:

� Notice that the above equation models centrality 
in a recursive manner. How do we solve it?

2/16/2023 17Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

ߣ is normalization constant (it will turn 
out to be the largest eigenvalue of A)



Node-level Features (2): Node Centrality
� Eigenvector centrality:

� Rewrite the recursive equation in the matrix form.

� We see that centrality ܿ is the eigenvector of ࡭!
� The largest eigenvalue ߣ௠௔௫ is always positive and 

unique (by Perron-Frobenius Theorem).
� The eigenvector ࢉ௠௔௫ corresponding to ߣ௠௔௫ is 

used for centrality.
2/16/2023 18Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

B

C

D I
J

K

ࢉߣ ൌ ࢉ࡭
�  Adjacency matrix :࡭

௨௩ൌ࡭ ͳ if ݑ א ܰሺݒሻ
� Centrality vector :ࢉ
� Eigenvalue :ߣ

ߣ is normalization const 
(largest eigenvalue of A)
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Node-level Features (2): Node Centrality
� Betweenness centrality:

� A node is important if it lies on many shortest 
paths between other nodes.

� Example:

2/16/2023 19Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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஺ܿ ൌ ܿ஻ ൌ ܿா ൌ Ͳ
ܿ஼ ൌ ͵

(A-C-B, A-C-D, A-C-D-E)

ܿ஽ ൌ ͵
(A-C-D-E, B-D-E, C-D-E)
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Node-level Features (2): Node Centrality
� Closeness centrality:

� A node is important if it has small shortest path 
lengths to all other nodes.

� Example:

2/16/2023 20Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

஺ܿ ൌ ͳȀሺʹ ൅ ͳ ൅ ʹ ൅ ͵ሻ ൌ ͳȀͺ
(A-C-B, A-C, A-C-D, A-C-D-E)

ܿ஽ ൌ ͳȀሺʹ ൅ ͳ ൅ ͳ ൅ ͳሻ ൌ ͳȀ�
(D-C-A, D-B, D-C, D-E)
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Node-level Features (3): Clustering Coefficient

� Measures how connected ݒᇱݏ neighboring 
nodes are:

� Examples:

2/16/2023 21Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

ݒ
ݒ ݒ

݁௩ ൌ ͳ ݁௩ ൌ ͲǤͷ ݁௩ ൌ Ͳ

#(node pairs among ݇௩ neighboring nodes)
In our examples below the denominator is 6 (4 choose 2).
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Node-level Features (4): Graphlets

� Observation: Clustering coefficient counts the 
#(triangles) in the ego-network

� We can generalize the above by counting 
#(pre-specified subgraphs, i.e., graphlets).

2/16/2023 22Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

ݒ ݒ

3 triangles (out of 6 node triplets)
݁௩ ൌ ͲǤͷ

ݒ ݒ

32



Node-level Features (4): Graphlets
� Goal: Describe network structure around node ݑ

� Graphlets are small subgraphs that describe the 
structure of node ݑ Ɛ͛�ŶĞƚǁŽƌŬ�ŶĞŝŐŚďŽƌŚŽŽĚ

Analogy:
� Degree counts #(edges) that a node touches
� Clustering coefficient counts #(triangles) that a 

node touches.
� Graphlet Degree Vector (GDV): Graphlet-base 

features for nodes
� GDV counts #(graphlets) that a node touches

2/16/2023 23Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A
B

ݑ E

33



Node-level Features (4): Graphlets

34

� Graphlet Degree Vector (GDV): A count 
vector of graphlets rooted at a given node.

� Example:

2/16/2023 27Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Pedro Ribeiro

Graphlet Degree Vector

An automorphism ³orbit´ takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism ³orbit´ takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism ³orbit´ takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

Possible graphlets on up to 3 nodes

ݑ

ܽ ܾ ܿ ݀
GDV of node ݑ: 
ܽǡ ܾǡ ܿǡ ݀
[2,1,0,2]

Graphlet instances of node u:



Node-level Features: Summary

� We have introduced different ways to obtain 
node features.

