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Logistics

e In-class presentation:
o Sign-up sheet to be released on Friday around 10am
o At most two presentations each class



Outline

e Contrastive learning
e Data manipulation



Contrastive learning

o Take a data example x, sample a “positive” sample x,,5 and “negative”
samples x4 in some way

e Then try fit a scoring model such that

score(x, x,0s) > score(x, Xpe,)

Credit: [CVPR 2021 Tutorial] Leave Those Nets Alone: Advances in Self-Supervised Learning 4



Contrastive learning losses: Ex 1

Learning a similarity metric discriminatively

Sample a pair of images and compute their distance:

D, == ||I .I',HQ

If positive sample: ‘ V:'? E
: 4
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If negative sample:
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X  neg

[Chopra et al., 2005; Hadsell et al., 2006]
Credit: [CVPR 2021 Tutorial] Leave Those Nets Alone: Advances in Self-Supervised Learning




Contrastive learning losses: Ex 2 - InfoNCE
e The CPC model

o c¢: context representation from history

O Xear (OF Zpip): future target
Predictions
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[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



InfoNCE loss

e Define scoring function f;, > 0
e The InfoNCE loss:

o QGiven X = { one positive sample from p(x¢4+k| ¢¢), N — 1 negative samples
from the negative sampling distribution p(x¢4x) }

Lx = —E |log fe(Tttk,Ct)

X Za:jeX fk(xjvct)_

e InfoNCE is interesting because it's effectively maximizing the mutual
information between ¢, and x;,

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



Mutual Information (MI)

e How much is our uncertainty about x reduced by knowing ¢ ?

I(z;¢) = ) _p(x,c)log pz()(w’ 2) = > p(z,c)log Pizic)

z)p p(x)
= H(x)+ H(c) — H(x,c)
= H(x) — H(x|c)

= KL(p(x,c) || p(x)p(c))

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



Minimizing InfoNCE <=> Maximzing MI

e InNfoNCE loss B fr(Ttsr,ct)
EN = —K log
X EmjeX fk(xﬁ Ct)
e The loss is optimized when p($t+k|ct)
fre(@iqn, ct) X
p($t+k)
o Proof: (elen T (51
z;lc . p(T
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Zj:l p(zjlct) Hl;éj p(z1)
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Zj:l p(x;)

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



e How does this loss maximize the mutual information?

fe(Tiqk,cCt)
ij eX fk (x.77 Ct)

£N= —]% 10g

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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e How does this loss maximize the mutual information?

Use proportionality
condition

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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[van den Oord et al.,

How does this loss maximize the mutual information?

Lx = —E |log fe(Tevk,ct)
X ijeX fk(mﬁct)
p(-'IEt-}—le)t)
opt _ P(Tt+k
L' =—Blog | s > p(e;lce)
p(Tt4r) Z;€Xneg p(x;)

i I;|C
=[Elog |1+ P(Z+1k) E P J|t
X xt+k|ct z.eX
Tj neg

“Representation Learning with Contrastive Predictive Coding”]

] Take -ve inside log
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¢ How does this loss maximize the mutual information?

_ fr(@ ey, ct)
= % llog ijeX fk(xj’ct)]

P(ﬂztiklc)t)

opt _ P\Tt+k

Ly = %IOg P(Tiyrlct) Z p(zjlct)
p(Tt4k) ;€ Xneg p(z;)

. P(Ti1k) p(zjlct)
=Elog |1+ >

P(Tt+klce) 2, € Xneg p(z;)

R~ %10g

This approximation becomes more
accurate as N increases, so it is
preferable to use large negative

samples

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



[van den Oord et al.,

¢ How does this loss maximize the mutual information?

L opt
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—§log

= gl*%log

—E
X

log
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“Representation Learning with Contrastive Predictive Coding”]
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¢ How does this loss maximize the mutual information?

xZr C
Ln = —E |log fe(@tk, ct)
X ijEX fk(xj7 ct)
p(azt+k|c)t)
opt _ P(Te4k
E @10g p($t+klct) E p(m.|ct)

p(mt—*—k) mjeXneg p(iE:))
— Elog |1+ P{&t+h) y 2 %Ict
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~Elog |1+ UGS N—1)Ep(”"j|ct)]

p(Ti1klct) T j P(xj )

[ P($t+k) ]
=Elog |1+ N —1
X & p(xisk|ct) ( )

> Elog p(Titk) N]
X | P(T4kct)

= —I(t4k, ct) +log(N),
[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]



e How does this loss maximize the mutual information?

