DSC250: Advanced Data Mining

Language Models Text Embedding

Zhiting Hu Lecture 10, October 30, 2023

HALICIOĞLU DATA SCIENCE INSTITUTE

Last Lecture

- Recurrent Networks (RNNs)
 - Long-range dependency, vanishing gradients
 - LSTM
 - RNNs in different forms
- Attention Mechanisms
 - (Query, Key, Value)
 - Attention on Text and Images
- Transformers: Multi-head Attention
 - Transformer
 - BERT

Recap: RNNs in Various Forms

Recap: Attention

• Chooses which features to pay attention to

Machine Translation

Figure courtesy: Olah & Carter, 2016

Recap: Attention Variants

- Popular attention mechanisms with different alignment score functions
- Alignment score = f(Query, Keys)

Query: decoder state st	Name	Alignment score function	Citation
Key: all encoder states h_i Value: all encoder states h_i	Content-base attention	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \operatorname{cosine}[\boldsymbol{s}_t, \boldsymbol{h}_i]$	Graves2014
L. L	Additive(*)	score($\boldsymbol{s}_t, \boldsymbol{h}_i$) = $\mathbf{v}_a^{\top} \tanh(\mathbf{W}_a[\boldsymbol{s}_t; \boldsymbol{h}_i])$	Bahdanau2015
	Location-Base	$\alpha_{t,i} = \text{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
	General	score $(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{s}_t^{T} \mathbf{W}_a \mathbf{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
	Dot-Product	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \boldsymbol{s}_t^{T} \boldsymbol{h}_i$	Luong2015
	Scaled Dot- Product(^)	score $(s_t, h_i) = \frac{s_t^{T} h_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor;	Vaswani2017
Courtosy: Lilian Wong		where n is the dimension of the source hidden state.	

Courtesy: Lilian Weng

Outline

- Recurrent Networks (RNNs)
 - Long-range dependency, vanishing gradients
 - o LSTM
 - RNNs in different forms
- Attention Mechanisms
 - o (Query, Key, Value)
 - Attention on Text and Images
- Transformers: Multi-head Attention

Transformers – Multi-head (Self-)Attention

- State-of-the-art Results by Transformers
 - [Vaswani et al., 2017] Attention Is All You Need
 - Machine Translation
 - [Devlin et al., 2018] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
 - Pre-trained Text Representation
 - [Radford et al., 2019] Language Models are Unsupervised Multitask Learners
 - Language Models

Multi-head Attention

Scaled Dot-Product Attention

Image source: <u>Vaswani, et al., 2017</u>

Scaled Dot-Product Attention Image source: Vaswani, et al., 2017

Multi-head Attention

Multi-head Attention

Image source: Vaswani, et al., 2017

Multi-head Attention in Encoders and Decoders

Multi-head Attention in Encoders and Decoders

Transformer-based LM

Image source: Bgg

Neural LM Training

Neural LMs: Next Word Prediction

 $p_{\theta}(y_t \mid \mathbf{y}_{1:t-1})$

Neural LMs: Training

- Given data example y^*
- Minimizes negative log-likelihood of the data

$$\min_{\theta} \mathcal{L}_{\text{MLE}} = -\log p_{\theta}(\boldsymbol{y}^*) = -\prod_{t=1}^{T} p_{\theta}(\boldsymbol{y}^*_t \mid \boldsymbol{y}^*_{1:t-1})$$

Neural LMs: GPT3

- A Transformer-based LM with 125M to 175B parameters
- Trained on massive text data

Dataset	# Tokens (Billions)
Total	499
Common Crawl (filtered by quality)	410
WebText2	19
Books1	12
Books2	55
Wikipedia	3

Brown et al., 2020 "Language Models Are Few-Shot Learners"

[Table from https://lambdalabs.com/blog/demystifying-gpt-3/]

Natural Language Processing (NLP): Before 2017

Automated understanding and generation of natural language

Core NLP tasks handled by respective machine learning models, e.g.,:

Named Entity Recognition

Sentiment Analysis

POSITIVE

There are slow and repetitive parts , but the movie has just enough spice to keep it interesting .

