DSC190: Machine Learning with Few Labels

Variational Autoencoders Self-supervised Learning

Zhiting Hu Lecture 5, October 7, 2021

HALICIOĞLU DATA SCIENCE INSTITUTE

Logistics

• Homework 1 released today

Outline

- Variational inference (cont'd)
 - Variational autoencoders (VAEs)

• Self-supervised learning

VAEs are a combination of the following ideas:

- Variational Inference
 - ELBO
- Variational distribution parametrized as neural networks

• Reparameterization trick

- Model $p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})$
 - $p_{\theta}(\boldsymbol{x}|\boldsymbol{z})$: a.k.a., generative model, generator, (probabilistic) decoder, ...
 - $\circ p(\mathbf{z})$: prior, e.g., Gaussian
- Assume variational distribution $q_{\phi}(\mathbf{z}|\mathbf{x})$
 - E.g., a Gaussian distribution parameterized as **deep neural networks**
 - a.k.a, recognition model, inference network, (probabilistic) encoder, ...

• ELBO:

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{Z}|\boldsymbol{X})} [\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})] + \mathbb{H}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}))$$

$$= \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{Z}|\boldsymbol{X})} [\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})] - \mathbb{KL}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}))$$

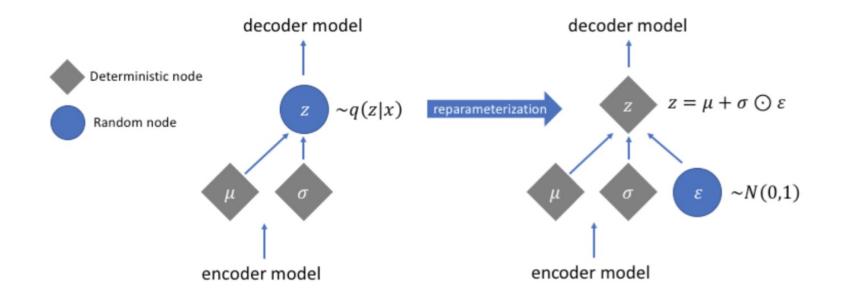
$$\downarrow$$
Reconstruction
Divergence from prior
(KL divergence between two Guassians
has an analytic form)

• ELBO:

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = \mathrm{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})] + \mathrm{H}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}))$$

$$= \mathrm{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})] - \mathrm{KL}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}))$$

- Reparameterization:
 - $[\boldsymbol{\mu}; \boldsymbol{\sigma}] = f_{\boldsymbol{\phi}}(\boldsymbol{x})$ (a neural network)
 - $\circ \quad z = \mu + \sigma \odot \epsilon, \quad \epsilon \sim N(0, 1)$



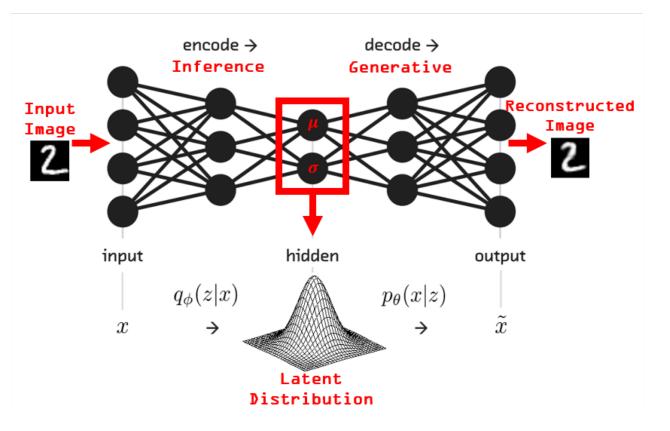
• ELBO:

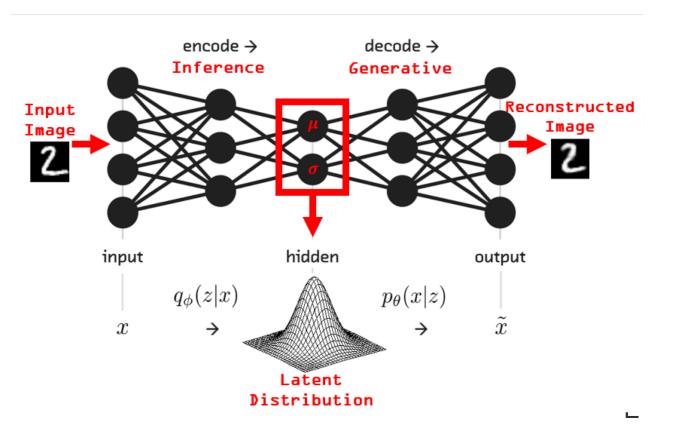
$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = E_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z})] + H(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}))$$

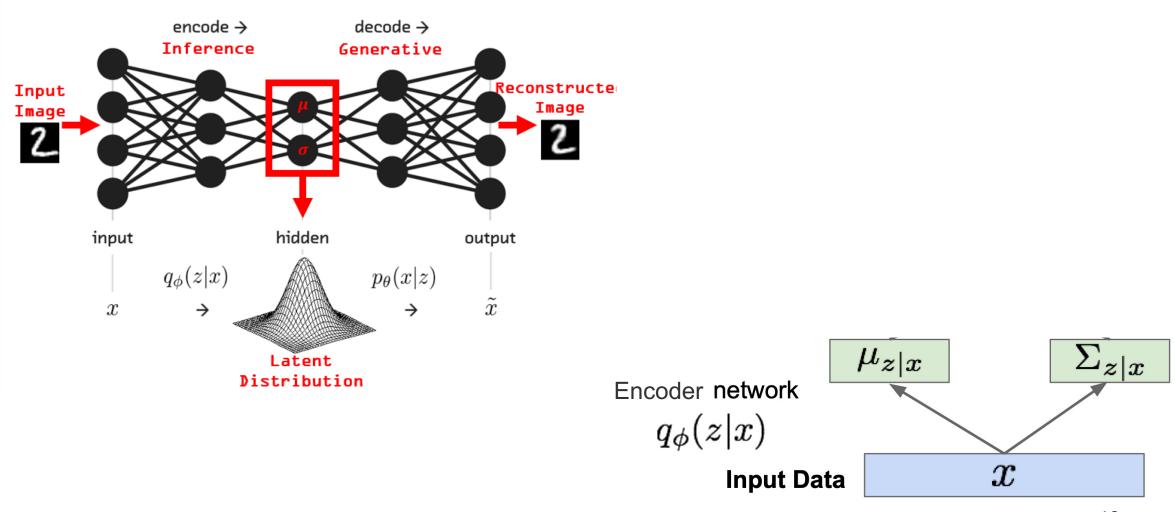
$$= E_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})] - KL(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z}))$$

