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Last Lecture

e Recurrent Networks (RNNs)

o Long-range dependency, vanishing gradients
o LSTM
o RNNs in different forms

e Attention Mechanisms
o (Query, Key, Value)
o Attention on Text and Images



Recap: RNNs in Various Forms
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Recap: Attention

e Chooses which features to pay attention to
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Machine Translation
Figure courtesy: Olah & Carter, 2016



https://distill.pub/2016/augmented-rnns/

Recap: Attention Variants

e Popular attention mechanisms with different alignment score functions

Alignment score = f(Query, Keys)

Query: decoder state s;
Key: all encoder states h;
Value: all encoder states h;

Courtesy: Lilian Weng

Name

Content-base
attention

Additive(*)

Location-Base

General

Dot-Product

Scaled Dot-
Product(?)

Alignment score function

score(s;, h;) = cosinels;, h;]

score(s;, h;) = v, tanh(W,[s,; k;])

a,; = softmax(W,s;)
Note: This simplifies the softmax alignment to only depend on the target
position.

score(s;, h;) = s W h;

where W, is a trainable weight matrix in the attention layer.

score(s;, h;) = s h;

sTh;

v

Note: very similar to the dot-product attention except for a scaling factor;
where n is the dimension of the source hidden state.

score(s;, h;) =
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Outline

e Recurrent Networks (RNNs)

o Long-range dependency, vanishing gradients

o LSTM
o RNNs in different forms

e Attention Mechanisms
o (Query, Key, Value)
o Attention on Text and Images

e Transformers: Multi-head Attention



Transformers — Multi-head (Self-)Attention

e State-of-the-art Results by Transformers

o [Vaswani et al., 2017] Attention Is All You Need
= Machine Translation

o [Devlin et al., 2018] BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding

= Pre-trained Text Representation

o [Radford et al., 2019] Language Models are Unsupervised Multitask
Learners

= Language Models



Multi-head Attention
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http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head Attention

\
MatMul \

-
I
I
I
I
I
I
I
I
I
I
I
~7

I
I I
I I
: ¢ : \ Concat ]
! SoftMax ! \ 1
| I * r-
I I
G | | Somoburoa )
) I
I I A
l [ Scale ] | / ,-?l y 1! r-?l
: : / [I_inear]J I_inear]_] I_inear]J
: MatMul l //
I
S /
'___Q___K___V__V V K Q
Scaled Dot-Product Attention Multi-head Attention

Image source: Vaswani, et al., 2017



http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-head Attention
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Multi-head Attention in Encoders and Decoders
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Multi-head Attention in Encoders and Decoders
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Transformer-based LM
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Neural LM Training



Neural LMs: Next Word Prediction
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Neural LMs: Training

e Given data example y*
e Minimizes negative log-likelihood of the data

T

ming Lyg = —logpe(y) == | |  Po(ye [ Yie-1)



Neural LMs: GPT3

e A Transformer-based LM with 125M to 175B parameters
e Trained on massive text data

Dataset # Tokens (Billions)
Total 499
Common Crawl (filtered by quality) 410
WebText2 19

Books1 12

Books2 55
Wikipedia 3

Brown et al., 2020 "Language Models Are Few-Shot Learners”
[Table from https://lambdalabs.com/blog/demystifying-gpt-3/]



Natural Language Processing (NLP): Before 2017

Automated understanding and generation of natural language

Core NLP tasks handled by respective machine learning models, e.g.,:

Named Entity Recognition
[ DATE |

PERSON CITY [STATE_ OR PROVINCE | (1983-11-19
Adam Driver was born in San Diego , California , on November 19, 1983.

Sentiment Analysis

POSITIVE

There are slow and repetitive parts , but the movie has just enough spice to keep it interesting .
(Slide courtesy: Qin, 2023)



Natural Language Processing (NLP): Before 2017

Automated understanding and generation of natural language
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(Slide courtesy: Qin, 2023)
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LP breakthrough with large language models, since 2017

NLP’s Moore’s Law: Every year model size increases by 10x
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NLP breakthrough with large language models, since 2017
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LP breakthrough with large language models, since 2017

NLP’s Moore’s Law: Every year model size increases by 10x
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NLP breakthrough with large language models, since 2017
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GLUE: General Language
Understanding Evaluation

® Sentiment analysis

® Text similarity

® Paraphrase detection

® Textual entailment

® Question answering

® | inguistic acceptability

(grammaticality)
o



NLP breakthrough with large language models, since 2017
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NLP breakthrough with large language models, since 2017
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NLP breakthrough with large language models, since 2017
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Text Embedding



Word Embedding

e A pre-trained matrix,
each row is an
embedding vector of a
word

[Courtesy: Vaswani, et al., 2017]
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Word Embedding
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Word2vec: Skip-Gram Model
e (Mikolov et al., 2013a,b)

1
p(C=c| X =v)= Z—exchTVU

v

» Two different vectors for each element of V: one when it is
“v" (v) and one when it is “c¢" (c).
» This should remind you of a neural network; SGD on the

likelihood function is the conventional approach to estimating
the vectors.

» Normalization term Z,, is expensive, so approximations are
required for efficiency.