(Slide courtesy: Qin, 2023)

Natural Language Processing (NLP): Before 2017

Automated understanding and generation of natural language

Hand annotation of linguistic structures (e.g., the Penn Treebank, 1990s)

Figure credit: https://indiaai.gov.in/article/the-future-of-large-language-models-llms-strategy-opportunities-and-challenges

Figure credit: Investopedia

Figure credit: https://indiaai.gov.in/article/the-future-of-large-language-models-llms-strategy-opportunities-and-challenges

GLUE: General Language Understanding Evaluation

- Sentiment analysis
- Text similarity
- Paraphrase detection
- Textual entailment
- Question answering
- Linguistic acceptability (grammaticality)

Text Embedding

Word Embedding

• A pre-trained **matrix**, each row is an embedding vector of a word

	0	1	2	3	4	5	6	7	8	9	
fox	-0.348680	-0.077720	0.177750	-0.094953	-0.452890	0.237790	0.209440	0.037886	0.035064	0.899010	
ham	-0.773320	-0.282540	0.580760	0.841480	0.258540	0.585210	-0.021890	-0.463680	0.139070	0.658720	,
brown	-0.374120	-0.076264	0.109260	0.186620	0.029943	0.182700	-0.631980	0.133060	-0.128980	0.603430	
beautiful	0.171200	0.534390	-0.348540	-0.097234	0.101800	-0.170860	0.295650	-0.041816	-0.516550	2.117200	ļ
jumps	-0.334840	0.215990	-0.350440	-0.260020	0.411070	0.154010	-0.386110	0.206380	0.386700	1.460500	1
eggs	-0.417810	-0.035192	-0.126150	-0.215930	-0.669740	0.513250	-0.797090	-0.068611	0.634660	1.256300	
beans	-0.423290	-0.264500	0.200870	0.082187	0.066944	1.027600	-0.989140	-0.259950	0.145960	0.766450	
sky	0.312550	-0.303080	0.019587	-0.354940	0.100180	-0.141530	-0.514270	0.886110	-0.530540	1.556600	
bacon	-0.430730	-0.016025	0.484620	0.101390	-0.299200	0.761820	-0.353130	-0.325290	0.156730	0.873210	
breakfast	0.073378	0.227670	0.208420	-0.456790	-0.078219	0.601960	-0.024494	-0.467980	0.054627	2.283700	
toast	0.130740	-0.193730	0.253270	0.090102	-0.272580	-0.030571	0.096945	-0.115060	0.484000	0.848380	2
today	-0.156570	0.594890	-0.031445	-0.077586	0.278630	-0.509210	-0.066350	-0.081890	-0.047986	2.803600	,
blue	0.129450	0.036518	0.032298	-0.060034	0.399840	-0.103020	-0.507880	0.076630	-0.422920	0.815730	
green	-0.072368	0.233200	0.137260	-0.156630	0.248440	0.349870	-0.241700	-0.091426	-0.530150	1.341300	
kings	0.259230	-0.854690	0.360010	-0.642000	0.568530	-0.321420	0.173250	0.133030	-0.089720	1.528600	
dog	-0.057120	0.052685	0.003026	-0.048517	0.007043	0.041856	-0.024704	-0.039783	0.009614	0.308416	,
sausages	-0.174290	-0.064869	-0.046976	0.287420	-0.128150	0.647630	0.056315	-0.240440	-0.025094	0.502220	
lazy	-0.353320	-0.299710	-0.176230	-0.321940	-0.385640	0.586110	0.411160	-0.418680	0.073093	1.486500	
love	0.139490	0.534530	-0.252470	-0.125650	0.048748	0.152440	0.199060	-0.065970	0.128830	2.055900	
quick	-0.445630	0.191510	-0.249210	0.465900	0.161950	0.212780	-0.046480	0.021170	0.417660	1,686900	

Word Embedding

 A pre-trained matrix, each row is an embedding vector of a word

Eng	lish	Wik	iped	lia	Cor	pus
LIIBI	1311	VVIIN	ipeu	пu	COI	pus

The Annual Reminder continued through July 4, 1969. This final Annual Reminder took place less than a week after the June 28 Stonewall irots, in which the patrons of the Stonewall Inn, a gay bar in Greenwich Village, fought against police who raided the bar. Rodwell received several telephone calls threatening him and the other New York participants, but he was able to arrange for police protection for the chartered bus all the way to Philadelphia. About 45 people participated, including the deputy mayor of Philadelphia and his wife. The dress code was still in effect at the Reminder, but two women from the New York contingent broke from the single-file picket line and held hands. When Kameny tried to break them apart, Rodwell furiously denounced him to onlooking members of the press.

