DSC250: Advanced Data Mining
Text Embedding
Graph Mining

Zhiting Hu
Lecture 11, November 1st, 2023

UCSan Diego

HALICIOGLU DATA SCIENCE INSTITUTE




Outline

e Recurrent Networks (RNNs)

o Long-range dependency, vanishing gradients

o LSTM
o RNNs in different forms

e Attention Mechanisms
o (Query, Key, Value)
o Attention on Text and Images

e Transformers: Multi-head Attention



Text Embedding



Word Embedding

e A pre-trained matrix,
each row is an
embedding vector of a
word

[Courtesy: Vaswani, et al., 2017]
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http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Word Embedding

e Problem: word embeddings are applied in a context free manner
open a bank account on the river bank

(\ /
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Courtesy: Devlin 2019



Word Embedding

e Problem: word embeddings are applied in a context free manner
open a bank account on the river bank

(\ /
(0.3, 0.2, =-0.8, ..]

e Solution: Train contextual representations on text corpus

(0.9, -0.2, 1.6, ..] [-1.9, -0.4, 0.1, ..]
open a bank account on the river bank

Courtesy: Devlin 2019



BERT

e BERT: A bidirectional model to extract contextual word embedding

Tl e




BERT: Pre-training Procedure

e Dataset:
o Wikipedia (2.5B words) + a collection of free ebooks (800M words)



BERT: Pre-training Procedure

e Dataset:
o Wikipedia (2.5B words) + a collection of free ebooks (800M words)

e Training procedure
o masked language model (masked LM)

= Masks some percent of words from the input and has to reconstruct those words
from context



BERT: Pre-training Procedure

e Masked LM

Use the output of the

masked word’s position
to predict the masked word

Randomly mask
15% of tokens
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Possible classes:
All English words
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BERT: Pre-training Procedure

e Dataset:
o Wikipedia (2.5B words) + a collection of free ebooks (800M words)

e Training procedure
o masked language model (masked LM)

= Masks some percent of words from the input and has to reconstruct those words
from context

o Two-sentence task

= To understand relationships between sentences

= Concatenate two sentences A and B and predict whether B actually comes after A
in the original text



BERT: Pre-training Procedure

e WO sentence
task

Predict likelihood
that sentence B
belongs after

1%  IsNext

99% NotNext

sentence A
FFNN + Softmax
Tokenized
Input cLs]  the man [MASK]
Input

[CLS] the man [MASK] to the store
L ]

Sentence A

BERT

store [SEP]
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birds

Sentence B



BERT: Downstream Fine-tuning

e Use BERT for sentence classification
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BERT: Downstream Fine-tuning
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BERT Results

* Huge improvements over SOTA on 12 NLP task

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
392k 363k 108k 67k 85k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 810 860 61.7| 74.0
BiLSTM+ELMo+Attn 76.4/76.1 648 799 904 360 733 849 568| 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 913 454 80.0 823 56.0| 752
BERTgASE 84.6/83.4 71.2 90.1 935 521 858 889 664 79.6
BERT/ ARGE 86.7/85.9 721 911 949 605 865 893 70.1| 819

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the
number of training examples. The “Average” column is slightly different than the official GLUE score, since
we exclude the problematic WNLI set. OpenAl GPT = (L=12, H=768, A=12); BERTgasg = (L=12, H=768,
A=12); BERT arge = (L=24, H=1024, A=16). BERT and OpenAl GPT are single-model, single task. All
results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.

com/language—-unsupervised/.
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Graph Mining

Slides adapted from:
« Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



Graph is everywhere
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Graph is everywhere

Social Networks

Economic Networks

Citation Networks

Internet

Networks of Neurons
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Graph is everywhere
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Tasks on Graph

Node-level prediction
Link-level prediction
Graph-level prediction

Graph-level

20



Getting Features for Nodes/Links/Graphs

e RP

'°"-.g3raph features
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Node-level Tasks
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Node-level Features

Goal: Characterize the structure and position of
a node in the network:

Node degree

Node centrality

Clustering coefficient Node feature

Graphlets

o
.
.
.
“““
.®
.
Py
.
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Node-level Features (1): Node Degree

The degree k,, of node v is the number of
edges (neighboring nodes) the node has.
Treats all neighboring nodes equally.
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Node-level Features (2): Node Centrality

Node degree counts the neighboring nodes
without capturing their importance.
Node centrality ¢, takes the node importance

in a graph into account
Different ways to model importance:

Eigenvector centrality
Betweenness centrality
Closeness centrality
and many others...

25



Node-level Features (2): Node Centrality

A node v is important if surrounded by important
neighboring nodes u € N (v).

