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Logistics
● HW1 due extended to Sunday (10/24)
● HW2 out: (much) easier than HW1 !
● Mid-term survey
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Outline
● Functional derivative
● A “standardized” view of ML
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Functional derivative
●

● Functional 𝐹(𝑦): an operator that takes a function 𝑦(𝑥) and returns an 
output value 𝐹

● Functional derivative (aka, variational derivative) relates a change in a 
Functional 𝐹 𝑦 to a change in the function 𝑦
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∇! −ℍ 𝑞 = log 𝑞 + 1



Functional derivative

● Recall the conventional derivative "#"$
! Taylor expansion

● Functional derivative
! How much a functional 𝐹[𝑦] changes when we make a small change 𝜀𝜂(𝑥) to 

the function 𝑦(𝑥)

! A function 𝑦(𝑥) that maximizes (or minimizes) a functional 𝐹[𝑦] must satisfy 
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= 0 for all 𝑥



Functional derivative

● Consider a functional that is defined by an integral over a function 
𝐺 𝑦, 𝑥

● Consider variations in the function 𝑦(𝑥), 
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𝐹[𝑦] = 5𝐺 𝑦, 𝑥 𝑑𝑥

𝐹 𝑦 + 𝜖𝜂 𝑥 = 𝐹 𝑦 𝑥 + 𝜖5
𝜕𝐺
𝜕𝑦 𝜂(𝑥)𝑑𝑥 + 𝑂(𝜖

%)



Functional derivative

● Consider a functional that is defined by an integral over a function 
𝐺 𝑦, 𝑥

● Consider variations in the function 𝑦(𝑥),

● Ex.1, −ℍ 𝑞 = ∫ 𝑞(𝑥) log 𝑞(𝑥) 𝑑𝑥
! 𝐺 = 𝑞 𝑥 log 𝑞(𝑥)

● EX.2, posterior regularization
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𝐹[𝑦] = 5𝐺 𝑦, 𝑥 𝑑𝑥

𝐹 𝑦 + 𝜖𝜂 𝑥 = 𝐹 𝑦 𝑥 + 𝜖5
𝜕𝐺
𝜕𝑦 𝜂(𝑥)𝑑𝑥 + 𝑂(𝜖

%)



Ex.2: Posterior Regularization

● Lagrangian
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assume single 
data point 𝒙∗
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A “Standardized” View of ML



MaxEnt perspective

● Supervised MLE and maximum entropy

● Unsupervised MLE and maximum entropy

● Bayesian inference and maximum entropy

! Bayesian inference as optimization

● Posterior regularization:

! Constrained Bayesian inference => constrained optimization
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The general expression as a constrained optimization:
(auxiliary) distribution 𝑞

constrained set

loss



MaxEnt perspective

● Supervised MLE and maximum entropy
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min
!(𝒙,𝒚)

𝐻 𝑞

s.t. 𝔼! 𝑇(𝒙, 𝒚) = 𝔼($∗,#∗)∼𝒟 𝑇(𝒙, 𝒚)

The general expression as a constrained optimization:
(auxiliary) distribution 𝑞

constrained set

loss



MaxEnt perspective

● Supervised MLE and maximum entropy

● Unsupervised MLE and maximum entropy
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The general expression as a constrained optimization:
(auxiliary) distribution 𝑞

constrained set

loss

min
!,-

𝐻 𝑞 𝒚|𝒙∗ + 𝔼!(𝒚|𝒙∗) log 𝑝-(𝒙∗, 𝒚)



MaxEnt perspective

● Supervised MLE and maximum entropy

● Unsupervised MLE and maximum entropy

● Bayesian inference and maximum entropy
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The general expression as a constrained optimization:
(auxiliary) distribution 𝑞

constrained set

loss

𝑠. 𝑡. 𝑞 𝒛 ∈ 𝒫



MaxEnt perspective

● Supervised MLE and maximum entropy

● Unsupervised MLE and maximum entropy

● Bayesian inference and maximum entropy

● Posterior regularization
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The general expression as a constrained optimization:
(auxiliary) distribution 𝑞

constrained set

loss



● Let 𝑡 be the variable of interest
! E.g., the input-output pair 𝒕 = (𝒙, 𝒚) in a prediction task
! or 𝒕 = 𝒙 in generative modeling

