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Last Lecture

● Recurrent Networks (RNNs)
! Long-range dependency, vanishing gradients
! LSTM
! RNNs in different forms

● Attention Mechanisms
! (Query, Key, Value)
! Attention on Text and Images

● Transformers: Multi-head Attention
! Transformer
! BERT

2



Recap: RNNs in Various Forms
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Recap: Attention
● Chooses which features to pay attention to

4Figure courtesy: Olah & Carter, 2016
Machine Translation

https://distill.pub/2016/augmented-rnns/


Recap: Attention Variants
● Popular attention mechanisms with different alignment score functions

5Courtesy: Lilian Weng

• Query: decoder state 𝑠$ 
• Key: all encoder states ℎ%
• Value: all encoder states ℎ%

Alignment score = f(Query, Keys)



Outline

● Recurrent Networks (RNNs)
! Long-range dependency, vanishing gradients
! LSTM
! RNNs in different forms

● Attention Mechanisms
! (Query, Key, Value)
! Attention on Text and Images

● Transformers: Multi-head Attention
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Transformers – Multi-head (Self-)Attention
● State-of-the-art Results by Transformers

! [Vaswani et al., 2017] Attention Is All You Need
§ Machine Translation

! [Devlin et al., 2018] BERT: Pre-training of Deep Bidirectional Transformers 
for Language Understanding
§ Pre-trained Text Representation

! [Radford et al., 2019] Language Models are Unsupervised Multitask 
Learners
§ Language Models
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Multi-head Attention
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Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention
Image source: Vaswani, et al., 2017

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


Multi-head Attention
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http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


Multi-head Attention

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3
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attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention
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queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by
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In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:
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QK
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The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p
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.
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Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.
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Multi-head Attention in Encoders and Decoders
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.
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Multi-head Attention in Encoders and Decoders

12Image source: Bgg

Transformer



Transformer-based LM

13Image source: Bgg

Transformer

Transformer...

Transformer layer

Transformer layer

Transformer layer



14

Neural LM Training



Neural LMs: Next Word Prediction

𝑝! 𝑦" 	 𝒚#:"%#)



Neural LMs: Training
● Given data example 𝒚∗

● Minimizes negative log-likelihood of the data

min&	ℒ'() = −log	𝑝&(𝒚∗) = −/
*+,

-
𝑝& 𝑦*∗	 𝒚,:*/,∗ )



Neural LMs: GPT3
● A Transformer-based LM with 125M to 175B parameters
● Trained on massive text data

[Table from https://lambdalabs.com/blog/demystifying-gpt-3/]
Brown et al., 2020 "Language Models Are Few-Shot Learners”



Natural Language Processing (NLP): Before 2017
Automated understanding and generation of natural language

Named Entity Recognition

Sentiment Analysis

Core NLP tasks handled by respective machine learning models, e.g.,:

(Slide courtesy: Qin, 2023)



Hand annotation of linguistic structures 
(e.g., the Penn Treebank, 1990s)

Natural Language Processing (NLP): Before 2017
Automated understanding and generation of natural language

(Slide courtesy: Qin, 2023)



NLP breakthrough with large language models, since 2017

Figure credit: https://indiaai.gov.in/article/the-future-of-large-language-models-llms-strategy-opportunities-and-challenges



Figure credit: Investopedia

microchip industry

NLP breakthrough with large language models, since 2017



Figure credit: https://indiaai.gov.in/article/the-future-of-large-language-models-llms-strategy-opportunities-and-challenges

NLP breakthrough with large language models, since 2017



Language Model Size & GLUE Performance

GLUE: General Language 
Understanding Evaluation
• Sentiment analysis
• Text similarity
• Paraphrase detection
• Textual entailment
• Question answering
• Linguistic acceptability 

(grammaticality)
• ….

NLP breakthrough with large language models, since 2017

(Slide courtesy: Qin, 2023)



Language Model Size & GLUE Performance

Model size increases 
exponentially

Performance increases 
“only” linearly

NLP breakthrough with large language models, since 2017

(Slide courtesy: Qin, 2023)



Language Model Size & GLUE Performance

Model size increases 
exponentially

Performance increases 
“only” linearly

amount of compute 

NLP breakthrough with large language models, since 2017

(Slide courtesy: Qin, 2023)



Language Model Size & GLUE Performance

amount of compute 

NLP breakthrough with large language models, since 2017

AI is the new electricity

A. Ng

C. Manning

Electricity is the new AI?