Following the 1969 Annual Reminder, there was a sense, particularly among the younger and more radical participants, that the time for silent picketing had passed. Dissent and dissatisfaction had begun to take new and more emphatic forms in society."The conference passed a resolution drafted by Rodwell, his partner Fred Sargeant, Broidy and Linda Rhodes to move the demonstration from July 4 in Philadelphia to the last weekend in June in New York City, as well as proposing to "other organizations throughout the country... suggesting that they hold parallel demonstrations on that day" to

commemorate the Stonewall riot.

[Image source: Va

	0	1	2	3	4	5	6	7	8	9	
fox	-0.348680	-0.077720	0.177750	-0.094953	-0.452890	0.237790	0.209440	0.037886	0.035064	0.899010	
ham	-0.773320	-0.282540	0.580760	0.841480	0.258540	0.585210	-0.021890	-0.463680	0.139070	0.658720	
brown	-0.374120	-0.076264	0.109260	0.186620	0.029943	0.182700	-0.631980	0.133060	-0.128980	0.603430	
beautiful	0.171200	0.534390	-0.348540	-0.097234	0.101800	-0.170860	0.295650	-0.041816	-0.516550	2.117200	
jumps	-0.334840	0.215990	-0.350440	-0.260020	0.411070	0.154010	-0.386110	0.206380	0.386700	1.460500	
eggs	-0.417810	-0.035192	-0.126150	-0.215930	-0.669740	0.513250	-0.797090	-0.068611	0.634660	1.256300	
beans	-0.423290	-0.264500	0.200870	0.082187	0.066944	1.027600	-0.989140	-0.259950	0.145960	0.766450	
sky	0.312550	-0.303080	0.019587	-0.354940	0.100180	-0.141530	-0.514270	0.886110	-0.530540	1.556600	
bacon	-0.430730	-0.016025	0.484620	0.101390	-0.299200	0.761820	-0.353130	-0.325290	0.156730	0.873210	
breakfast	0.073378	0.227670	0.208420	-0.456790	-0.078219	0.601960	-0.024494	-0.467980	0.054627	2.283700	
	0.100710	0.400700	0.050070		0.070500	0.000574	0 000945	-0.115060	0.484000	0.848380	
			E	mbeddi	ing Matr	ix	3350	-0.081890	-0.047986	2.803600	
					0		7880	0.076630	-0.422920	0.815730	
				D-	dimensiona	l vector	700	-0.091426	-0.530150	1.341300	
			aardv	ark 💽 🗨	•••••		3250	0.133030	-0.089720	1.528600	

..............

......

apple

zoo

880	0.076630	-0.422920	0.815730	
700	-0.091426	-0.530150	1.341300	
3250	0.133030	-0.089720	1.528600	
704	-0.039783	0.009614	0.308416	
3315	-0.240440	-0.025094	0.502220	
160	-0.418680	0.073093	1.486500	
9060	-0.065970	0.128830	2.055900	
5480	0.021170	0.417660	1.686900	

Word2vec: Skip-Gram Model

• (Mikolov et al., 2013a,b)

$$p(C = c \mid X = v) = \frac{1}{Z_v} \exp \mathbf{c}_c^\top \mathbf{v}_v$$

- ► Two different vectors for each element of V: one when it is "v" (v) and one when it is "c" (c).
- This should remind you of a neural network; SGD on the likelihood function is the conventional approach to estimating the vectors.
- Normalization term Z_v is expensive, so approximations are required for efficiency.
- Can expand this to be over the whole sentence or document, or otherwise choose which words "count" as context.