● 𝑝- 𝒕 : the target model to be learned
● 𝑞 𝒕 : auxiliary distribution
● The SE:

! Experience function 𝑓 represents external experiences of different kinds for 
training the model
§ 𝑓! 𝒕 ∈ ℝ: measures the goodness of a configuration 𝒕 in light of any given experiences
§ Data, constraints, reward, adversarial discriminators, etc., can all be formulated as an 

experience function (later)
§ Maximizing 𝔼" 𝒕 𝑓! 𝒕 -> 𝑞 is encouraged to produce samples receiving high scores

The Standard Equation (SE) 
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min
!, 𝜽, 𝝃

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

+ 𝑈(𝝃)

𝑠. 𝑡. −𝔼! 𝒕
3 < 𝝃4,    𝑘 = 1,… , 𝐾

𝑞 𝒕 , 𝑝- 𝒕

𝑓4 𝒕

[Hu & Xing, 2021]



● Let 𝑡 be the variable of interest
! E.g., the input-output pair 𝒕 = (𝒙, 𝒚) in a prediction task
! or 𝒕 = 𝒙 in generative modeling

● 𝑝- 𝒕 : the target model to be learned
● 𝑞 𝒕 : auxiliary distribution
● The SE:

! Divergence 𝔻: measures the distance between the target model 𝑝$ to be trained 
and the auxiliary model 𝑞
§ E.g., cross entropy

The Standard Equation (SE) 
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min
!, 𝜽, 𝝃

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

+ 𝑈(𝝃)

𝑠. 𝑡. −𝔼! 𝒕
3 < 𝝃4,    𝑘 = 1,… , 𝐾

𝑞 𝒕 , 𝑝- 𝒕

𝑓4 𝒕

[Hu & Xing, 2021]



● Let 𝑡 be the variable of interest
! E.g., the input-output pair 𝒕 = (𝒙, 𝒚) in a prediction task
! or 𝒕 = 𝒙 in generative modeling

● 𝑝- 𝒕 : the target model to be learned
● 𝑞 𝒕 : auxiliary distribution
● The SE:

! Uncertainty ℍ: controls the compactness of the model
§ E.g., Shannon entropy

The Standard Equation (SE) 
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min
!, 𝜽, 𝝃

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

+ 𝑈(𝝃)

𝑠. 𝑡. −𝔼! 𝒕
3 < 𝝃4,    𝑘 = 1,… , 𝐾

𝑞 𝒕 , 𝑝- 𝒕

𝑓4 𝒕

[Hu & Xing, 2021]



The Standard Equation (SE) 
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min
!, 𝜽, 𝝃

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

+ 𝑈(𝝃)

𝑠. 𝑡. −𝔼! 𝒕
3 < 𝝃4,    𝑘 = 1,… , 𝐾

𝑞 𝒕 , 𝑝- 𝒕

𝑓4 𝒕

min
!, -

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼! 𝒕
1
𝑓 𝒕𝑞 𝒕 , 𝑝- 𝒕

3 terms:
Experiences
(exogenous regularizations)
e.g., data examples, rules

Textbook
𝑓 𝒕

Divergence
(fitness)
e.g., Cross Entropy

Teacher
𝑞 𝒕

Student
𝑝$ 𝒕

Uncertainty
(self-regularization)
e.g., Shannon entropy

Uncertainty

Assuming penalty 𝑈 = ∑! 𝜉!, and 𝑓 = ∑! 𝑓! :



The Standard Equation (SE) 

● The introduction of the auxiliary distribution 𝑞 relaxes the learning problem of 
𝑝!, originally only over 𝜽, to be now alternating between 𝑞 and 𝜽
! Recall in EM, we introduced 𝑞 to deal with the intractable marginal log-likelihood