� They can be categorized as:
� Importance-based features:

� Node degree
� Different node centrality measures

� Structure-based features:
� Node degree
� Clustering coefficient
� Graphlet count vector

2/16/2023 28Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Node-level Features: Summary

36

� Importance-based features: capture the 
importance of a node in a graph
� Node degree:

� Simply counts the number of neighboring nodes
� Node centrality:

� Models importance of neighboring nodes in a graph
� Different modeling choices: eigenvector centrality, 

betweenness centrality, closeness centrality
� Useful for predicting influential nodes in a graph

� Example: predicting celebrity users in a social 
network

2/16/2023 29Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Node-level Features: Summary

37

� Structure-based features: Capture topological 
properties of local neighborhood around a node.
� Node degree:

� Counts the number of neighboring nodes
� Clustering coefficient:

� Measures how connected neighboring nodes are
� Graphlet degree vector:

� Counts the occurrences of different graphlets
� Useful for predicting a particular role a node 

plays in a graph:
� Example: Predicting protein functionality in a 

protein-protein interaction network.
2/16/2023 30Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Node-level Features: Discussion

38

Different ways to label nodes of the network:

31

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
rHÀHFWLQJhomophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involvesmatrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
Asanexample, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk
useshierarchical sampling toapproximate thesoftmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inef¿FLHQW when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negativesampling in DeepWalk which isalso thedefacto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodesto optimize for and thegreater thenumber, themore
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. 6SHFL¿FDOO\, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically VLJQL¿FDQW
with ap-valueof less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel FODVVL¿FDWLRQ on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label FODVVL¿FDWLRQ
In the multi-label FODVVL¿FDWLRQ setting, every node is assigned

oneor morelabelsfrom a¿QLWHset L . During thetraining phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label FODVVL¿FDWLRQ
on the following datasets:

� BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,
333,983 edges and 39 different labels.

� Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges
and 50 different labels.

� Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the ¿UVW million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, theremight also besome µ Iamiliar VWUDQJHUV¶ � that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both typesof equivalences.
For example, they exhibit structural equivalencewhen proteinsper-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-
occurence network is fairly dense, sinceedgesexist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
wordshaving thesamePOStagsarenot hard to ¿QG� lending ahigh
degree of homophily. At the same time, we expect some structural
equivalence in thePOStagsdue to syntactic grammar rulessuch as
determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table2 and therelativeperformance

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
rHÀHFWLQJhomophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involvesmatrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
Asanexample, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk
useshierarchical sampling to approximatethesoftmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inef¿FLHQW when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negativesampling in DeepWalk which isalso thedefacto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodesto optimize for and thegreater thenumber, themore
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. 6SHFL¿FDOO\, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically VLJQL¿FDQW
with ap-valueof less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel FODVVL¿FDWLRQ on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label FODVVL¿FDWLRQ
In the multi-label FODVVL¿FDWLRQ setting, every node is assigned

oneor morelabelsfrom a¿QLWHset L . During thetraining phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label FODVVL¿FDWLRQ
on the following datasets:

� BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,
333,983 edges and 39 different labels.

� Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges
and 50 different labels.

� Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the ¿UVW million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, theremight also besome µ Iamiliar VWUDQJHUV¶ � that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both typesof equivalences.
For example, they exhibit structural equivalencewhen proteinsper-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-
occurence network is fairly dense, sinceedgesexist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
wordshaving thesamePOStagsarenot hard to ¿QG� lending ahigh
degree of homophily. At the same time, we expect some structural
equivalence in thePOStagsdue to syntactic grammar rulessuch as
determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table2 and therelativeperformance

Node features defined so 
far would allow to 

distinguish nodes in the 
above example

However, the features 
defines so far would not 

allow for distinguishing the 
above node labelling

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Node-level Features: Discussion
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Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
rHÀHFWLQJhomophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involvesmatrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
Asanexample, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk
useshierarchical sampling toapproximate thesoftmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inef¿FLHQW when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negativesampling in DeepWalk which isalso thedefacto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodesto optimize for and thegreater thenumber, themore
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. 6SHFL¿FDOO\, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically VLJQL¿FDQW
with ap-valueof less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel FODVVL¿FDWLRQ on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label FODVVL¿FDWLRQ
In the multi-label FODVVL¿FDWLRQ setting, every node is assigned

oneor morelabelsfrom a¿QLWHset L . During thetraining phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label FODVVL¿FDWLRQ
on the following datasets:

� BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,
333,983 edges and 39 different labels.

� Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges
and 50 different labels.

� Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the ¿UVW million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, theremight also besome µ Iamiliar VWUDQJHUV¶ � that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both typesof equivalences.
For example, they exhibit structural equivalencewhen proteinsper-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-
occurence network is fairly dense, sinceedgesexist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
wordshaving thesamePOStagsarenot hard to ¿QG� lending ahigh
degree of homophily. At the same time, we expect some structural
equivalence in thePOStagsdue to syntactic grammar rulessuch as
determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table2 and therelativeperformance
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appearance network generated by node2vec with label colors
rHÀHFWLQJhomophily (top) and structural equivalence(bottom).
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discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
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In the multi-label FODVVL¿FDWLRQ setting, every node is assigned
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observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label FODVVL¿FDWLRQ
on the following datasets:

� BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,
333,983 edges and 39 different labels.

� Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
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and 50 different labels.

� Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the ¿UVW million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.
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equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, theremight also besome µ Iamiliar VWUDQJHUV¶ � that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both typesof equivalences.
For example, they exhibit structural equivalencewhen proteinsper-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-
occurence network is fairly dense, sinceedgesexist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
wordshaving thesamePOStagsarenot hard to ¿QG� lending ahigh
degree of homophily. At the same time, we expect some structural
equivalence in thePOStagsdue to syntactic grammar rulessuch as
determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
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Node features defined so 
far would allow to 

distinguish nodes in the 
above example

However, the features 
defines so far would not 

allow for distinguishing the 
above node labelling
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Link-level Task
� The task is to predict new links based on the 

existing links.
� At test time, node pairs (with no existing links) 

are ranked, and top ܭ node pairs are predicted.
� The key is to design features for a pair of nodes.
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Link-level Features: Quick Overview
� Distance-based feature
� Local neighborhood overlap
� Global neighborhood overlap
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Link-level Features: Quick Overview

42

� Distance-based features:
� Uses the shortest path length between two nodes 

but does not capture how neighborhood overlaps.
� Local neighborhood overlap:

� Captures how many neighboring nodes are shared 
by two nodes.

� Becomes zero when no neighbor nodes are shared.
� Global neighborhood overlap:

� Uses global graph structure to score two nodes.
� Katz index counts #walks of all lengths between two 

nodes.
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nodes.
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Graph-level Features

� Goal: We want features that characterize the 
structure of an entire graph.

� For example:
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Graph-level Features

46

� Goal: Design graph feature vector ߶ ܩ
� Key idea: Bag-of-Words (BoW) for a graph

� Recall: BoW simply uses the word counts as 
features for documents (no ordering considered).

� Naïve extension to a graph: Regard nodes as words.
� Since both graphs have 4 red nodes, we get the 
ƐĂŵĞ�ĨĞĂƚƵƌĞ�ǀĞĐƚŽƌ�ĨŽƌ�ƚǁŽ�ĚŝĨĨĞƌĞŶƚ�ŐƌĂƉŚƐ͙
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Graph-level Features

What if we use Bag of node degrees?
Deg1:      Deg2:     Deg3: 

� Both Graphlet Kernel and Weisfeiler-Lehman 
(WL) Kernel use Bag-of-* representation of 
graph, where * is more sophisticated than 
node degrees!
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߶ሺ ሻ = count(        ) = [1, 2, 1] 

߶ሺ ሻ = count(        ) = [0, 2, 2] 

Obtains different features 
for different graphs!
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Graph-level Features: Graphlet Features
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� Key idea: Count the number of different 
graphlets in a graph.

� Note: Definition of graphlets here is slightly 
different from the node-level features. 

� The two differences are:
� Nodes in graphlets here do not need to be connected (allows for 

isolated nodes)
� The graphlets here are not rooted.
� Examples in the next slide illustrate this.
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� Given graph ܩ, and a graphlet list ࣡௞ ൌ
ሺ݃ଵǡ ݃ଶǡǥ ǡ ݃௡ೖሻ, define the graphlet count 
vector ீࢌ א Թ௡ೖ as

ሺீࢌሻ௜ൌ ͓ሺ ௜݃ ك ሻܩ for ݅ ൌ ͳǡʹǡǥ ǡ ݊௞.
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Graph-level Features: Graphlet Features
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� Example for ݇ = 3.