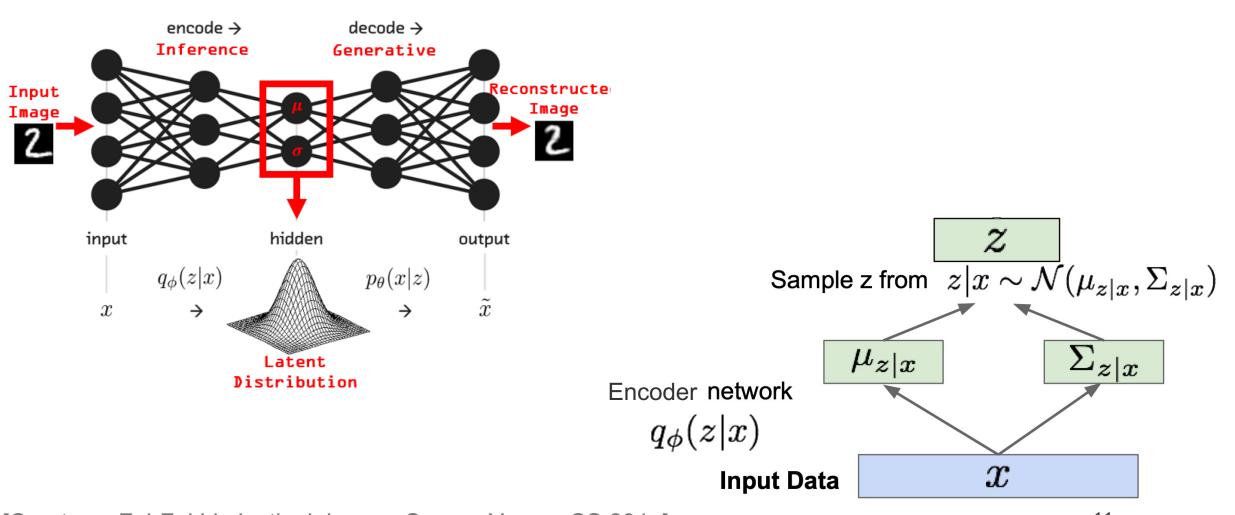
- Reparameterization:
 - $[\boldsymbol{\mu}; \boldsymbol{\sigma}] = f_{\boldsymbol{\phi}}(\boldsymbol{x})$ (a neural network)
 - $\circ \quad z = \mu + \sigma \odot \epsilon, \quad \epsilon \sim N(0, 1)$

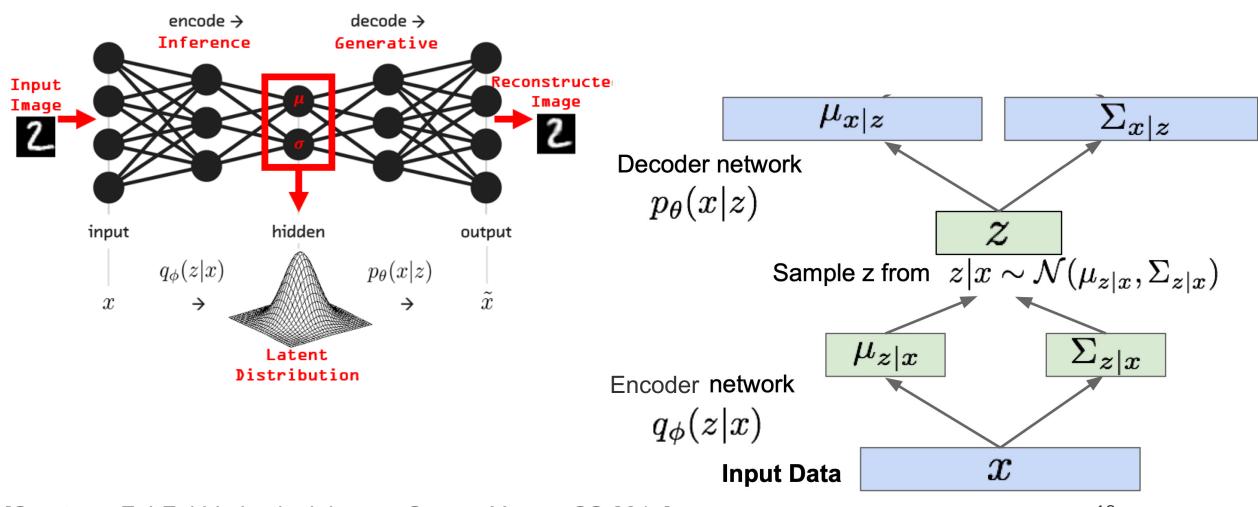
$$\nabla_{\boldsymbol{\phi}} \mathcal{L} = \mathbb{E}_{\epsilon \sim N(\boldsymbol{0}, \boldsymbol{1})} \left[\nabla_{\boldsymbol{z}} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}) - \log q_{\boldsymbol{\phi}}(\boldsymbol{z} | \boldsymbol{x}) \right] \nabla_{\boldsymbol{\phi}} \boldsymbol{z}(\boldsymbol{\epsilon}, \boldsymbol{\phi}) \right]$$
$$\nabla_{\boldsymbol{\theta}} \mathcal{L} = \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z} | \boldsymbol{x})} \left[\nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{z}) \right] - \mathcal{H}(q_{\boldsymbol{\phi}}(\boldsymbol{z} | \boldsymbol{x}))$$

