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Logistics

e HW1 due extended to Sunday (10/24)
e HW2 out: (much) easier than HW1 |
e Mid-term survey



Outline

e Functional derivative
e A "standardized” view of ML



Functional derivative
e V,—H(q)=1logqg+1

e Functional F(y): an operator that takes a function y(x) and returns an
output value F

e Functional derivative (aka, variational derivative) relates a change in a
Functional F(y) to a change in the function y



Functional derivative

) . ) d
e Recall the conventional derivative —

o Taylor expansion
y(z+e) =y(z) + e+ O(€)

e Functional derivative

o How much a functional F[y] changes when we make a small change en(x) to
the function y(x)
OF

Fly(z) +en(z)] = Fly(z)] + ¢ / 5y(x)

o A function y(x) that maximizes (or minimizes) a functional F[y] must satisfy

§F
6y(x)

n(z)dz + O(€?)

= 0 forall x




Functional derivative

Fly(a) + en(@)] = Fly(a)) +< [ 50sn(a) do -+ O(e)

e Consider a functional that is defined by an integral over a function
G(y,x)
Fly] = | G(y,x)dx

e Consider variations in the function y(x),

0G
Fly + en(0)] = Fly()] + ¢ f 75, 100dx + 0(e?)



Functional derivative

Fly(z) + en(@)] = Fly(@)] + ¢ / oF

6y(x)

n(z)dz + O(€?)

e Consider a functional that is defined by an integral over a function
G(y,x)
Fly] = | G(y,x)dx

e Consider variations in the function y(x),
G
Py +enGol = Pyl + e [ SonGods +0(e)

o Ex.1,—H(q) = J q(x) log q(x) dx
° G =qx)logq(x)
e EX.2, posterior regularization



Ex.2: Posterior Regularization

assume single  min — H(q(2)) — E4(2) [logp(x
data point x* q,€

sit. E,|T(x",2)] <&
£ 20,
e Lagrangian

u>0rv?§3(a>orfznsn —H(q(2)) — Ey(z) [log p(27|2)(2)]

=Y il ) —

+ Z(l — ;)& + Zm (EqlT:

+Z§z



A "Standardized” View of ML



The general expression as a constrained optimization:

. auxiliary) distribution , -7 loss
MaxEnt perspective ( V) < min £(q, 6)
’ 7 constrained set
e Supervised MLE and maximum entropy s.t. q € o)

e Unsupervised MLE and maximum entropy

e Bayesian inference and maximum entropy

o Bayesian inference as optimization

e Posterior regularization:

o Constrained Bayesian inference => constrained optimization
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The general expression as a constrained optimization:

. auxiliary) distribution , -7 loss
MaxEnt perspective ( V) < min £(q, 6)
’ 7 constrained set
e Supervised MLE and maximum entropy s.t. q € o)
min H
q(x,y) (@)

s.t. IEq[T(x, y)]| = IE(x*,y*)~z>[T(x» y)]
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The general expression as a constrained optimization:

. auxiliary) distribution , -7 loss
MaxEnt perspective ( V) < min £(q, 6)
’ 7 constrained set
e Supervised MLE and maximum entropy s.t. q € o)

e Unsupervised MLE and maximum entropy

nc?ie“ H(q(y1x9) + Eqyja [log po (x*, )]
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The general expression as a constrained optimization:

: auxiliary) distribution -7 loss
MaxEnt perspective ( V) < min £(q, 6)
* _, constrained set

e Supervised MLE and maximum entropy s.t. q € o)
e Unsupervised MLE and maximum entropy

e Bayesian inference and maximum entropy

min — H(g(2)) +logp(D) — Ey(») [logw + Z logp x ]z)}

q(2)

s.t.q(z) P
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The general expression as a constrained optimization:

. auxiliary) distribution , -7 loss
MaxEnt perspective ( V) < min £(q, 6)
’ 7 constrained set
e Supervised MLE and maximum entropy s.t. q € o)

e Unsupervised MLE and maximum entropy
e Bayesian inference and maximum entropy

e Posterior regularization

Igl,igl’l —H(q(2)) — Eq2) [Zw*ED logp(a:*|z)7T(z)} + U(§)

s.t. q(z) € Q&)
>0,
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The Standard Equation (SE)

e Lett be the variable of interest
o E.g., the input-output pair t = (x,y) in a prediction task
o ort = xin generative modeling

e py(t): the target model to be learned

e q(t): auxiliary distribution
e The SE: aneir% — aH(q) + DD (q(t), Do (t)) + U(¢)

s.t.—Eq | i@ | <&, k=1,..K

o Experience function f represents external experiences of different kinds for
training the model
= fr(t) € R: measures the goodness of a configuration t in light of any given experiences
= Data, constraints, reward, adversarial discriminators, etc., can all be formulated as an
experience function (later)

= Maximizing E,p[fx(t)] -> q is encouraged to produce samples receiving high scores
[Hu & Xing, 2021]
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The Standard Equation (SE)

e Lett be the variable of interest

o E.g., the input-output pair t = (x,y) in a prediction task
o ort = xin generative modeling

e pp(t): the target model to be learned
e q(t): auxiliary distribution

e The SE: gnér% — aH(q) + DD (q(t), Do (t)) + U(¢)

s.t.—Eq | i@ | <& k=1,..K

o Divergence ID: measures the distance between the target model py to be trained
and the auxiliary model ¢

= E.g., cross entropy

[Hu & Xing, 2021]
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The Standard Equation (SE)

e Lett be the variable of interest

o E.g., the input-output pair t = (x,y) in a prediction task
o ort = xin generative modeling

e pp(t): the target model to be learned
e q(t): auxiliary distribution

e The SE: gnér% — aH(q) + DD (q(t), Do (t)) + U(¢)

s.t.—Eq | i@ | <& k=1,..K

o Uncertainty H: controls the compactness of the model
= E.g., Shannon entropy

[Hu & Xing, 2021]
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The Standard Equation (SE)
min — aH(q) + D (q(t), Po (t)) +U($)

7,0,§
s.t.—Eq | i@ | <& k=1,..K
Assuming penalty U = ;. &, and f = ) fr -

mip — aH(q) + FD (4(0), po (©)) — Eqqp | £(0)]

q,0
3 terms:
Uncertainty Divergence Experiences
(self-regularization) (fitness) (exogenous regularizations)
e.g., Shannon entropy e.g., Cross Entropy e.g., data examples, rules

@
Teacher ¥ Student Textbook
@ Uncertainty q(t) QI’? 'ﬁ po(t) fe();) 20
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The Standard Equation (SE)

mip — aH(q) + D (q(t), Pg (t)) —Eq [ f (t)]

e The introduction of the auxiliary distribution q relaxes the learning problem of
pg, originally only over 8, to be now alternating between q and 6

o Recall in EM, we introduced g to deal with the intractable marginal log-likelihood

e g acts as a conduit between the exogenous experience and the target model
o subsumes the experience, by maximizing the expected f value

o passes it incrementally to the target model, by minimizing the divergence D

e E.g., assume D is cross entropy, and H is Shannon entropy
o The above optimization, at each iteration n:

q(n+1)<t> — exp { 510gp0<n) (t) T f(t) } / 7

&

g(ntl) — arggnax Eqm+n(p) [log Po (t)} ’ 19



The Standard Equation (SE)

mip — aH(q) + D (q(t), Pg (t)) —Eq [ f (t)]

e The introduction of the auxiliary distribution q relaxes the learning problem of
pg, originally only over 8, to be now alternating between q and 6

o Recall in EM, we introduced g to deal with the intractable marginal log-likelihood

e g acts as a conduit between the exogenous experience and the target model
o subsumes the experience, by maximizing the expected f value

o passes it incrementally to the target model, by minimizing the divergence D

e E.g., assume D is cross entropy, and H is Shannon entropy
o The above optimization, at each iteration n:

Teacher: ¢tV (¢) = exp { Blogp(;(n;ft) + /(B) } | Z

Student: @™t = argmax E n+1)(¢) | log pa(t)], .
0



The Standard Equation (SE)
mip — aH(q) + D (q(t), Pg (t)) —Eq [ f (t)]

e Formulates a large space of learning algorithms, which encompasses many well-
known algorithms
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SE encompasses many well-known algorithms (more later)

Experience type  Experience function f Divergence D « B Algorithm
faata(2; D) CE 1 1 Unsupervised MLE
Data instances Jaa(®, y; D) CE 1 € Supervised MLE
faata-seit (@, y; D) CE 1 € Self-supervised MLE
Jaata-w (£; D) CE 1 € Data re-weighting
faata-aug (t; D) CE 1 € Data Augmentation
factive(x, y; D) CE 1 € Active Learning (Ertekin et al., 2007)
Knowledge frute(x,y) CE 1 1 Posterior Regularization (Ganchev et al., 2010)
frute(x,y) CE R 1 Unified EM (Samdani et al., 2012)
log Q° (z, y) CE 1 1 Policy Gradient
Reward log Q% (x,y) + Q"™°(x,y) CE 1 1 + Intrinsic Reward
Q% (x,y) CE 7>0 7>0 RL as Inference
binary classifier JSD 0 1 Vanilla GAN (Goodfellow et al., 2014)
Other advanced  discriminator f-divg. 0 1 f-GAN (Nowozin et al., 2016)
1-Lipschitz discriminator W dist. 0 1 WGAN (Arjovsky et al., 2017)
I-Lipschitz discriminator KL 0 1 PPO-GAN (Wu et al., 2020)
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SE with supervised data experience

mip — aH(q) + FD (4(0), o (©) ~ By | (0]

e Input-output variables t = (x,y)

e Experience: dataset D = {(x*,y*)} of size N
o defines the empirical distribution

- m(x,y)
p(x; }’) — N — ]E(x*,y*)~2) [ﬂ(x*,y*) (x) 3’)]

-

o

The expected similarity between (x,y) and observed data

(x*,¥*), with similarity measure 1,(b), i.e., an indicator function

(1 if a=b, O otherwise)

~

/
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SE with supervised data experience
Igligl —aH(q) + D (Q(t); Po (t)) — Egp ’f(t)]

e Input-output variables t = (x,y)
e Experience: dataset D = {(x*,y")} of size N
o defines the empirical distribution

. m(x, y)
p(x,y) = N — [E(x*,y*)~7_) [ﬂ(x*,y*) (x,y)]

e Define the experience function
f: - fdata(x Y D) = log E (x*,y*)~D[ ﬂ(x*,y*) (xr y) ]
e Let D cross entropy, H Shannon entropy, @ = 1, 8 = € (a very small value)

min — H(@) — € Eq | logps (x,) |~ By | faata(x,%:D) |
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SE with supervised data experience
f+= faata(®,¥ ;D) =10gE (x yyop| Lz yy (%, 3) |

min — H(q) — € E, [log Po(x,y) ] - E, [ faata(%,y; D) ]

e At each iteration n:

Blog pon) (t) + ()
(@

Teacher: ¢V (t) = exp{ } /Z = p(x,y)

o empirical distribution

{ Maximizes data log-likelihood

e Recovers supervised MLE!