2/16/2023 55Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

݃ଵ ݃ଶ ݃ଷ ݃ସ

ܩ

ீࢌ ൌ ሺͳǡ ͵ǡ ͸ǡ Ͳሻ୘



Graph-level Features: Graphlet Features

50

� Example for ݇ = 3.
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݃ଵ ݃ଶ ݃ଷ ݃ସ

ܩ

ீࢌ ൌ ሺͳǡ ͵ǡ ͸ǡ Ͳሻ୘

- Limitations: Counting graphlets is expensive!
- More advanced methods: color refinement, etc.



Summary so far: feature engineering
● Node-level:
! Node degree, centrality, clustering coefficient, graphlets

● Link-level:
! Distance-based feature
! Local/global neighborhood overlap

● Graph-level:
! Graphlet kernel

51
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Input 
Graph

Structured 
Features

Learning 
Algorithm  

Downstream 
prediction task

Feature engineering
(node-level, edge-level, graph-

level features)

Given an input graph, extract node, link 
and graph-level features, learn a model 
(SVM, neural network, etc.) that maps 
features to labels.
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Graph Representation Learning

3

Input 
Graph

Structured 
Features

Learning 
Algorithm  Prediction

Downstream 
prediction task

Feature 
Engineering

Representation Learning --
Automatically

learn the features

Graph Representation Learning alleviates 
the need to do feature engineering every 
single time.
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Graph Representation Learning

53

Goal: Efficient task-independent feature 
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4
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݂ǣ ݑ ՜ Թௗ

Թௗ

Feature representation, 
embedding

ݑ
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Node Embedding

54

� Task: Map nodes into an embedding space
� Similarity of embeddings between nodes indicates 

their similarity in the network. For example:
� Both nodes are close to each other (connected by an edge)

� Encode network information
� Potentially used for many downstream predictions

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Vec

Թௗembeddings

� Node classification
� Link prediction
� Graph classification
� Anomalous node detection
� Clustering
� «�
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Example Node Embedding

55

� Ϯ��ĞŵďĞĚĚŝŶŐ�ŽĨ�ŶŽĚĞƐ�ŽĨ�ƚŚĞ��ĂĐŚĂƌǇ͛Ɛ�
Karate Club network:
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Example

� Zachary͛s Karate Network:

18

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.



Node Embedding: Setup

� Assume we have a graph G:
� V is the vertex set.
� A is the adjacency matrix (assume binary).
� For simplicity: No node features or extra 

information is used
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Node Embedding

� Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 92/16/2023
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Node Embedding

58
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Goal:

Need to define!
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Node Embedding: Key Components

� Encoder: maps each node to a low-dimensional 
vector

� Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of ݑ and ݒ in 
the original network

dot product between node 
embeddings
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Decoder

��� ݒ ൌ ௩ܢ

���������� ǡݑ ݒ ൎ ௨ܢ௩஋ܢ

node in the input graph

d-dimensional 
embedding
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“Shallow” Encoding

Simplest encoding approach: Encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node 
embedding [what we learn / 
optimize]

indicator vector, all zeroes 
except a one in column 
indicating node v
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��� ݒ ൌ ࢜ܢ ൌ ܈ ڄ ݒ
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“Shallow” Encoding

61

Simplest encoding approach: encoder is just an 
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node
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“Shallow” Encoding

62

Simplest encoding approach: Encoder is just an 
embedding-lookup

Each node is assigned a unique 
embedding vector

(i.e., we directly optimize 
the embedding of each node)

Many methods: DeepWalk, node2vec
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Summary

� Encoder + Decoder Framework
� Shallow encoder: embedding lookup
� Parameters to optimize: ܈ which contains node 

embeddings ܢ௨ for all nodes ݑ א ܸ
� We will cover deep encoders in the GNNs

� Decoder: based on node similarity.
� Objective: maximize ܢ௩஋ܢ௨ for node pairs ሺݑǡ ሻݒ

that are similar
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Discussion: How to Define Node Similarity?

� Key choice of methods is how they define node 
similarity.

� Should two nodes have a similar embedding if 
they͙
� are linked?
� share neighbors?
� ŚĂǀĞ�ƐŝŵŝůĂƌ�͞ƐƚƌƵĐƚƵƌĂů�ƌŽůĞƐ͍͟

� We will now learn node similarity definition that uses 
random walks, and how to optimize embeddings for 
such a similarity measure.
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Questions?