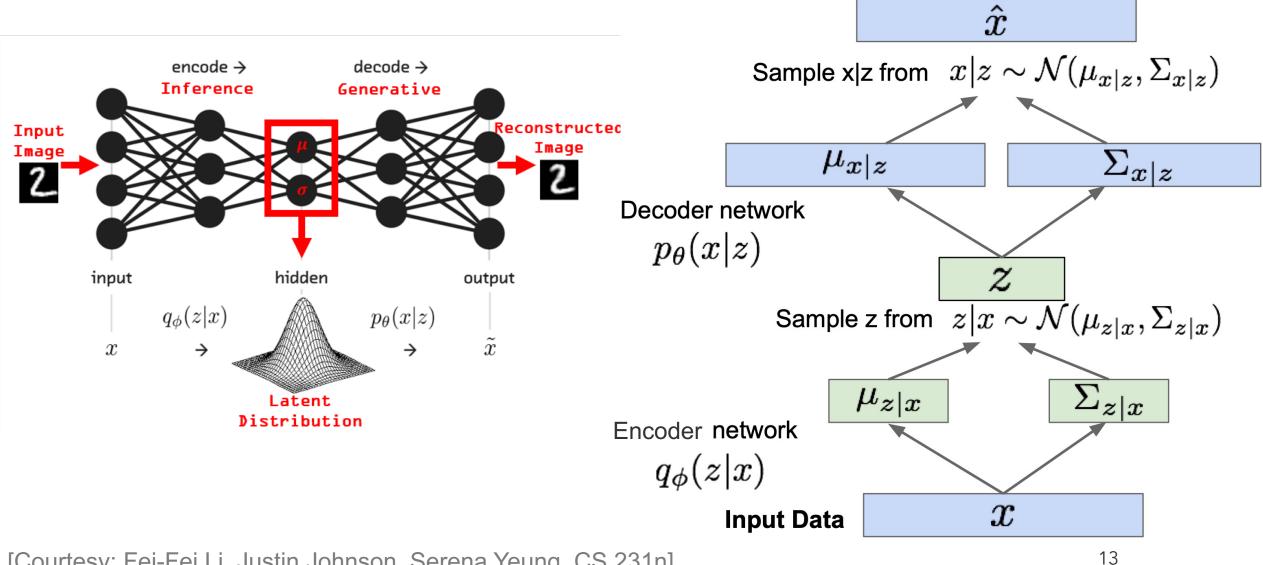






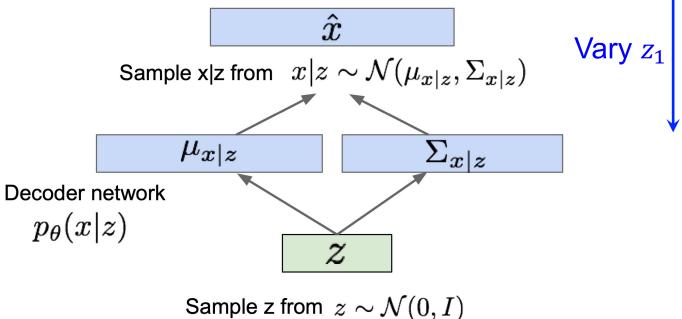






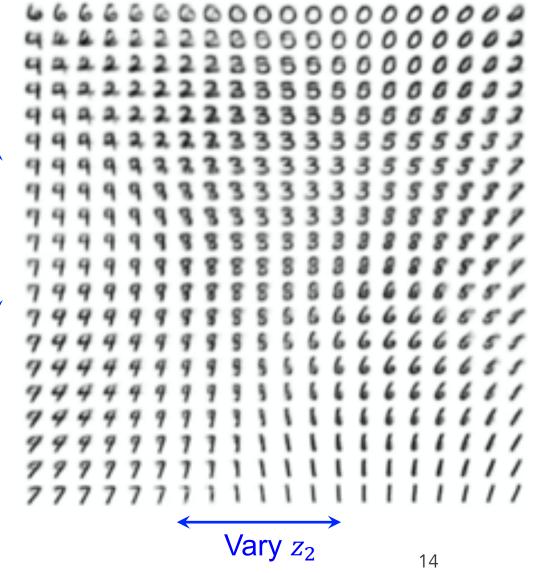
Generating samples:

• Use decoder network. Now sample z from prior!



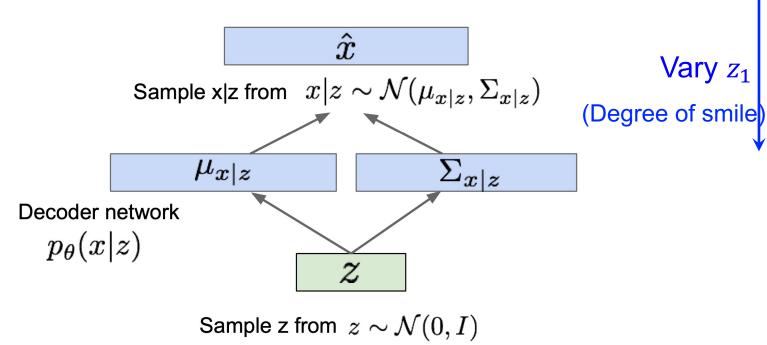
[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Data manifold for 2-d z



Generating samples:

• Use decoder network. Now sample z from prior!



[Courtesy: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n]

Data manifold for 2-d z

Vary z_2 (head pose)

Example: VAEs for text

• Latent code interpolation and sentences generation from VAEs [Bowman et al., 2015].

"i want to talk to you . "
"i want to be with you . "
"i do n't want to be with you . "
i do n't want to be with you .
she did n't want to be with him .

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two SGVB estimators in section 2.3 can be used. We use settings M = 100 and L = 1 in experiments.

 $\boldsymbol{\theta}, \boldsymbol{\phi} \leftarrow \text{Initialize parameters}$

repeat

 $\mathbf{X}^M \leftarrow \text{Random minibatch of } M \text{ datapoints (drawn from full dataset)}$

 $\boldsymbol{\epsilon} \leftarrow \text{Random samples from noise distribution } p(\boldsymbol{\epsilon})$

 $\mathbf{g} \leftarrow \nabla_{\boldsymbol{\theta}, \boldsymbol{\phi}} \widetilde{\mathcal{L}}^{M}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{X}^{M}, \boldsymbol{\epsilon})$ (Gradients of minibatch estimator (8))

 $\theta, \phi \leftarrow \text{Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])}$ until convergence of parameters (θ, ϕ)

return $\boldsymbol{\theta}, \boldsymbol{\phi}$

[Kingma & Welling, 2014]

Note: Amortized Variational Inference

- Variational distribution as an inference model $q_{\phi}(z|x)$ with parameters ϕ (which was traditionally factored over samples)
- Amortize the cost of inference by learning a **single** datadependent inference model
- The trained inference model can be used for quick inference on new data

Variational Auto-encoders: Summary

- A combination of the following ideas:
 - Variational Inference: ELBO
 - Variational distribution parametrized as neural networks
 - Reparameterization trick

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}) = [\log p_{\theta}(\boldsymbol{x} | \boldsymbol{z})] - \mathrm{KL}(q_{\phi}(\boldsymbol{z} | \boldsymbol{x}) || p(\boldsymbol{z}))$$

Reconstruction

Divergence from prior

• Pros:

(Razavi et al., 2019)

- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

• Cons:

- Samples blurrier and lower quality compared to GANs
- Tend to collapse on text data

Key Takeaways

- Stochastic VI
- Computing Gradients of Expectations $\mathcal{L} = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[f_{\lambda}(\mathbf{z})]$
 - Score gradient

$$\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{q_{\lambda}(\boldsymbol{z})}[f_{\lambda}(\boldsymbol{z}) \nabla_{\lambda} \log q_{\theta}(\boldsymbol{z}) + \nabla_{\lambda} f_{\lambda}(\boldsymbol{z})]$$

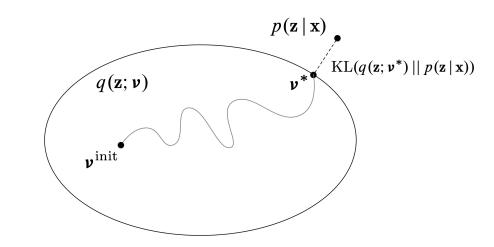
• Reparameterization gradient

$$\nabla_{\lambda} \mathcal{L} = \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{s}(\boldsymbol{\epsilon})} [\nabla_{\boldsymbol{z}} f_{\lambda}(\boldsymbol{z}) \, \nabla_{\lambda} t(\boldsymbol{\epsilon}, \lambda)]$$

- Black-box VI
- Variational autoencoders (VAEs)

Summary so far: Supervised Learning, Unsupervised Learning

- Supervised Learning
 - Maximum likelihood estimation (MLE)
 - Duality between MLE and Maximum Entropy Principle
- Unsupervised learning
 - Maximum likelihood estimation (MLE) with latent variables
 - Marginal log-likelihood
 - $\circ~$ EM algorithm for MLE
 - ELBO
 - Variational Inference
 - ELBO
 - Variational distributions



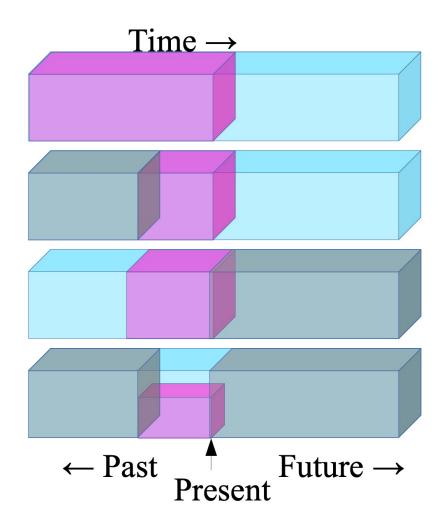
Self-Supervised Learning

Self-Supervised Learning

- Given an observed data instance *t*
- One could derive various supervision signals based on the structure of the data
- By applying a "split" function that artificially partition \boldsymbol{t} into two parts
 - $\circ (x, y) = split(t)$
 - sometimes split in a stochastic way
- Treat **x** as the input and **y** as the output
- Train a model $p_{\theta}(\mathbf{y}|\mathbf{x})$

