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Logistics
o Class webpage: http://zhiting.ucsd.edu/teaching/dsc250fall2023



Logistics

Instructor: Zhiting Hu
Email: zhh019@ucsd.edu
Office hours: Fri 3pm-4pm
Location: HDSI 442

TA: Meng Song

Email: mes050@eng.ucsd.edu
Office hours: Thu 2:00-3:00pm
Location: CSE 2217

TA: Vyshnavi Sankaran Krishnan
Email: vykrishnan@ucsd.edu

L Office hours: Tue 2:00-3:00pm
Location: TBA

e Discussion forum: Piazza
e Homework & writeup submission: Gradescope



Logistics: grading

2 Homework assignments (30% of grade)
Paper presentation (20%)

Course project (46%)

Participation (4%)



Logistics: grading

e 2 Homework assignments (30% of grade)
o Theory exercises, implementation exercises
o 3 total late days without penalty

e Paper presentation (20%)
e Course project (46%)
e Participation (4%)



Logistics: grading

e 2 Homework assignments (30% of grade)

e Paper presentation (20%)

Each student will give an oral presentation on a research paper
10 mins = 8 mins presentation + 2 mins QA (tentative)

Discuss both strengths and limitations of the paper

Sign up in a google sheet (TBA)

Starting 2" half of the quarter

e Course project (46%)

O o O O O

e Participation (4%)



Logistics: grading

e 2 Homework assignments (30% of grade)
e Paper presentation (20%)
e Course project (46%)

o 3 or 4-member team to be formed and sign up in a google sheet (TBA)
o Designed to be as similar as possible to researching and writing a conference-
style paper:
= Due to tight timeline, fine to use synthetic/toy data for proof-of-concept
experiments + explanation of theory/intuition of why your approach is likely to work
o Proposal : 2 pages excluding references (10%) -- Due in 2 or 3 weeks (TBA)

= Overview of project idea, literature review, potential datasets and evaluation,
milestones

o Midway Report : 4-5 pages excluding references (20%)
o Presentation : oral presentation, 15-20mins (20%)
o Final Report : 6-8 pages excluding references (50%)



Logistics: grading

e 2 Homework assignments (30% of grade)
e Paper presentation (20%)
e Course project (46%)

e Participation (4%)
o Contribution to discussion on Piazza
o Complete mid-quarter evaluation
o Any constructive suggestions



Data Mining



Why Data Mining

e The Explosive Growth of Data: from terabytes to petabytes

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition
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Why Data Mining

e The Explosive Growth of Data: from terabytes to petabytes
o Data collection and data availability

= Automated data collection tools, database systems, Web, computerized society

« Facebook: one billion images uploaded per day

300 hours of video are uploaded to YouTube every minute

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition 1



Why Data Mining

e The Explosive Growth of Data: from terabytes to petabytes
o Data collection and data availability
= Automated data collection tools, database systems, Web, computerized society
o Major sources of abundant data
= Business: Web, e-commerce, transactions, stocks, ...
= Science: Remote sensing, bioinformatics, scientific simulation, ...

= Society and everyone: news, digital cameras, YouTube

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition 12



Why Data Mining

e The Explosive Growth of Data: from terabytes to petabytes
o Data collection and data availability
= Automated data collection tools, database systems, Web, computerized society
o Major sources of abundant data
= Business: Web, e-commerce, transactions, stocks, ...
= Science: Remote sensing, bioinformatics, scientific simulation, ...

= Society and everyone: news, digital cameras, YouTube

e We are drowning in data, but starving for knowledge!

e Data Mining: Automated analysis of massive datasets

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition 13



Evolution of Sciences

e Before 1600, empirical science

e 1600-1950s, theoretical science
o Each discipline has grown a theoretical component. Theoretical models often motivate
experiments and generalize our understanding.

e 1950s-1990s, computational science
o Over the last 50 years, most disciplines have grown a third, computational branch
= e.g. empirical/theoretical/computational ecology, or physics, or linguistics.

o Computational Science traditionally meant simulation. It grew out of our inability to find closed-
form solutions for complex mathematical models.

e 1990-now, data science
o Mountains of data from several converging trends:
= The flood of data from new scientific instruments and simulations
= The ability to economically store and manage petabytes of data online