» Can expand this to be over the whole sentence or document,
or otherwise choose which words “count” as context.
[Courtesy: UW CSE 447 by Noah Smith]

31



Word2vec: Skip-Gram Model

The error back propagates
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[Figure courtesy: Maryam Fallah] of the context words  of context words 32



Word Embedding Evaluation

Several popular methods for intrinsic evaluations:

» Do (cosine) similarities of pairs of words’ vectors correlate
with judgments of similarity by humans?

» TOEFL-like synonym tests, e.g., rug RN {sofa, ottoman,
carpet, hallway}

» Syntactic analogies, e.g., “walking is to walked as eating is to
what?” Solved via:

meaﬁ( COS (Vm — Vwalking T Vwalked T Veating)
v

[Courtesy: UW CSE 447 by Noah Smith] 33



Word Embedding Evaluation

Extrinsic evaluation:

1. Use large unannotated corpus to get your word vectors
(sometimes called pretraining).

2. Use them in a text classifier (or some other NLP system).
Two options:
» Plug in word vectors as “frozen” features, and estimate the

other parameters of your model.

» Treat them as parameters of the text classifier; pretraining
gives initial values, but they get updated, or “finetuned”
during supervised learning.

3. Does that system’s performance improve?

[Courtesy: UW CSE 447 by Noah Smith] 34



Word Embedding

e Problem: word embeddings are applied in a context free manner
open a bank account on the river bank

(\ /
(0.3, 0.2, =-0.8, ..]

Courtesy: Devlin 2019



Word Embedding

e Problem: word embeddings are applied in a context free manner
open a bank account on the river bank

(\ /
(0.3, 0.2, =-0.8, ..]

e Solution: Train contextual representations on text corpus

(0.9, -0.2, 1.6, ..] [-1.9, -0.4, 0.1, ..]
open a bank account on the river bank

Courtesy: Devlin 2019



Contextual Representations

o ELMo: Deep Contextual Word Embeddings, Al2 & University of
Washington, 2017

Train Separate Left-to-Right and Apply as “Pre-trained
Right-to-Left LMs Embeddings”
open @ bank <82 open = Existing Model Architecture
! ! ! I I f
LSTM | LSTM [ LSTM LSTM |+ LSTM |« LSTM i i !
! ! f f I f
<s> open a open a bank

open a bank

Courtesy: Devlin 2019



Contextual Representations

o Improving Language Understanding by Generative Pre-Training,

OpenAl, 2018
Train Deep (12-layer) Fine-tune on
Transformer LM Classification Task
open a bank POSITIVE
T T T Transf — — T I
Transformer |—» Transformer [—| Transformer —_— ranstormer Vst ransiormer
f i 1 ! f f
<s> open a
<s> open a

Courtesy: Devlin 2019



Problem with Previous Methods

e Problem: Language models only use left context or right context, but
language understanding is bidirectional.

courtesy: Devlin 2019



BERT

e BERT: A bidirectional model to extract contextual word embedding

Tl e




BERT: Pre-training Procedure

e Dataset:
o Wikipedia (2.5B words) + a collection of free ebooks (800M words)



BERT: Pre-training Procedure

e Dataset:
o Wikipedia (2.5B words) + a collection of free ebooks (800M words)

e Training procedure
o masked language model (masked LM)

= Masks some percent of words from the input and has to reconstruct those words
from context



BERT: Pre-training Procedure

e Masked LM

Use the output of the

masked word’s position
to predict the masked word

Randomly mask
15% of tokens

Input
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BERT: Pre-training Procedure

e Masked LM
e 15% masking:

o Too little masking: Too expensive to train (few supervision signals per example)
o Too much masking: Not enough context

e Problem: Mask token never seen at fine-tuning

e Solution: don't replace with [MASK] 100% of the time. Instead:
e 80% of the time, replace with [MASK]

o went to the store - went to the [MASK]
e 10% of the time, replace random word

o went to the store - went to the running

e 10% of the time, keep same

0 went to the store - went to the store



BERT: Pre-training Procedure

e Dataset:
o Wikipedia (2.5B words) + a collection of free ebooks (800M words)

e Training procedure
o masked language model (masked LM)

= Masks some percent of words from the input and has to reconstruct those words
from context

o Two-sentence task

= To understand relationships between sentences

= Concatenate two sentences A and B and predict whether B actually comes after A
in the original text



BERT: Pre-training Procedure
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BERT: Downstream Fine-tuning

e Use BERT for sentence classification
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BERT: Downstream Fine-tuning
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BERT Results

* Huge improvements over SOTA on 12 NLP task

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
392k 363k 108k 67k 85k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 810 860 61.7| 74.0
BiLSTM+ELMo+Attn 76.4/76.1 648 799 904 360 733 849 568| 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 913 454 80.0 823 56.0| 752
BERTgASE 84.6/83.4 71.2 90.1 935 521 858 889 664 79.6
BERT/ ARGE 86.7/85.9 721 911 949 605 865 893 70.1| 819

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the
number of training examples. The “Average” column is slightly different than the official GLUE score, since
we exclude the problematic WNLI set. OpenAl GPT = (L=12, H=768, A=12); BERTgasg = (L=12, H=768,
A=12); BERT arge = (L=24, H=1024, A=16). BERT and OpenAl GPT are single-model, single task. All
results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.

com/language—-unsupervised/.
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Analysis

e BERT Rediscovers the Classical
NLP Pipeline. Tenney et al., 2019
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