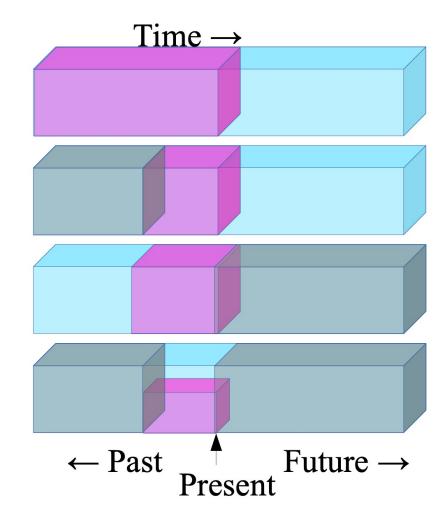
Self-Supervised Learning: Examples

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.



Self-Supervised Learning: Examples

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.



Self-Supervised Learning: Motivation (I)

Our brains do this all the time

- Filling in the visual field at the retinal blind spot
- Filling in occluded images, missing segments in speech
- Predicting the state of the world from partial (textual) descriptions
- Predicting the consequences of our actions
- Predicting the sequence of actions leading to a result

Predicting any part of the past, present or future percepts from whatever information is available.

Self-Supervised Learning: Motivation (I)

- Successfully learning to predict everything from everything else would result in the accumulation of lots of background knowledge about how the world works
- The model is forced to learn what we really care about, e.g. a semantic representation, in order to solve the prediction problem

[Courtesy: Lecun "Self-supervised Learning"] [Courtesy: Zisserman "Self-supervised Learning"]

Self-Supervised Learning: Motivation (II)

- The machine predicts any part of its input from any observed part
 - A lot of supervision signals in each data instance
- Untapped/availability of vast numbers of unlabeled text/images/videos..
 - Facebook: one billion images uploaded per day
 - 300 hours of video are uploaded to YouTube every minute

Self-Supervised Learning (SSL): Examples

- SSL from text
- SSL from images
- SSL from videos

Self-Supervised Learning from Text

Examples:

- Language models
- Learning contextual text representations

Language Models

- Calculates the probability of a sentence:
 - Sentence:

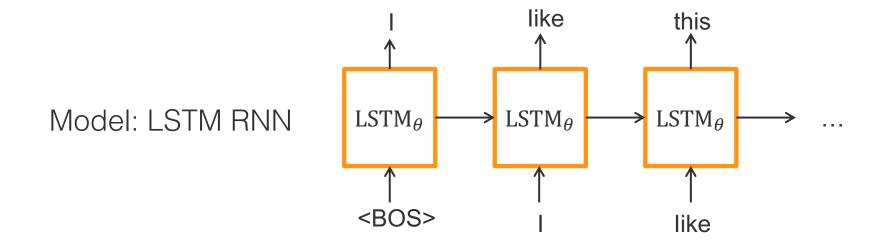
$$\boldsymbol{y} = (y_1, y_2, \dots, y_T)$$

$$p_{\theta}(\boldsymbol{y}) = \prod_{t=1}^{T} p_{\theta}(y_t \mid \boldsymbol{y}_{1:t-1})$$

Example:

(I, like, this, ...)

$$\cdots p_{\theta} (like \mid I) p_{\theta}(this \mid I, like) \cdots$$



Language Models

- Calculates the probability of a sentence:
 - Sentence:

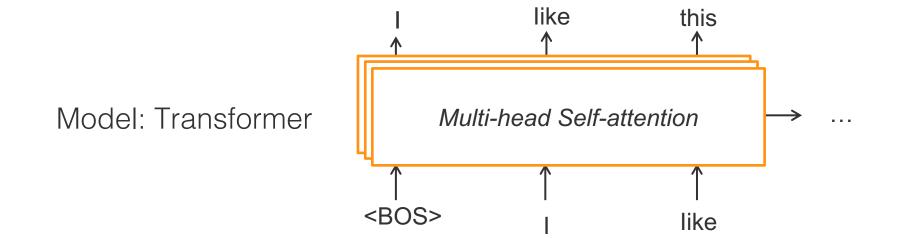
$$\boldsymbol{y} = (y_1, y_2, \dots, y_T)$$

$$p_{\theta}(\boldsymbol{y}) = \prod_{t=1}^{T} p_{\theta}(y_t \mid \boldsymbol{y}_{1:t-1})$$

Example:

(I, like, this, ...)

$$\cdots p_{\theta} (like \mid I) p_{\theta}(this \mid I, like) \cdots$$



Language Models: Training

- Given data example y^*
- Minimizes negative log-likelihood of the data

$$\min_{\theta} \mathcal{L}_{\text{MLE}} = -\log p_{\theta}(\boldsymbol{y}^*) = -\prod_{t=1}^{T} p_{\theta}(\boldsymbol{y}^*_t \mid \boldsymbol{y}^*_{1:t-1})$$

- Next word prediction
- Inference: teacher-forcing decoding
 - For every step t, feed in the previous ground-truth tokens $y_{1:t-1}^*$ to decode next step

Language Models: GPT3

- A Transformer-based LM with 125M to 175B parameters
- Trained on massive text data

Dataset	# Tokens (Billions)
Total	499
Common Crawl (filtered by quality)	410
WebText2	19
Books1	12
Books2	55
Wikipedia	3

Brown et al., 2020 "Language Models Are Few-Shot Learners"

[Table from https://lambdalabs.com/blog/demystifying-gpt-3/]

Language Models: GPT3

• Generation

Title: United Methodists Agree to Historic Split Subtitle: Those who oppose gay marriage will form their own denomination Article: After two days of intense debate, the United Methodist Church has agreed to a historic split - one that is expected to end in the creation of a new denomination, one that will be "theologically and socially conservative," according to The Washington Post. The majority of delegates attending the church's annual General Conference in May voted to strengthen a ban on the ordination of LGBTQ clergy and to write new rules that will "discipline" clergy who officiate at same-sex weddings. But those who opposed these measures have a new plan: They say they will form a separate denomination by 2020, calling their church the Christian Methodist denomination.

The Post notes that the denomination, which claims 12.5 million members, was in the early 20th century the "largest Protestant denomination in the U.S.," but that it has been shrinking in recent decades. The new split will be the second in the church's history. The first occurred in 1968, when roughly 10 percent of the denomination left to form the Evangelical United Brethren Church. The Post notes that the proposed split "comes at a critical time for the church, which has been losing members for years," which has been "pushed toward the brink of a schism over the role of LGBTQ people in the church." Gay marriage is not the only issue that has divided the church. In 2016, the denomination was split over ordination of transgender clergy, with the North Pacific regional conference voting to ban them from serving as clergy, and the South Pacific regional conference voting to allow them.