= The Internet and computing Grid that makes all these archives universally accessible

Jim Gray and Alex Szalay, The World Wide Telescope: An Archetype for Online Science, Comm. ACM, 45(11): 50-54, Nov. 2002
Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition 14



What is Data Mining

e Data mining (knowledge discovery from data; KDD)

o Extraction of interesting (non-trivial, implicit, previously unknown and potentially

useful) patterns or knowledge from huge amount of data

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition
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What is Data Mining

e Data mining (knowledge discovery from data; KDD)

o Extraction of interesting (non-trivial, implicit, previously unknown and potentially

useful) patterns or knowledge from huge amount of data

Fun meme:
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What is Data Mining

e Data mining (knowledge discovery from data; KDD)

o Extraction of interesting (non-trivial, implicit, previously unknown and potentially

useful) patterns or knowledge from huge amount of data

e Alternative names

o Knowledge discovery (mining) in databases (KDD), knowledge extraction,

data/pattern analysis, data archeology, data dredging, information harvesting,
business intelligence, etc.

e Watch out: Is everything “data mining”?
o Simple search and query processing

o (Deductive) expert systems

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition
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What is Data Mining

Confluence of Multiple Disciplines

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition
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Different Dimensions of Data Mining

e Data to be mined

o Database data (extended-relational, object-oriented, heterogeneous, legacy), data
warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text
and web, multi-media, graphs & social and information networks

e« Knowledge to be mined (or: Data mining functions)

o Characterization, discrimination, association, classification, clustering, trend/deviation,
outlier analysis, etc.

o Descriptive vs. predictive data mining
o Multiple/integrated functions and mining at multiple levels

e Techniques utilized

o Data warehouse, machine learning, statistics, pattern recognition, visualization, high-
performance, etc.

e Applications adapted

o Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market

analysis, text mining, Web mining, etc.

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition 19



Data to be mined

e Database-oriented data sets and applications

o Relational database, data warehouse, transactional database

e Advanced data sets and advanced applications
o Text databases

o Structure data, graphs, social networks and multi-linked data

Relational Database

o Time-series data, temporal data, sequence data (incl. bio-sequences) ?m&,\»éxxok&

o Data streams and sensor data
o Heterogeneous databases and legacy databases
o Spatial data and spatiotemporal data
o Multimedia database

o The World-Wide Web

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition
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Knowledge to be mined (i.e., data mining functions)

(Ex-1) Association and Correlation Analysis

e Frequent patterns (or frequent itemsets)
o What items are frequently purchased together in your Walmart?

e Association, correlation vs. causality

o A typical association rule
= Diaper > Beer [0.5%, 75%] (support, confidence)

e How to mine such patterns and rules efficiently in large datasets?

e How to use such patterns for classification, clustering, and other
applications?

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition 21



Knowledge to be mined (i.e., data mining functions)

(Ex-2) Classification

e Classification and label prediction
o Construct models (functions) based on some training examples
o Describe and distinguish classes or concepts for future prediction
= E.g., classify countries based on (climate), or classify cars based on (gas mileage)

o Predict some unknown class labels

e Typical methods

o Decision trees, naive Bayesian classification, support vector machines, neural
networks, rule-based classification, pattern-based classification, logistic regression, ...

e Typical applications:
o Credit card fraud detection, direct marketing, classifying stars, diseases, web-pages,

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition 22



Knowledge to be mined (i.e., data mining functions)

(Ex-3) Cluster Analysis
e Unsupervised learning (i.e., Class label is unknown)

e Group data to form new categories (i.e., clusters), e.g., cluster houses to find
distribution patterns

e Principle: Maximizing intra-class similarity & minimizing interclass similarity

e Many methods and applications

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition 23



Knowledge to be mined (i.e., data mining functions)

(Ex-4) Outlier Analysis

e Outlier: A data object that does not comply with the general behavior of the data
e Noise or exception? — One person’s garbage could be another person’s treasure
e Methods: by product of clustering or regression analysis, ...

e Useful in fraud detection, rare events analysis

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition 24



Knowledge to be mined (i.e., data mining functions)