Word2vec: Skip-Gram Model

"the dog barks" 0.88 0.06 0 0.11 0 the 0.34 0 0.02 0 0.04 0 0.14 0 $W'_{7 \times 4}$ 1 0 $W_{4 \times 7}$ 0.01 0 0 dog 0.01 0 $W'_{7 \times 4}$ 0.98 0 0.11 0 barks 0.31 0 0.01 n 0.13 Predicted vectors Actual vectors [Figure courtesy: Maryam Fallah] of the context words of context words

The error back propagates

ords 32

Word Embedding Evaluation

Several popular methods for *intrinsic* evaluations:

- Do (cosine) similarities of pairs of words' vectors correlate with judgments of similarity by humans?
- ► TOEFL-like synonym tests, e.g., $rug \xrightarrow{?} \{sofa, ottoman, carpet, hallway\}$
- Syntactic analogies, e.g., "walking is to walked as eating is to what?" Solved via:

$$\max_{v \in \mathcal{V}} \cos\left(\mathbf{v}_{v}, -\mathbf{v}_{\textit{walking}} + \mathbf{v}_{\textit{walked}} + \mathbf{v}_{\textit{eating}}
ight)$$

Word Embedding Evaluation

Extrinsic evaluation:

- 1. Use large unannotated corpus to get your word vectors (sometimes called **pretraining**).
- 2. Use them in a text classifier (or some other NLP system). Two options:
 - Plug in word vectors as "frozen" features, and estimate the other parameters of your model.
 - Treat them as parameters of the text classifier; pretraining gives initial values, but they get updated, or "finetuned" during supervised learning.
- 3. Does that system's performance improve?

Word Embedding

• Problem: word embeddings are applied in a context free manner

Word Embedding

• Problem: word embeddings are applied in a context free manner

• Solution: Train contextual representations on text corpus

Courtesy: Devlin 2019

Contextual Representations

• *ELMo: Deep Contextual Word Embeddings*, Al2 & University of Washington, 2017

Courtesy: Devlin 2019

Contextual Representations

• Improving Language Understanding by Generative Pre-Training, OpenAI, 2018

Train Deep (12-layer) Transformer LM

Fine-tune on Classification Task

Problem with Previous Methods

• **Problem**: Language models only use left context *or* right context, but language understanding is bidirectional.

BERT

• BERT: A bidirectional model to extract contextual word embedding

- Dataset:
 - Wikipedia (2.5B words) + a collection of free ebooks (800M words)

- Dataset:
 - Wikipedia (2.5B words) + a collection of free ebooks (800M words)
- Training procedure
 - masked language model (masked LM)
 - Masks some percent of words from the input and has to reconstruct those words from context

- Masked LM
- 15% masking:
 - Too little masking: Too expensive to train (few supervision signals per example)
 - Too much masking: Not enough context
- Problem: Mask token never seen at fine-tuning
- Solution: don't replace with [MASK] 100% of the time. Instead:
- 80% of the time, replace with [MASK]
 - \circ went to the store \rightarrow went to the [MASK]
- 10% of the time, replace random word
 - \circ went to the store \rightarrow went to the running
- 10% of the time, keep same
 - \circ went to the store \rightarrow went to the store

- Dataset:
 - Wikipedia (2.5B words) + a collection of free ebooks (800M words)
- Training procedure
 - masked language model (masked LM)
 - Masks some percent of words from the input and has to reconstruct those words from context
 - Two-sentence task
 - To understand relationships between sentences
 - Concatenate two sentences A and B and predict whether B actually comes after A in the original text

BERT: Downstream Fine-tuning

• Use BERT for sentence classification

BERT: Downstream Fine-tuning

(a) Sentence Pair Classification Tasks:

RTE, SWAG

MNLI, QQP, QNLI, STS-B, MRPC,

Label C T_1 T_2 \cdots T_N BERT E_{ICLSI} E_1 E_2 \cdots E_N [CLS] Tok 1 Tok 2 \cdots Tok N

Class

Single Sentence

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

BERT Results

• Huge improvements over SOTA on 12 NLP task

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. OpenAI GPT = (L=12, H=768, A=12); BERT_{BASE} = (L=12, H=768, A=12); BERT_{LARGE} = (L=24, H=1024, A=16). BERT and OpenAI GPT are single-model, single task. All results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai. com/language-unsupervised/.

Analysis

• BERT Rediscovers the Classical NLP Pipeline. Tenney et al., 2019

50

Questions?