Figure 3.14: The GPT-3 generated news article that humans had the greatest difficulty distinguishing from a human written article (accuracy: 12%).

Language Models: GPT3

• Few-shot prediction

Prompts in Red. GPT3 responses in Blue

Q. How do you draw a bicycle? A. You draw a bicycle with two circles connected by a line.

Q. How do you draw a ball? A. You draw a ball with one circle.

Q. How do you draw a house? A. You draw a house with a trapezium on top of a square.

Q. How do you draw a rabbit?

A. You draw a rabbit with four circles: one large circle for the head, a small one for the nose, a large circle for the body, and two tiny circles for the feet.

Q. How do you draw a snail?

A. You draw a snail with six circles: one large circle for the shell, two small circles for the antennae, one large circle for the head, one small circle for the tail, and a small circle for the mouth.

Q. How do you draw a monkey?

A. You draw a monkey with three circles: one large circle for the head, a small circle for the nose, and a medium-sized circle for the body.

Q. How do you draw a person?

A. You draw a person with three circles: one large circle for the head, a medium-sized circle for the body, and a small circle for the feet.

Gpt-3 (OpenAl)

I am an AI created by OpenAI. How can I help you today?

Language Models: GPT3

• Weakness

I'd like to book an appointment with Dr Anne-Laure Rousseau.

Gpt-3 (OpenAl)

I have found an opening on Monday at 9 a.m. Would this work for you?

Thank you, do you have something in the afternoon but not after 6 p.m?

Gpt-3 (OpenAl)

I believe that this is the only available time. Is this acceptable to you?

No, unfortunately

Gpt-3 (OpenAl)

I am sorry to hear that. Could I suggest the day after tomorrow, or an evening appointment?

The day after tomorrow is good, what time?

This Thursday at 7 p.m works for me

But I'm not available after 6 p.m.

[Credit: Nabla]

Self-Supervised Learning from Text

Examples:

- Language models
- Learning contextual text representations

- Conventional word embedding:
 - Word2vec, Glove
 - A pre-trained matrix, each row is an embedding vector of a word

2 <u></u>	0	1	2	3	4	5	6	7	8	9	•
fox	-0.348680	-0.077720	0.177750	-0.094953	-0.452890	0.237790	0.209440	0.037886	0.035064	0.899010	
ham	-0.773320	-0.282540	0.580760	0.841480	0.258540	0.585210	-0.021890	-0.463680	0.139070	0.658720	-
brown	-0.374120	-0.076264	0.109260	0.186620	0.029943	0.182700	-0.631980	0.133060	-0.128980	0.603430	
beautiful	0.171200	0.534390	-0.348540	-0.097234	0.101800	-0.170860	0.295650	-0.041816	-0.516550	2.117200	
jumps	-0.334840	0.215990	-0.350440	-0.260020	0.411070	0.154010	-0.386110	0.206380	0.386700	1.460500	
eggs	-0.417810	-0.035192	-0.126150	-0.215930	-0.669740	0.513250	-0.797090	-0.068611	0.634660	1.256300	
beans	-0.423290	-0.264500	0.200870	0.082187	0.066944	1.027600	-0.989140	-0.259950	0.145960	0.766450	
sky	0.312550	-0.303080	0.019587	-0.354940	0.100180	-0.141530	-0.514270	0.886110	-0.530540	1.556600	
bacon	-0.430730	-0.016025	0.484620	0.101390	-0.299200	0.761820	-0.353130	-0.325290	0.156730	0.873210	
breakfast	0.073378	0.227670	0.208420	-0.456790	-0.078219	0.601960	-0.024494	-0.467980	0.054627	2.283700	
toast	0.130740	-0.193730	0.253270	0.090102	-0.272580	-0.030571	0.096945	-0.115060	0.484000	0.848380	
today	-0.156570	0.594890	-0.031445	-0.077586	0.278630	-0.509210	-0.066350	-0.081890	-0.047986	2.803600	
blue	0.129450	0.036518	0.032298	-0.060034	0.399840	-0.103020	-0.507880	0.076630	-0.422920	0.815730	
green	-0.072368	0.233200	0.137260	-0.156630	0.248440	0.349870	-0.241700	-0.091426	-0.530150	1.341300	
kings	0.259230	-0.854690	0.360010	-0.642000	0.568530	-0.321420	0.173250	0.133030	-0.089720	1.528600	
dog	-0.057120	0.052685	0.003026	-0.048517	0.007043	0.041856	-0.024704	-0.039783	0.009614	0.308416	
sausages	-0.174290	-0.064869	-0.046976	0.287420	-0.128150	0.647630	0.056315	-0.240440	-0.025094	0.502220	
lazy	-0.353320	-0.299710	-0.176230	-0.321940	-0.385640	0.586110	0.411160	-0.418680	0.073093	1.486500	
love	0.139490	0.534530	-0.252470	-0.125650	0.048748	0.152440	0.199060	-0.065970	0.128830	2.055900	
quick	-0.445630	0.191510	-0.249210	0.465900	0.161950	0.212780	-0.046480	0.021170	0.417660	1.686900	

- Conventional word embedding:
 - Word2vec, Glove
 - A pre-trained **matrix**, each Ο row is an embedding vector of a word

English Wikipedia Corpus

The Annual Reminder continued through July 4, 1969. This final Annual Reminder took place less than a week after the June 28 Stonewall riots, in which the patrons of the Stonewall Inn, a gay bar in Greenwich Village, fought against police who raided the bar. Rodwell received several telephone calls threatening him and the other New York participants, but he was able to arrange for police protection for the chartered bus all the way to Philadelphia. About 45 people participated, including the deputy mayor of Philadelphia and his wife. The dress code was still in effect at the Reminder, but two women from the New York contingent broke from the single-file picket line and held hands. When Kameny tried to break them apart, Rodwell furiously denounced him to onlooking members of the press.

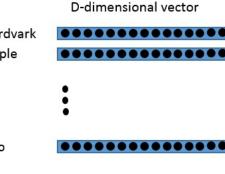
Following the 1969 Annual Reminder, there was a sense, particularly among the younger and more radical participants, that the time for silent picketing had passed. Dissent and dissatisfaction had begun to take new and more emphatic forms in society." The conference passed a resolution drafted by Rodwell, his partner Fred Sargeant, Broidy and Linda Rhodes to move the demonstration from July 4 in Philadelphia to the last weekend in June in New York City, as well as proposing to "other organizations throughout the country... suggesting that they hold parallel demonstrations on that day" to

commemorate the Stonewall riot.