(Ex-5) Time and Ordering: Sequential Pattern, Trend and Evolution Analysis

e Sequence, trend and evolution analysis
o Trend, time-series, and deviation analysis: e.g., regression and value prediction
o Sequential pattern mining
= e.g., first buy digital camera, then buy large SD memory cards
o Periodicity analysis
o Motifs and biological sequence analysis
=  Approximate and consecutive motifs
o Similarity-based analysis

e Mining data streams
o Ordered, time-varying, potentially infinite, data streams

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition 25



Knowledge to be mined (i.e., data mining functions)

(Ex-6) Structure and Network Analysis
e Graph mining
o Finding frequent subgraphs (e.g., chemical compounds), trees (XML),
substructures (web fragments)
e Information network analysis
o Social networks: actors (objects, nodes) and relationships (edges)
= e.g., author networks in CS, terrorist networks
o Multiple heterogeneous networks
= A person could be multiple information networks: friends, family, classmates, ...
o Links carry a lot of semantic information: Link mining

e Web mining
o Web is a big information network: from PageRank to Google
o Analysis of Web information networks
= Web community discovery, opinion mining, usage mining, ...

Han, Kamber, and Pei, Data Mining: Concepts and Techniques 3™ edition 26



This Course

1) Text mining
2) Graph/network mining

3) Recommender systems

27



This Course

1) Text mining
o Topic models

= LDA, Expectation Maximization, variational inference

Topics
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This Course

1) Text mining
o Topic models

= LDA, Expectation Maximization, variational inference
o Language models
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This Course

2) Graph/network mining

Graphs are a general language for describing
and analyzing entities with relations/interactions
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Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



This Course

2) Graph/network mining

Graphs are a general language for describing
and analyzing entities with relations/interactions

Social Networks Economic Networks Communication Networks

Citation Networks Internet Networks of Neurons

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs
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This Course

2) Graph/network mining

Graphs are a general language for describing
and analyzing entities with relations/interactions

Leonard Nimoy Star Trek  Star Wars Alec Guinness

Knowledge Graphs Regulatory Networks

Code Graphs Molecules
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 35




This Course

2) Graph/network mining
Different types of tasks

Node level

h-I HE i
Graph-level «— .- Community

(p;r,::,l;tlon, (subgraph)
generation N\ level
; Edge-level

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 36



This Course

2) Graph/network mining

Different types of tasks
E.qg., User classification

e

Node level

E.g., Molecule

property prediction E.g., Social circle
Graph-level : . _ detection (clustering)
prediction ' +— Community
Graph ’ (subgraph)
_ : - : level
— generation : y : E.g., knowledge graph

E.g., Drug discovery
/ completion (link prediction)

Edge-level

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 37



This Course

2) Graph/network mining
Node embedding

Graph neural networks
Knowledge graphs and reasoning

O O O O
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This Course

3) Recommender systems

Example recommender systems

Facebook-“People You May Know” YouTube-“Recommended Videos”
Netflix-“Other Movies You May Enjoy” Google-“Search results adjusted”
LinkedIn-“Jobs You May Be Interested In” Pinterest-“Recommended Images”

Amazon-“Customer who bought this item
also bought ...

Crossing Minds. https://www.slideshare.net/CrossinaMinds/recommendation-system-explained 39



This Course

3) Recommender systems

o Collaborative filtering
= Matrix factorization, deep learning methods, ...

*&?" ®
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recommend \‘

https://d4datascience.com/category/predictive-analytics/
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This Course

3) Recommender systems
o Collaborative filtering
= Matrix factorization, deep learning methods, ...
o Content-based recommendation
=  Object similarity measure

Viewed by users

—>

Similar products

Recommended
to user

https://d4datascience.com/category/predictive-analytics/ 41



This Course

3) Recommender systems
o Collaborative filtering
=  Matrix factorization
o Content-based recommendation
=  Object similarity measure
o Graph neural networks for recommendation

https://d4datascience.com/category/predictive-analytics/
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This Course: Summary

1) Text mining
o Topic models
= LDA, Expectation Maximization, variational inference
o Language models
o Text representation learning (embedding)

2) Graph/network mining
o Node embedding
o QGraph neural networks
o Knowledge graphs and reasoning

3) Recommender systems
o Collaborative filtering
=  Matrix factorization
o Content-based recommendation
= Object similarity measure
o  Graph neural networks for recommendation
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