We model the centrality of node v as the sum of
the centrality of neighboring nodes:

A is normalization constant (it will turn
out to be the largest eigenvalue of A)

26



Node-level Features (2): Node Centrality

A node v is important if surrounded by important
neighboring nodes u € N (v).

We model the centrality of node v as the sum of
the centrality of neighboring nodes:

A is normalization constant (it will turn
out to be the largest eigenvalue of A)

Notice that the above equation models centrality
in a recursive manner. How do we solve it?

27



Node-level Features (2): Node Centrality

Rewrite the recursive equation in the matrix form.

1
v =7 Z Cy Guum)  )c = Ac

UEN (v) « A:Adjacency matrix
1 is normalization const Ay,=1ifueN)

(largest eigenvalue of A) » c: Centrality vector
« A: Eigenvalue

We see that centrality c is the eigenvector of A!

The largest eigenvalue A,, .., is always positive and
unique (by Perron-Frobenius Theorem).

The eigenvector c,,,, corresponding to A,,,,, is
used for centrality.
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Node-level Features (2): Node Centrality
Betweenness centrality:

A node is important if it lies on many shortest
paths between other nodes.

z #(shortest paths betwen s and t that contain v)
Cy =

#(shortest paths between s and t)
SFUVFL

Example:

cg =cg=cg =0
CC — 3
(A-C-B, A-C-D, A-C-D-E)

CD =3
(A-C-D-E, B-D-E, C-D-E)
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Node-level Features (2): Node Centrality

A node is important if it has small shortest path

lengths to all other nodes.
1

Y., =y Shortest path length between u and v

Cy =

Example:

¢, =1/2+14+2+3)=1/8
(A-C-B, A-C, A-C-D, A-C-D-E)

o =1/2+1+1+1)=1/5
(D-C-A, D-B, D-C, D-E)
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Node-level Features (3): Clustering Coefficient

Measures how connected v's neighboring
nodes are:

#(edges among neighboring nodes)
v (%)
2

#(node pairs among k,, neighboring nodes)

€ [0,1]

In our examples below the denommator is 6 (4 choose 2).
Examples: P

A

31



Node-level Features (4): Graphlets

Observation: Clustering coefficient counts the
#(triangles) in the ego—network

e

3 triangles (out of 6 node triplets)

We can generalize the above by counting
#(pre-specified subgraphs,i.e., graphlets).
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Node-level Features (4): Graphlets

Goal: Describe network structure around node u

Graphlets are small subgraphs that describe the
structure of node u’s network neighborhood

Analogy:
Degree counts #(edges) that a node touches

Clustering coefficient counts #(triangles) that a

node touches.
Graphlet Degree Vector (GDV): Graphlet-base

features for nodes
GDV counts #(graphlets) that a node touches

33



Node-level Features (4): Graphlets

Graphlet Degree Vector (GDV): A count
vector of graphlets rooted at a given node.

Example: Possible graphlets on up to 3 nodes
G a b c
Graphlet instances of node u:
d

a b C
C C C GDV of node u:
a,b,c,d
0< Q< [2,1,0,2]
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Node-level Features: Summary

We have introduced different ways to obtain
node features.
They can be categorized as:

" |[mportance-based features:
* Node degree
= Different node centrality measures

= Structure-based features:

= Node degree
= Clustering coefficient
= Graphlet count vector
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Node-level Features: Summary

Importance-based features: capture the
importance of a node in a graph

Node degree:

Simply counts the number of neighboring nodes

Node centrality:
Models importance of neighboring nodes in a graph

Different modeling choices: eigenvector centrality,
betweenness centrality, closeness centrality

Useful for predicting influential nodes in a graph

Example: predicting celebrity users in a social
network
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Node-level Features: Summary

Structure-based features: Capture topological
properties of local neighborhood around a node.
Node degree:
Counts the number of neighboring nodes
Clustering coefficient:
Measures how connected neighboring nodes are

Graphlet degree vector:
Counts the occurrences of different graphlets

Useful for predicting a particular role a node
plays in a graph:
Example: Predicting protein functionality in a

protein-protein interaction network.
37



Node-level Features: Discussion
Different ways to label nodes of the network:

Node features defined so
far would allow to
distinguish nodes in the
above example

38



Node-level Features: Discussion
Different ways to label nodes of the network:

Node features defined so
far would allow to
distinguish nodes in the
above example
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Link-level Task

The task is to predict new links based on the
existing links.

At test time, node pairs (with no existing links)
are ranked, and top K node pairs are predicted.
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Link-level Features: Quick Overview

Distance-based feature
Local neighborhood overlap
Global neighborhood overlap
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Link-level Features: Quick Overview

Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.
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Link-level Features: Quick Overview

Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.

Captures how many neighboring nodes are shared
by two nodes.