[Image source: Va

	aardvar
Word2Vec	apple
	200

Embedding Matrix

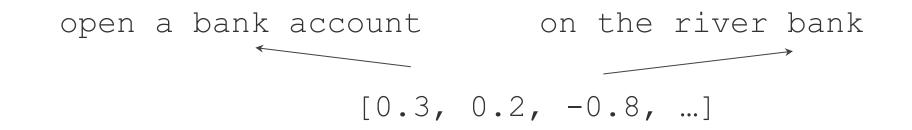


-0.7	97090	-0.068611	0.634660	1.256300	
-0.9	89140	-0.259950	0.145960	0.766450	
-0.5	14270	0.886110	-0.530540	1.556600	
-0.3	53130	-0.325290	0.156730	0.873210	5
-0.0	24494	-0.467980	0.054627	2.283700	
0.0	03945	-0.115060	0.484000	0.848380	3
	3350	-0.081890	-0.047986	2.803600	3
	7880	0.076630	-0.422920	0.815730	1
	700	-0.091426	-0.530150	1.341300	
	3250	0.133030	-0.089720	1.528600	
	1704	-0.039783	0.009614	0.308416	
	5315	-0.240440	-0.025094	0.502220	
	160	-0.418680	0.073093	1.486500	
	0060	-0.065970	0.128830	2.055900	
	5480	0.021170	0.417660	1.686900	

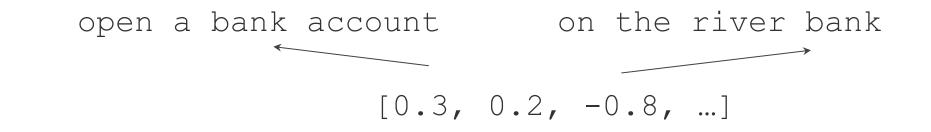
9

0 2 3 5 fox -0.348680 -0.094953 -0.452890 0.035064 0.899010 -0.077720 0.177750 0.237790 0.209440 0.037886 ham -0.773320-0.2825400.580760 0.841480 0.258540 0.585210 -0.021890-0.4636800.139070 0.658720 -0.374120-0.0762640.109260 -0.6319800.133060 -0.1289800.603430 0.186620 0.029943 0.182700 brown 0.171200 beautiful 0.534390 -0.348540-0.0972340.101800 -0.170860 0.295650 -0.041816 -0.516550 2.117200 -0.334840 0.215990 -0.350440-0.260020 0.411070 0.154010 -0.3861100.206380 0.386700 1.460500 jumps 0.513250 -0.417810 -0.215930eggs -0.035192 -0.126150 -0.669740-0.423290-0.2645000.200870 0.082187 0.066944 1.027600 beans -0.3030800.019587 -0.3549400.100180 -0.141530 0.312550 sky 0.484620 -0.430730-0.016025 0.101390 -0.2992000.761820 bacon 0.601960 breakfast 0.073378 0.227670 0.208420 -0.456790-0.078219. A AFAA70 0.070500 - ----

• **Problem**: word embeddings are applied in a context free manner



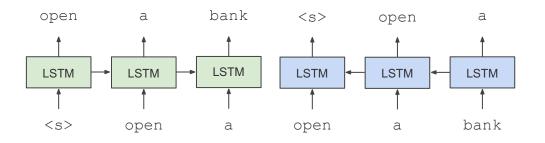
• **Problem**: word embeddings are applied in a context free manner

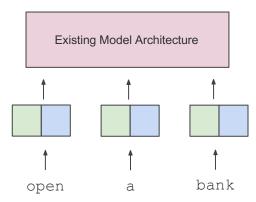


• Solution: Train contextual representations on text corpus

Contextual Representations

 ELMo: Deep Contextual Word Embeddings, Al2 & University of Washington, 2017





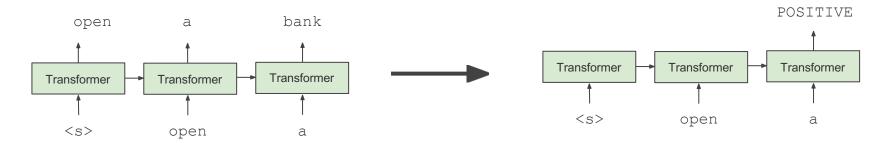
Courtesy: Devlin 2019

Contextual Representations

• Improving Language Understanding by Generative Pre-Training, OpenAI, 2018

Train Deep (12-layer) Transformer LM

Fine-tune on Classification Task

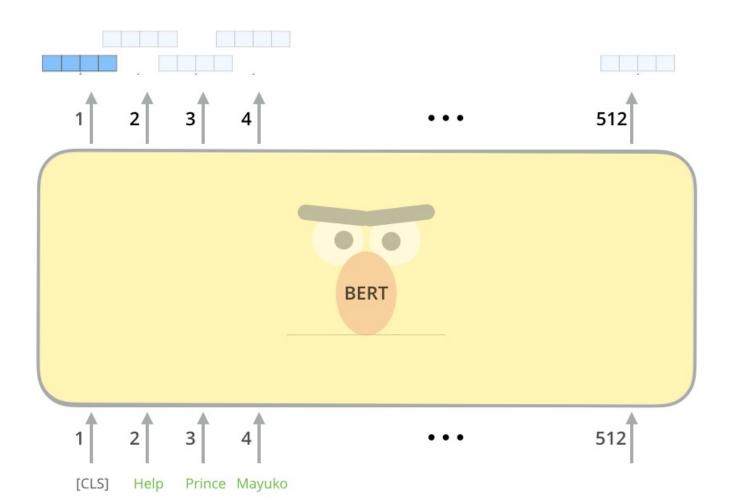


Problem with Previous Methods

• **Problem**: Language models only use left context *or* right context, but language understanding is bidirectional.