Student: 0"t = argmax Eqm+1 (1) | log po(t)], {q reduces to the
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SE with unsupervised data experience
mip — aH(q) + FD (4(0), o (©) ~ By | (0]

e Input-output variables t = (x,y)

e Experience: dataset D = {(x*)} of size N, |,e., we only observe the x part
o defines the empirical distribution

500 =" _ B, [ (0)

: : : 4 )
e Detfine the experience function .
Recovers unsupervised
f: — fdata(x ) D) = log IEx*~D [ﬂx* (.X')] MLE (EM)I
e Let D cross entropy, H Shannon entropy, a = 1,5 =1 \V y
min — H(q) — Eq | logpe(x,y) | = IEq[ faata(x; D) ]

o Assume q(x,y) = p(x)q(y|x) 2%



SE with manipulated data experience

e Input-output variables t = (x,y)

e Experience: dataset D = {(x*,y*)} of size N
o defines the empirical distribution

8 m(x,y)
p(xl )’) — N — [E(x*,y*)~7.) [ﬂ(x*,y*) (x) J’)]

e Define the experience function
f:=faata(x,y;D) =10gE (x*,y*)~1)[ Il(Jc”‘,y”‘) (x,y) ]
e The similarity measure 1,(b) is too restrictive. Let'’s enrich it:
o Don't have to be 0/1, we can scale it
f:= faataw(®,¥;D) =108E (¢ y) p[Wx" ¥+ L yry (3 |

o Plug faata—w into SE, keep all other configurations the same as supervised MLE,
we recover data re-weighting in the “student” step

mgmx E¢«wp [w(t™) - log pe(t™)]
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SE with manipulated data experience

e Input-output variables t = (x,y)

e Experience: dataset D = {(x*,y*)} of size N
o defines the empirical distribution

8 m(x,y)
p(xl )’) — N — [E(x*,y*)~7.) [ﬂ(x*,y*) (x) J’)]

e Define the experience function
f: — fdata(x Y D) — log E (x*,y*)~1)[ Il(Jc”‘,y”‘) (xr y) ]

e The similarity measure 1,(b) is too restrictive. Let'’s enrich it:
o Don’t have to match exactly, we can relax it
fi= fdata—aug (x,y;D) =logE (x*,y*)~2)[ Ax*y) (x,y) ]

acxy+ (X, y): assigns non-zero probability to not only the exact (x*, y*) but also other
(x,y) configurations

o Plug faata—aug into SE, keep all other configurations the same as supervised MLE,
we recover data augmentation in the “student” step max By- op, tma,- (1) log pe(t)] .




SE with actively supervised experience

e Have access to a vast pool of unlabeled data instances
e Can select instances (queries) to be labeled by an oracle (e.g., human)

e Experiences:

o u(x) measures informativeness of an instance x

= e.g., Uncertainty on x, measured by predictive entropy

o Instances + oracle labels:

f(x' Y OTaCle) — log E x*~D, y*~0racle(x") [ ﬂ(x*,y*) (x» y) ]
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SE with actively supervised experience

min — aH (q9) — BEq [ log pe (x, y)] — Eq(xy) [ flx,y) ]

f = f(x,y; Oracle) + u(x) a=1p=¢€

|

Blogpe(x,y) + f(x,y;O0racle) + u(x) } /7
o

o Teacher q(x,y) = exp{

Equivalent to active learning [e.g., Ertekin et al., 07]:
o Student Mmin —[Eq [ log pg (x, y) ] « Randomly draw a subset Dg,,p, = {x*}
g « Draw a query x* from Dg,,;, according to exp{u(x)}
« Get label y* for x* from the oracle
« Maximize log likelihood on (x*, y*)




(auxiliary) distribution q . 7 loss

<. min £(q,0)
=~ q,0 .
constrained set

Key Takeaways

s.t. q € o

e The MaxEnt perspective converts learning into a constrained
optimization problem

e The standard equation (SE):
mip — aB(q) + AD (a(0), Po () ~ Eqeo [ £ (0]

q,6
3 terms:
Uncertainty Divergence Experiences
(self-regularization) (fitness) (exogenous regularizations)
e.g., Shannon entropy e.g., Cross Entropy e.g., data examples, rules

[ J
| Teacher 11 @ Student Textbook
Uncertainty q(t) Ii "ﬁ pe(t) f(®

e Functional derivative

Fly(@) + en(@)] = Fly(a)] + ¢ /

5:(;?;) Tl(x) 4 i 0(62) 31