Becomes zero when no neighbor nodes are shared.
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Link-level Features: Quick Overview

Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.

Captures how many neighboring nodes are shared
by two nodes.

Becomes zero when no neighbor nodes are shared.

Uses global graph structure to score two nodes.

Katz index counts #walks of all lengths between two
nodes.

44



Graph-level Features

We want features that characterize the
structure of an entire graph.

For example:

45



Graph-level Features

Key idea: Bag-of-Words (BoW) for a graph

Recall: BoW simply uses the word counts as
features for documents (no ordering considered).

Naive extension to a graph: Regard nodes as words.

Since both graphs have 4 red nodes, we get the
same feature vector for two different graphs...

(D) = o(ND

46



Graph-level Features

Degl: @ Deg2: e Deg3:

o O
d(I\D) = count(I\I ) =11, 2, 1]
Obtains different features
~ll~ for different graphs!

d(IN]) = count(X] ) =10, 2, 2]

Both Graphlet Kernel and Weisfeiler-Lehman

(WL) Kernel use Bag-of-* representation of
graph, where * is more sophisticated than

node degrees!
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Graph-level Features: Graphlet Features

Count the number of different
graphlets in a graph.

Given graph (7, and a graphlet list
define the graphlet count
vector [~ € R" as

48



Graph-level Features: Graphlet Features

Examplefork =3. g,

G
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Graph-level Features: Graphlet Features

Examplefork =3. g, 9> Uk 94
AN T
. JT 7 {71
41 HE
T 71
7]
{1
<1
= (1, 3, 6, 0)!

- Limitations: Counting graphlets is expensive!

- More advanced methods: color refinement, etc.
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Summary so far: feature engineering

e Node-level:
o Node degree, centrality, clustering coefficient, graphlets

e Link-level:

o Distance-based feature

o Local/global neighborhood overlap
e Graph-level:

o Graphlet kernel

Input Structured Learning Prediction
Graph Features Algorithm

Feature engineering Downstream

(node-level, edge-level, graph- prediction task
level features)
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Graph Representation Learning

Graph Representation Learning alleviates
the need to do feature engineering every
single time.

Input Structured Learning

Graph Features Algorithm Prediction

t Representation Learning -- Downstream

Engiffonsgng Automatically prediction task
learn the features
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Graph Representation Learning

Goal: Efficient task-independent feature
learning for machine learning with graphs!

node vector
u >
. d
fru—->R N - ),
Rd

Feature representation,
embedding
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Node Embedding

Similarity of embeddings between nodes indicates
their similarity in the network. For example:

Both nodes are close to each other (connected by an edge)
Encode network information

Potentially used for many downstream predictions

Vec Tasks
» Node classification
* Link prediction
- ~ / » Graph classification

,  Anomalous node detection
embeddings R4 . Clustering
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Example Node Embedding

2D embedding of nodes of the Zachary’s
Karate Club network:
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Node Embedding: Setup

Assume we have a graph G:
V is the vertex set.
A is the adjacency matrix (assume binary).

For simplicity: No node features or extra
information is used

(0 1 0 1)

A—l O 0 1

V:{1, 2, 3, 4} 0 0 0 1
(1 1 1 0
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Node Embedding

= Goalis to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph
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original network embedding space
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Node Embedding

Goal: similarity(u, v) =~

in the original network

ZyZy

Similarity of the embedding

| Needto define! |

original network

embedding space
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Node Embedding: Key Components

Encoder: maps each node to a low-dimensional

vector d-dimensional
ENC(v) =z, embedding

node in the input graph

specifies how the
relationshipsin vector space map to the
relationshipsin the original network

similarity(u,v) = z)z, Decoder
Similarity of w and v in dot product between node

the original network embeddings
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“Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

ENClv) =z,=7Z v

dx |V matrix, each column is a node
ZeR Vi embedding [what we learn/
optimize]

iIndicator vector, all zeroes
v e 1V '

except a one in column

iIndicating node v
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“Shallow” Encoding

Simplest encoding approach: encoder is just an
embedding-lookup

embedding

matrix

\
Z

embedding vector for a

specific node

N

~
one column per node

Dimension/size
> of embeddings

61



“Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

Each node is assigned a unique
embedding vector
(i.e., we directly optimize
the embedding of each node)

Many methods: DeepWalk, node2vec
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Summary

Shallow encoder: embedding lookup

Parameters to optimize: Z which contains node
embeddings z, for all nodes u € V

We will cover deep encoders in the GNNs

Decoder: based on node similarity.

Objective: maximize z.z,, for node pairs (u, v)
that are similar
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Discussion: How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

Should two nodes have a similar embedding if
they...

are linked?

share neighbors?

have similar “structural roles”?
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