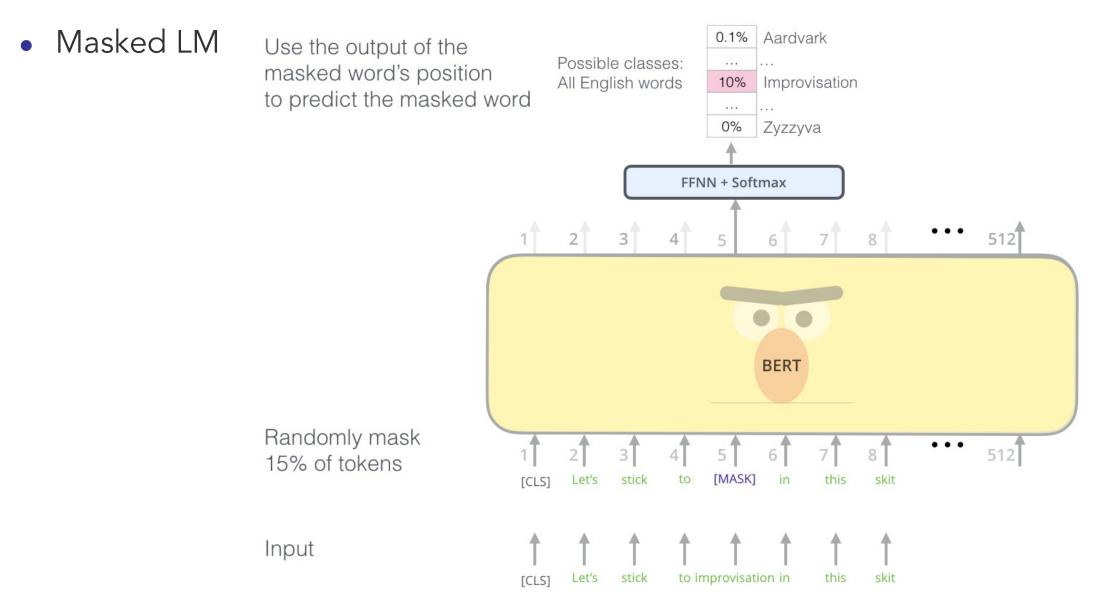
BERT

• BERT: A bidirectional model to extract contextual word embedding



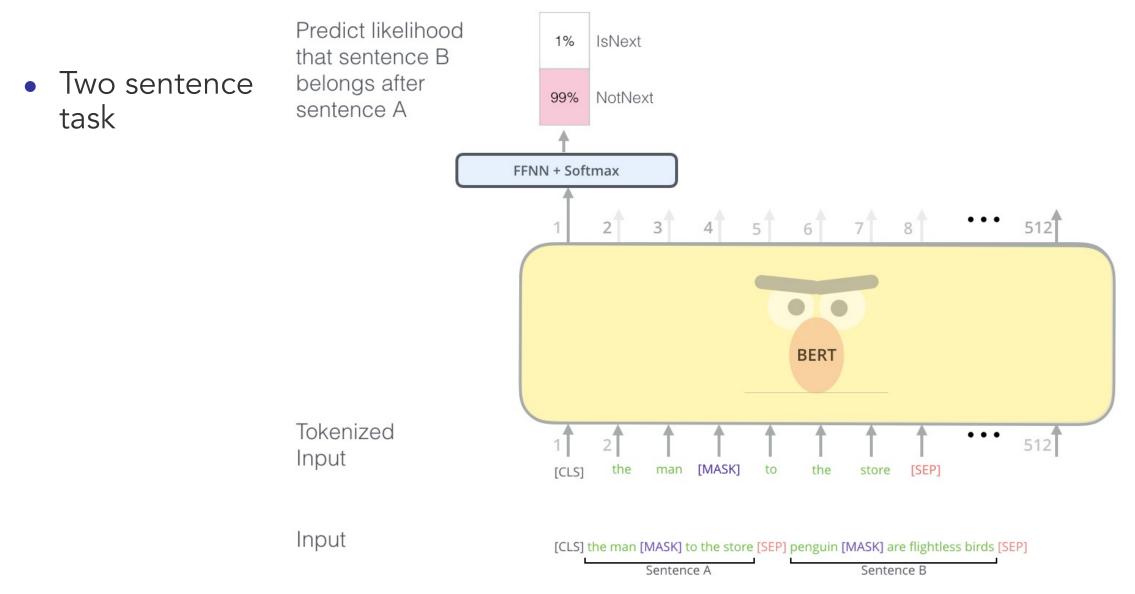
- Dataset:
 - Wikipedia (2.5B words) + a collection of free ebooks (800M words)

- Dataset:
 - Wikipedia (2.5B words) + a collection of free ebooks (800M words)
- Training procedure
 - masked language model (masked LM)
 - Masks some percent of words from the input and has to reconstruct those words from context



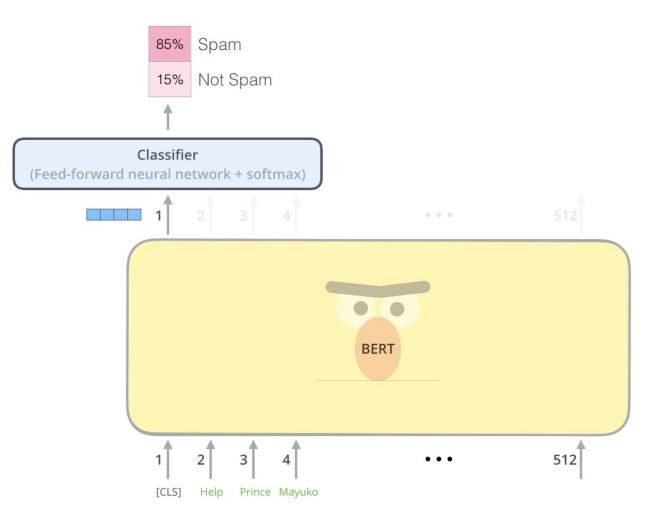
- Masked LM
- 15% masking:
 - Too little masking: Too expensive to train (few supervision signals per example)
 - Too much masking: Not enough context
- Problem: Mask token never seen at fine-tuning
- Solution: don't replace with [MASK] 100% of the time. Instead:
- 80% of the time, replace with [MASK]
 - \circ went to the store \rightarrow went to the [MASK]
- 10% of the time, replace random word
 - \circ went to the store \rightarrow went to the running
- 10% of the time, keep same
 - \circ went to the store \rightarrow went to the store

- Dataset:
 - Wikipedia (2.5B words) + a collection of free ebooks (800M words)
- Training procedure
 - masked language model (masked LM)
 - Masks some percent of words from the input and has to reconstruct those words from context
 - Two-sentence task
 - To understand relationships between sentences
 - Concatenate two sentences A and B and predict whether B actually comes after A in the original text

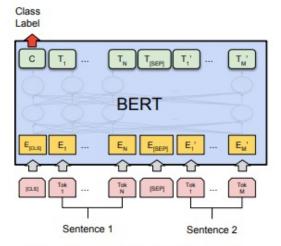


BERT: Downstream Fine-tuning

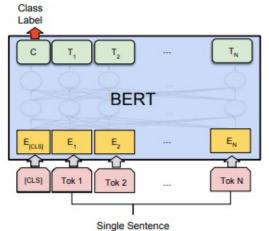
• Use BERT for sentence classification



BERT: Downstream Fine-tuning

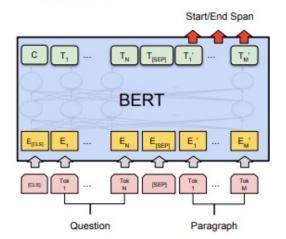


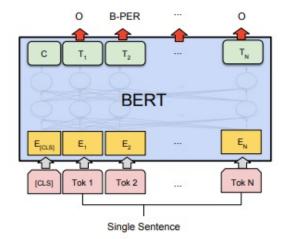
(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



olingie contenee

(b) Single Sentence Classification Tasks: SST-2, CoLA





(c) Question Answering Tasks: SQuAD v1.1 (d) Single Sentence Tagging Tasks: CoNLL-2003 NER

BERT Results

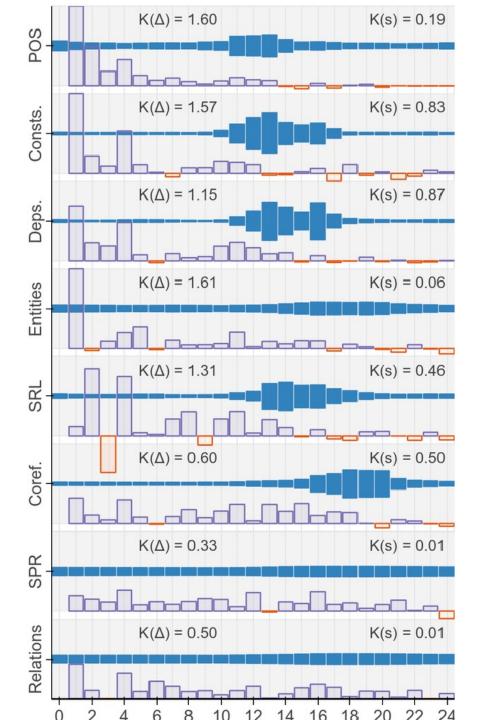
Huge improvements over SOTA on 12 NLP task

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. OpenAI GPT = (L=12, H=768, A=12); BERT_{BASE} = (L=12, H=768, A=12); BERT_{LARGE} = (L=24, H=1024, A=16). BERT and OpenAI GPT are single-model, single task. All results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.com/language-unsupervised/.