(Slide courtesy: Qin, 2023)



27

Text Embedding



Word Embedding

● A pre-trained matrix, 
each row is an 
embedding vector of a 
word

28[Courtesy: Vaswani, et al., 2017]

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


Word Embedding

● A pre-trained matrix, 
each row is an 
embedding vector of a 
word

29[Image source: Vaswani, et al., 2017]

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


Word2vec: Skip-Gram Model 

31

● (Mikolov et al., 2013a,b) 

Skip-Gram Model

p(C = c | X = v) =
1

Zv
exp c>c vv

I Two di↵erent vectors for each element of V: one when it is
“v” (v) and one when it is “c” (c).

I This should remind you of a neural network; SGD on the
likelihood function is the conventional approach to estimating
the vectors.

I Normalization term Zv is expensive, so approximations are
required for e�ciency.

I Can expand this to be over the whole sentence or document,
or otherwise choose which words “count” as context.

55 / 86

[Courtesy: UW CSE 447 by Noah Smith]



Word2vec: Skip-Gram Model 

32[Figure courtesy: Maryam Fallah]

“the dog barks”



Word Embedding Evaluation

33

Word Vector Evaluations

Several popular methods for intrinsic evaluations:

I Do (cosine) similarities of pairs of words’ vectors correlate
with judgments of similarity by humans?

I TOEFL-like synonym tests, e.g., rug
?! {sofa, ottoman,

carpet, hallway}
I Syntactic analogies, e.g., “walking is to walked as eating is to

what?” Solved via:

max
v2V

cos (vv,�vwalking + vwalked + veating)

Note: The above line contains corrections relative to the
video, and the textbook.

59 / 86

[Courtesy: UW CSE 447 by Noah Smith]



Extrinsic evaluation:

Word Embedding Evaluation

34[Courtesy: UW CSE 447 by Noah Smith]

Extrinsic Evaluations

1. Use large unannotated corpus to get your word vectors
(sometimes called pretraining).

2. Use them in a text classifier (or some other NLP system).
Two options:
I Plug in word vectors as “frozen” features, and estimate the

other parameters of your model.
I Treat them as parameters of the text classifier; pretraining

gives initial values, but they get updated, or “finetuned”
during supervised learning.

3. Does that system’s performance improve?

61 / 86



Word Embedding

● Problem: word embeddings are applied in a context free manner

35Courtesy: Devlin 2019

open a bank account    on the river bank

      [0.3, 0.2, -0.8, …]



Word Embedding

● Problem: word embeddings are applied in a context free manner

● Solution: Train contextual representations on text corpus

36

open a bank account

[0.9, -0.2, 1.6, …]

on the river bank

[-1.9, -0.4, 0.1, …]

Courtesy: Devlin 2019

open a bank account    on the river bank

      [0.3, 0.2, -0.8, …]



Contextual Representations

● ELMo: Deep Contextual Word Embeddings!"#$%"&""'()*+,-)./"01"
23-4)(5.0(!"%678

37Courtesy: Devlin 2019

Train Separate Left-to-Right and  
Right-to-Left LMs

LSTM

<s>

open

LSTM

open

a

LSTM

a

bank

Apply as “Pre-trained  
Embeddings”

LSTM

open

<s>

LSTM

a

open

LSTM

bank

a

open a bank

Existing Model Architecture



Contextual Representations

● Improving Language Understanding by Generative  Pre-Training!"
9:+(#$!"%67;

38Courtesy: Devlin 2019

Transformer

<s>

open

open

a

a

bank

Transformer Transformer

Fine-tune on  
Classification Task

POSITIVE

Transformer

<s> open a

Transformer Transformer

Train Deep (12-layer)  
Transformer LM



Problem with Previous Methods

● Problem<"=3(5>35+"?0@+A-"0(A/">-+"A+1."B0(.+C."or ,)54."B0(.+C.!"D>."
A3(5>35+">(@+,-.3(@)(5")-"D)@),+B.)0(3AE

39courtesy: Devlin 2019



BERT
● BERT: A bidirectional model to extract contextual word embedding 



BERT: Pre-training Procedure
● Dataset:
! Wikipedia (2.5B words) + a collection of free ebooks (800M words)

41



BERT: Pre-training Procedure
● Dataset:
! Wikipedia (2.5B words) + a collection of free ebooks (800M words)

● Training procedure
! masked language model (masked LM)
§ Masks some percent of words from the input and has to reconstruct those words 

from context

42



BERT: Pre-training Procedure
● Masked LM

43



BERT: Pre-training Procedure

● Masked LM
● 15% masking:
! Too little masking: Too expensive to train (few supervision signals per example)
! Too much masking: Not enough context

● Problem: Mask token never seen at fine-tuning

● Solution: don’t  replace with [MASK] 100% of the time. Instead:
● 80% of the time, replace with [MASK]
! went to the store → went to the [MASK]