fe(Tiir,ct)
Za)j eX fk(x.ﬁ Ct)

LN: —% log

I(xt-f-k) Ct) > log(N) — ‘CN'

[van den Oord et al., “Representation Learning with Contrastive Predictive Coding”]
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Summary so far: Contrastive learning
o Contrastive learning is a way of doing self-supervised learning

e Mutual information

I(z;c) = ) _p(x,c)log p1(9(513, C)) = _p(z,c)log Pizic)

z)p(c p(z)

= H(x)+ H(c) — H(x,c)
= H(x) + H(x|c)

= KL(p(x,c) || p(x)p(c))

o InfoNCE <& MI



Data Manipulation



Data manipulation

e Data augmentation

o Applies label-preserving transformations on original data points to expand the
data size

e Data reweighting
o Assigns an importance weight to each instance to adapt its effect on learning

e Data synthesis
o Generates entire artificial examples

e Curriculum learning
o Makes use of data instances in an order based on “difficulty”

19



Data augmentation

o Applies label-preserving transformations on original data points to
expand the data size

Load image
and label

Compute
loss

Figure credit: http://cs231n.stanford.edu/slides/2016/winter1516 _lecture11.pdf 20



Data augmentation

o Applies label-preserving transformations on original data points to
expand the data size

“Cat” \

—

Load image
and label

Compute
loss

CNN

Transform image

Figure credit: http://cs231n.stanford.edu/slides/2016/winter1516 _lecture11.pdf 21



Data augmentation for image

08 02 22 97 38 15 00 40 00 75

e Change the pixels without SR
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What the computer sees

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf 22



Data augmentation for image

1. Horizontal flips

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
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Data augmentation for image

2. Random crops/scales

Training: sample random crops / scales

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
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Data augmentation for image

2. Random crops/scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
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Data augmentation for image

2. Random crops/scales

Training: sample random crops / scales

ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
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Data augmentation for image

2. Random crops/scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch
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Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
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Data augmentation for image

3. Color jitter

Randomly jitter contrast

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
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Data augmentation for image

4. Mixup

e Training: Train on random
blends of images

e Testing: Use original images
Target label:

CNN | cat: 0.4
dog: 0.6

[Zhang et al., “mixup: Beyond Empirical Risk Minimization”, ICLR 2018]

Credit: http://cs231n.stanford.edu/slides/2019/cs231n_2019 lecture08.pdf 29



Data augmentation for image

5. Get creative!

Random mix/combinations of :
e translation

e rotation

e stretching

e shearing

e lens distortions, ...

Credit: http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
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Data augmentation for text

Methods Level Diversity Tasks Related Work
. . Kolomiyets et al. (2011), Zhang et al. (2015a),
Synonym g Low Lextclassification  y, . 50715y Miao et al. (2020),
replacement Sequence labeling Wei and Zou (2019)
T Text classification Kolomiyets et al. (2011), Gao et al. (2019)

P via LM Token Medium  Sequence labeling Kobayashi (2018), Wu et al. (2019a)
Machine translation  Fadaee et al. (2017)
Text classification .

; 3 : Iyyer et al. (2015), Xie et al. (2017)
i Low  Sequencelabeling A0 o et al. (2018), Lample et al. (2018)
deletion, swapping Machine translation Xie et al. (2020), Wei and Zou (2019)

Dialogue generation ' ’
Semantic Parsing : ;
o g Jia and Liang (2016) , Andreas (2020)
i%‘g&‘;ﬁ::ﬂf; Token High i‘;ﬂ‘;‘;‘; lri‘lt(’)‘:ilgl‘ii g Nyeetal (2020, Feng et al. (2020)
. Furrer et al. (2020) , Guo et al. (2020)
Text generation
Text classification
Machine translation  Yu et al. (2018), Xie et al. (2020)
Paraphrasing  Sentence High Question answering  Chen et al. (2019), He et al. (2020)
Dialogue generation  Chen et al. (2020c), Cai et al. (2020)
Text summarization
Conditional Sent Hich Text classification Anaby-Tavor et al. (2020), Kumar et al. (2020)
generation SHISICs g Question answering  Zhang and Bansal (2019), Yang et al. (2020)

Chen et al., “An Empirical Survey of Data Augmentation for Limited Data Learning in NLP”
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Data augmentation for text

Text classification

Miyato et al. (2017), Ebrahimi et al. (2018b)