● 𝑞 acts as a conduit between the exogenous experience and the target model
! subsumes the experience, by maximizing the expected 𝑓 value 
! passes it incrementally to the target model, by minimizing the divergence 𝔻

● E.g., assume 𝔻 is cross entropy, and ℍ is Shannon entropy
! The above optimization, at each iteration 𝑛:
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min
!, -

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼! 𝒕
1
𝑓 𝒕𝑞 𝒕 , 𝑝- 𝒕



The Standard Equation (SE) 

● The introduction of the auxiliary distribution 𝑞 relaxes the learning problem of 
𝑝!, originally only over 𝜽, to be now alternating between 𝑞 and 𝜽
! Recall in EM, we introduced 𝑞 to deal with the intractable marginal log-likelihood

● 𝑞 acts as a conduit between the exogenous experience and the target model
! subsumes the experience, by maximizing the expected 𝑓 value 
! passes it incrementally to the target model, by minimizing the divergence 𝔻

● E.g., assume 𝔻 is cross entropy, and ℍ is Shannon entropy
! The above optimization, at each iteration 𝑛:
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min
!, -

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼! 𝒕
1
𝑓 𝒕𝑞 𝒕 , 𝑝- 𝒕



The Standard Equation (SE) 

● Formulates a large space of learning algorithms, which encompasses many well-
known algorithms
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min
!, -

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼! 𝒕
1
𝑓 𝒕𝑞 𝒕 , 𝑝- 𝒕
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Experience type Experience function f Divergence D ↵ � Algorithm

Data instances

fdata(x;D) CE 1 1 Unsupervised MLE

fdata(x,y;D) CE 1 ✏ Supervised MLE

fdata-self(x,y;D) CE 1 ✏ Self-supervised MLE

fdata-w(t;D) CE 1 ✏ Data re-weighting

fdata-aug(t;D) CE 1 ✏ Data Augmentation

factive(x,y;D) CE 1 ✏ Active Learning (Ertekin et al., 2007)

Knowledge frule(x,y) CE 1 1 Posterior Regularization (Ganchev et al., 2010)

frule(x,y) CE R 1 Unified EM (Samdani et al., 2012)

Reward
logQ✓(x,y) CE 1 1 Policy Gradient

logQ✓(x,y) +Qin,✓(x,y) CE 1 1 + Intrinsic Reward

Q✓(x,y) CE ⌧ > 0 ⌧ > 0 RL as Inference

Other advanced

binary classifier JSD 0 1 Vanilla GAN (Goodfellow et al., 2014)

discriminator f-divg. 0 1 f-GAN (Nowozin et al., 2016)

1-Lipschitz discriminator W1 dist. 0 1 WGAN (Arjovsky et al., 2017)

1-Lipschitz discriminator KL 0 1 PPO-GAN (Wu et al., 2020)

Table 1: Example configurations of components in the standard equation (Eq.3.2) which recover existing algorithms. Here, “CE” means Cross Entropy; “JSD” is
the Jensen-Shannon divergence; “f-divg” is the f-divergence; “W1 dist.” is the first-order Wasserstein distance; and “KL” is the KL divergence. Refer to Sections 4
and 5 for more details.
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SE encompasses many well-known algorithms (more later)



SE with supervised data experience 

● Input-output variables 𝒕 = 𝒙, 𝒚
● Experience: dataset 𝒟 = 𝒙∗, 𝒚∗ of size 𝑁
! defines the empirical distribution
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min
!, -

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼! 𝒕
1
𝑓 𝒕𝑞 𝒕 , 𝑝- 𝒕

;𝑝 𝒙, 𝒚 =
𝑚(𝒙, 𝒚)
𝑁 = 𝔼 𝒙∗,𝒚∗ ∼𝒟[𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 ]

The expected similarity between (𝒙, 𝒚) and observed data 
𝒙∗, 𝒚∗ , with similarity measure 𝟙* 𝑏 , i.e., an indicator function 

(1 if a=b, 0 otherwise)  