● 10% of the time, replace random word
! went to the store → went to the running

● 10% of the time, keep same
! went to the store → went to the store



BERT: Pre-training Procedure
● Dataset:
! Wikipedia (2.5B words) + a collection of free ebooks (800M words)

● Training procedure
! masked language model (masked LM)
§ Masks some percent of words from the input and has to reconstruct those words 

from context
! Two-sentence task
§ To understand relationships between sentences
§ Concatenate two sentences A and B and predict whether B actually comes after A 

in the original text

45



BERT: Pre-training Procedure

● Two sentence 
task

46



BERT: Downstream Fine-tuning 
● Use BERT for sentence classification

47



BERT: Downstream Fine-tuning 

48



BERT Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAI SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.9 90.4 36.0 73.3 84.9 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 88.1 91.3 45.4 80.0 82.3 56.0 75.2
BERTBASE 84.6/83.4 71.2 90.1 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 91.1 94.9 60.5 86.5 89.3 70.1 81.9

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the
number of training examples. The “Average” column is slightly different than the official GLUE score, since
we exclude the problematic WNLI set. OpenAI GPT = (L=12, H=768, A=12); BERTBASE = (L=12, H=768,
A=12); BERTLARGE = (L=24, H=1024, A=16). BERT and OpenAI GPT are single-model, single task. All
results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.
com/language-unsupervised/.

RTE Recognizing Textual Entailment is a bi-
nary entailment task similar to MNLI, but with
much less training data (Bentivogli et al., 2009).6

WNLI Winograd NLI is a small natural lan-
guage inference dataset deriving from (Levesque
et al., 2011). The GLUE webpage notes that there
are issues with the construction of this dataset, 7

and every trained system that’s been submitted
to GLUE has has performed worse than the 65.1
baseline accuracy of predicting the majority class.
We therefore exclude this set out of fairness to
OpenAI GPT. For our GLUE submission, we al-
ways predicted the majority class.

4.1.1 GLUE Results

To fine-tune on GLUE, we represent the input se-
quence or sequence pair as described in Section 3,
and use the final hidden vector C 2 RH corre-
sponding to the first input token ([CLS]) as the
aggregate representation. This is demonstrated vi-
sually in Figure 3 (a) and (b). The only new pa-
rameters introduced during fine-tuning is a classi-
fication layer W 2 RK⇥H , where K is the num-
ber of labels. We compute a standard classification
loss with C and W , i.e., log(softmax(CW

T )).
We use a batch size of 32 and 3 epochs over

the data for all GLUE tasks. For each task, we ran
fine-tunings with learning rates of 5e-5, 4e-5, 3e-5,
and 2e-5 and selected the one that performed best
on the Dev set. Additionally, for BERTLARGE we
found that fine-tuning was sometimes unstable on

6Note that we only report single-task fine-tuning results in
this paper. Multitask fine-tuning approach could potentially
push the results even further. For example, we did observe
substantial improvements on RTE from multi-task training
with MNLI.

7https://gluebenchmark.com/faq

small data sets (i.e., some runs would produce de-
generate results), so we ran several random restarts
and selected the model that performed best on the
Dev set. With random restarts, we use the same
pre-trained checkpoint but perform different fine-
tuning data shuffling and classifier layer initializa-
tion. We note that the GLUE data set distribution
does not include the Test labels, and we only made
a single GLUE evaluation server submission for
each BERTBASE and BERTLARGE.

Results are presented in Table 1. Both
BERTBASE and BERTLARGE outperform all exist-
ing systems on all tasks by a substantial margin,
obtaining 4.4% and 6.7% respective average accu-
racy improvement over the state-of-the-art. Note
that BERTBASE and OpenAI GPT are nearly iden-
tical in terms of model architecture outside of
the attention masking. For the largest and most
widely reported GLUE task, MNLI, BERT ob-
tains a 4.7% absolute accuracy improvement over
the state-of-the-art. On the official GLUE leader-
board,8 BERTLARGE obtains a score of 80.4, com-
pared to the top leaderboard system, OpenAI GPT,
which obtains 72.8 as of the date of writing.

It is interesting to observe that BERTLARGE sig-
nificantly outperforms BERTBASE across all tasks,
even those with very little training data. The effect
of BERT model size is explored more thoroughly
in Section 5.2.

4.2 SQuAD v1.1

The Standford Question Answering Dataset
(SQuAD) is a collection of 100k crowdsourced
question/answer pairs (Rajpurkar et al., 2016).
Given a question and a paragraph from Wikipedia

8https://gluebenchmark.com/leaderboard
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