Wh“et’tbol’i gOkf“ °f " Medium  Sequence labeling  Ebrahimi et al. (2018a), Cheng et al. (2019),
anas L Machine translation  Chen et al. (2020d)
Text classification
Sequence labeling Jia and Liang (2017)
Black-box  Token or Medium Machine translation  Belinkov and Bisk (2017), Zhao et al. (2017)
attack  Sentence Textual entailment Ribeiro et al. (2018), McCoy et al. (2019)
Dialogue generation Min et al. (2020), Tan et al. (2020)
Text Summarization
Hiddei-s6558  "TokeR.-6x Text classification Hsu et al. (2017), Hsu et al. (2018)
st :«ﬂion Senitenes High Sequence labeling Wau et al. (2019b), Chen et al. (2021)
p Speech recognition =~ Malandrakis et al. (2019), Shen et al. (2020)
Text classification Miao et al. (2020), Chen et al. (2020c¢)
Interpolation Token High Sequence labeling Cheng et al. (2020b), Chen et al. (2020a)

Machine translation

Guo et al. (2020)

Chen et al., “An Empirical Survey of Data Augmentation for Limited Data Learning in NLP”
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Data reweighting

e Assigns an importance weight to each instance to adapt its effect on
learning
o Weighting by inverse class frequency
o Weighting by the magnitude of loss

min — By, p | ¢; log po (x;) |
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Automatically learn the data weights

e Can we learn ¢; automatically?

min — Ey, p [ ¢; log po (x;) |

e Training set D, a held-out "validation” set D,

e Intuition: after training the model 6 on the weighted data, the model
gets better performance on the validation set

0’ = argénin —Ey~p | ¢ log e (x;) |

o @' is afunction of ¢, i.e., 8’ = 8'(¢p)

¢’ = argming — [Ey . p, [108 Por(p) (Xi) ]

Ren et al., “Learning to reweight examples for robust deep learning”
Hu et al., “Learning Data Manipulation for Augmentation and Weighting” 34



Automatically learn the data weights
LO.$)  LO$)

Model K
0-1---->6'(9)

Manipulation

¢-1—> ¢’

{ Train Data D J [ Val Data DV ]

Hu et al., “Learning Data Manipulation for Augmentation and Weighting”




Apply the same algorithm to learn data augmentation

e Augmentation function x" = g4 (x). Can we learn ¢ automatically?

mein — Ey.~p [10g Pe (9o (Xi)) ]

e Training set D, a held-out "validation” set D,

e Intuition: after training the model 8 on the augmented data, the model
gets better performance on the validation set

' = arg;nin — Ey~p [108 Po (g (xi)) ]
o 0" is afunction of ¢, i.e., 8' = 6'(¢)

¢’ = argming — [Ey . p, [108 Por(p) (Xi) ]

Hu et al., “Learning Data Manipulation for Augmentation and Weighting” 36



Curriculum learning

NOT MY FIRST JIGSAW PUZZLE

Credit: Weinshall, “ON THE POWER OF CURRICULUM LEARNING IN TRAINING DEEP NETWORKS37



Curriculum learning

MY FIRST JIGSAW PUZZLE

Credit: Weinshall, “ON THE POWER OF CURRICULUM LEARNING IN TRAINING DEEP NETWORKS3s



Curriculum learning

LEARNING COGNITIVE TASKS (CURRICULUM):

Credit: Weinshall, “ON THE POWER OF CURRICULUM LEARNING IN TRAINING DEEP NETWORKS39



Curriculum learning

e Standard supervised learning:
o Data is sampled randomly

e Curriculum learning:

o Instead of randomly selecting training points, select easier examples first,
slowly exposing the more difficult examples from easiest to the most difficult

o Key: definition of “difficulty”

Credit: Weinshall, “ON THE POWER OF CURRICULUM LEARNING IN TRAINING DEEP NETWORKS40



Curriculum learning

o (Bengio et al, 2009): setup of paradigm, object recognition of
geometric shapes using a perceptron; difficulty is determined
by user from geometric shape

«"Ee

o (Zaremba 2014): LSTMs used to evaluate short computer
programs; difficulty is automatically evaluated from data —
nesting level of program.

o (Amodei et al, 2016): End-to-end speech recognition in
english and mandarin; difficulty is automatically evaluated
from utterance length.

o (Jesson et al, 2017): deep learning segmentation and

detection; human teacher (user/programmer) determins
_ difficulty. _
Credit: We _ WORKS41



Key Takeaways

o Contrastive learning is a way of doing self-supervised learning

e Mutual information p(z,c)

ZP =) lo8  p(e)

e Data manipulation
o Augmentation
o Reweighting
o Synthesis (later)
o Curriculum learning

42