SE with supervised data experience

● Input-output variables 𝒕 = 𝒙, 𝒚
● Experience: dataset 𝒟 = 𝒙∗, 𝒚∗ of size 𝑁
! defines the empirical distribution

● Define the experience function

● Let 𝔻 cross entropy, ℍ Shannon entropy, 𝛼 = 1, 𝛽 = 𝜖 (a very small value)
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min
!, -

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼! 𝒕
1
𝑓 𝒕𝑞 𝒕 , 𝑝- 𝒕

;𝑝 𝒙, 𝒚 =
𝑚(𝒙, 𝒚)
𝑁

= 𝔼 𝒙∗,𝒚∗ ∼𝒟[𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 ]

𝑓:= 𝑓+*,* 𝒙 , 𝒚 ;𝒟 = log 𝔼 (𝒙∗, 𝒚∗)∼𝒟 𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚

min
!, -

−𝐻 𝑞 − 𝜖 𝔼!
1

− 𝔼!
1
𝑓"565 𝒙, 𝒚; 𝒟log 𝑝- 𝒙, 𝒚



SE with supervised data experience

● At each iteration 𝑛:

● Recovers supervised MLE!  
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𝑓:= 𝑓+*,* 𝒙 , 𝒚 ;𝒟 = log 𝔼 (𝒙∗, 𝒚∗)∼𝒟 𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚

min
!, -

−𝐻 𝑞 − 𝜖 𝔼!
1

− 𝔼!
1
𝑓"565 𝒙, 𝒚; 𝒟log 𝑝- 𝒙, 𝒚

≈ "𝑝(𝒙, 𝒚)

𝑞 reduces to the 
empirical distribution

Maximizes data log-likelihood



SE with unsupervised data experience 

● Input-output variables 𝒕 = 𝒙, 𝒚
● Experience: dataset 𝒟 = 𝒙∗ of size 𝑁, I,e., we only observe the 𝒙 part
! defines the empirical distribution

● Define the experience function 

● Let 𝔻 cross entropy, ℍ Shannon entropy, 𝛼 = 1, 𝛽 = 1

! Assume 𝑞 𝒙, 𝒚 = 9𝑝 𝒙 𝑞(𝒚|𝒙)
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min
!, -

− 𝛼ℍ 𝑞 + 𝛽𝔻
1

− 𝔼! 𝒕
1
𝑓 𝒕𝑞 𝒕 , 𝑝- 𝒕

;𝑝 𝒙 =
𝑚(𝒙)
𝑁 = 𝔼𝒙∗∼𝒟[𝟙𝒙∗ 𝒙 ]

𝑓:= 𝑓+*,* 𝒙 ;𝒟 = log 𝔼𝒙∗∼𝒟[𝟙𝒙∗ 𝒙 ]

min
!, -

−𝐻 𝑞 − 𝔼!
1

− 𝔼!
1
𝑓"565 𝒙;𝒟log 𝑝- 𝒙, 𝒚

Recovers unsupervised 
MLE (EM)!



SE with manipulated data experience 

● Input-output variables 𝒕 = 𝒙, 𝒚
● Experience: dataset 𝒟 = 𝒙∗, 𝒚∗ of size 𝑁
! defines the empirical distribution

● Define the experience function

● The similarity measure 𝟙5 𝑏 is too restrictive. Let’s enrich it:
! Don’t have to be 0/1, we can scale it

! Plug 𝑓+*,*-. into SE, keep all other configurations the same as supervised MLE, 
we recover data re-weighting in the ”student” step 
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;𝑝 𝒙, 𝒚 =
𝑚(𝒙, 𝒚)
𝑁 = 𝔼 𝒙∗,𝒚∗ ∼𝒟[𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 ]

𝑓:= 𝑓+*,* 𝒙 , 𝒚 ;𝒟 = log 𝔼 (𝒙∗, 𝒚∗)∼𝒟 𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚

𝑓:= 𝑓+*,*-. 𝒙 , 𝒚 ;𝒟 = log 𝔼 (𝒙∗, 𝒚∗)∼𝒟 𝑤 𝒙∗, 𝒚∗ ⋅ 𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚



SE with manipulated data experience 

● Input-output variables 𝒕 = 𝒙, 𝒚
● Experience: dataset 𝒟 = 𝒙∗, 𝒚∗ of size 𝑁
! defines the empirical distribution

● Define the experience function

● The similarity measure 𝟙5 𝑏 is too restrictive. Let’s enrich it:
! Don’t have to match exactly, we can relax it

§ 𝑎(𝒙∗,𝒚∗) 𝒙, 𝒚 : assigns non-zero probability to not only the exact (𝒙∗, 𝒚∗) but also other 
𝒙, 𝒚 configurations

! Plug 𝑓+*,*-*/0 into SE, keep all other configurations the same as supervised MLE, 
we recover data augmentation in the ”student” step 28

𝑓:= 𝑓+*,*-*/0 𝒙 , 𝒚 ;𝒟 = log 𝔼 (𝒙∗, 𝒚∗)∼𝒟 𝑎(𝒙∗,𝒚∗) 𝒙, 𝒚

;𝑝 𝒙, 𝒚 =
𝑚(𝒙, 𝒚)
𝑁 = 𝔼 𝒙∗,𝒚∗ ∼𝒟[𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚 ]

𝑓:= 𝑓+*,* 𝒙 , 𝒚 ;𝒟 = log 𝔼 (𝒙∗, 𝒚∗)∼𝒟 𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚



SE with actively supervised experience
● Have access to a vast pool of unlabeled data instances
● Can select instances (queries) to be labeled by an oracle (e.g., human)

● Experiences:

! 𝑢 𝒙 measures informativeness of an instance 𝒙

§ e.g., Uncertainty on 𝒙, measured by predictive entropy

! Instances + oracle labels:
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𝑓(𝒙, 𝒚 ; 𝑂𝑟𝑎𝑐𝑙𝑒) = log 𝔼 𝒙∗∼𝒟, 𝒚∗∼123456(𝒙∗) 𝟙(𝒙∗,𝒚∗) 𝒙, 𝒚



SE with actively supervised experience

𝑓 ≔ 𝑓(𝒙, 𝒚 ; 𝑂𝑟𝑎𝑐𝑙𝑒) + 𝑢(𝒙) 𝛼 = 1, 𝛽 = 𝜖

min
!, -

− 𝛼𝐻 𝑞 − 𝛽𝔼!
1

− 𝔼! 𝒙,𝒚
1
𝑓 𝒙, 𝒚log 𝑝- 𝒙, 𝒚

! Teacher

! Student

𝑞 𝒙, 𝒚 = exp 3
3 / 𝑍𝛽 log 𝑝- 𝒙, 𝒚 + 𝑓 𝒙 , 𝒚 ; 𝑂𝑟𝑎𝑐𝑙𝑒 + 𝑢(𝒙)

𝛼

min
-

−𝔼!
1
log 𝑝- 𝒙, 𝒚

Equivalent to active learning [e.g., Ertekin et al., 07]:
• Randomly draw a subset 𝒟+,- = {𝒙∗}
• Draw a query 𝒙∗ from 𝒟+,- according to exp{𝑢(𝒙)}
• Get label 𝒚∗ for 𝒙∗ from the oracle
• Maximize log likelihood on (𝒙∗, 𝒚∗)



Key Takeaways
● The MaxEnt perspective converts learning into a constrained 

optimization problem
● The standard equation (SE):

● Functional derivative
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min!,	$ − %ℍ ' + )* 1 																	 − -! %
1 						. /' / ,	1$ /

3 terms:
Experiences
(exogenous regularizations)
e.g., data examples, rules

Textbook
	" #

Divergence
(fitness)
e.g., Cross Entropy

Teacher
$ #

Student
%! #

Uncertainty
(self-regularization)
e.g., Shannon entropy

Uncertainty

(auxiliary) distribution !

constrained set

loss



Questions?