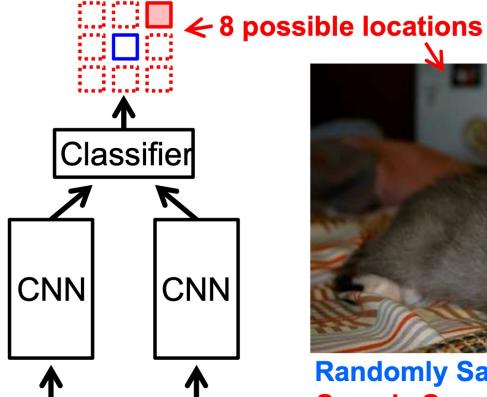
Analysis

• BERT Rediscovers the Classical NLP Pipeline. Tenney et al., 2019



SSL from Images, EX (I): relative positioning

Train network to predict relative position of two regions in the same image

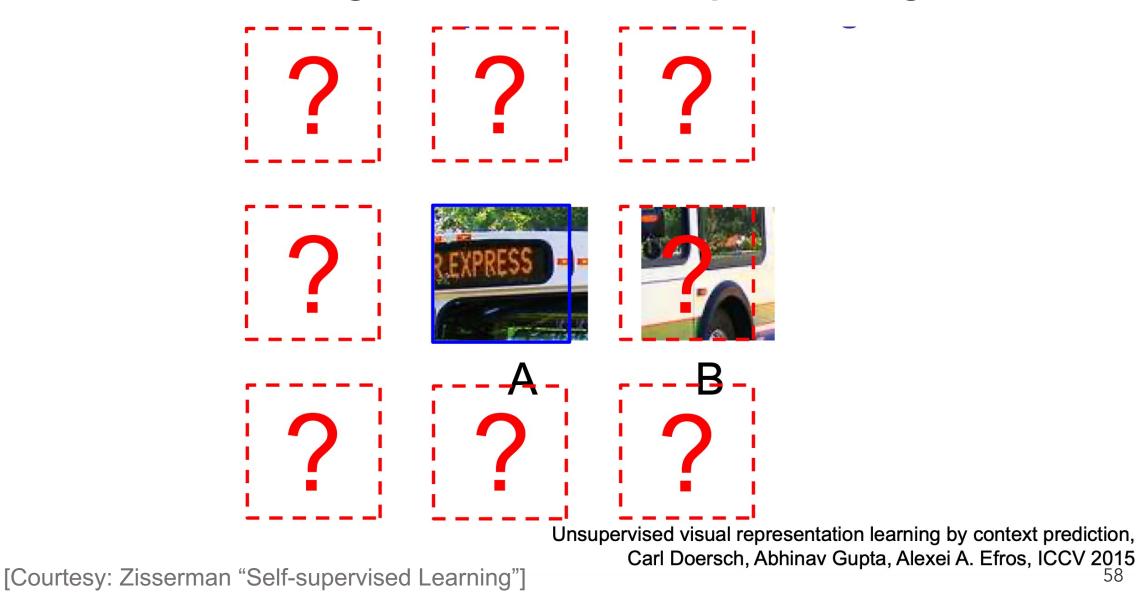


Randomly Sample Patch Sample Second Patch

Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015

[Courtesy: Zisserman "Self-supervised Learning"]

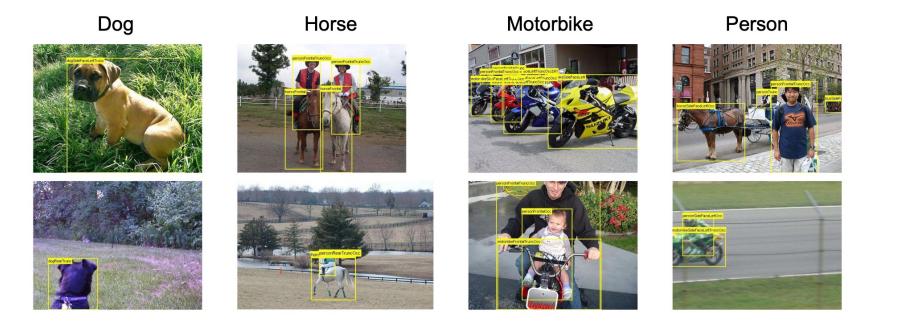
SSL from Images, EX (I): relative positioning



SSL from Images, EX (I): relative positioning Evaluation: PASCAL VOC Detection

• 20 object classes (car, bicycle, person, horse ...)

• Predict the bounding boxes of all objects of a given class in an image (if any)

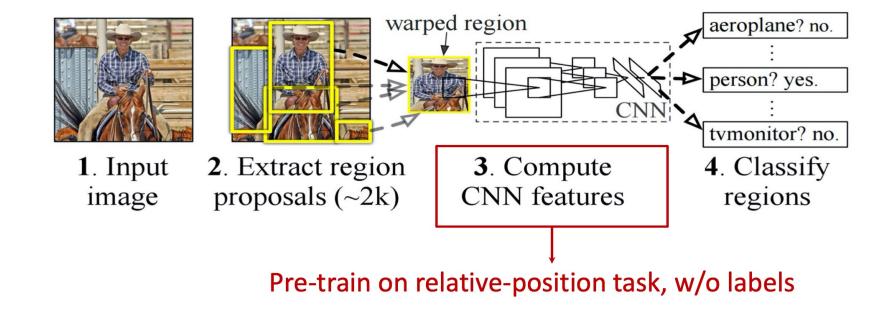


[Courtesy: Zisserman "Self-supervised Learning"]

SSL from Images, EX (I): relative positioning Evaluation: PASCAL VOC Detection

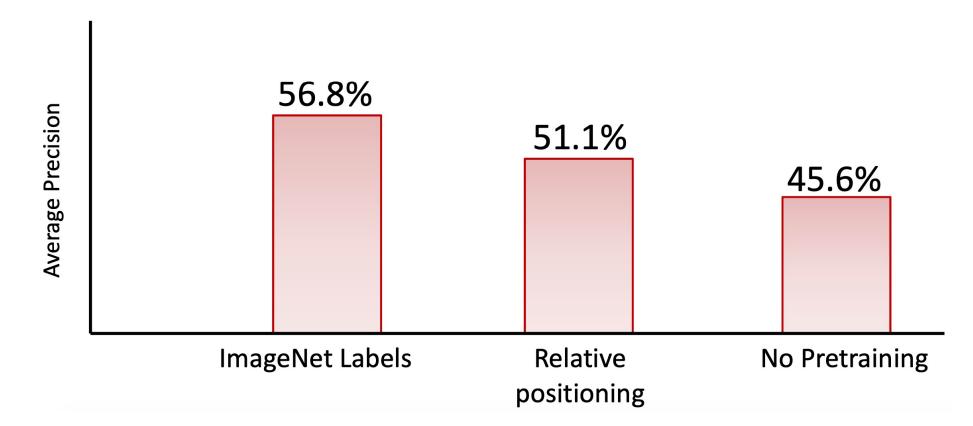
- Pre-train CNN using self-supervision (no labels)
- Train CNN for detection in R-CNN object category detection pipeline

R-CNN



[Girshick et al. 2014]

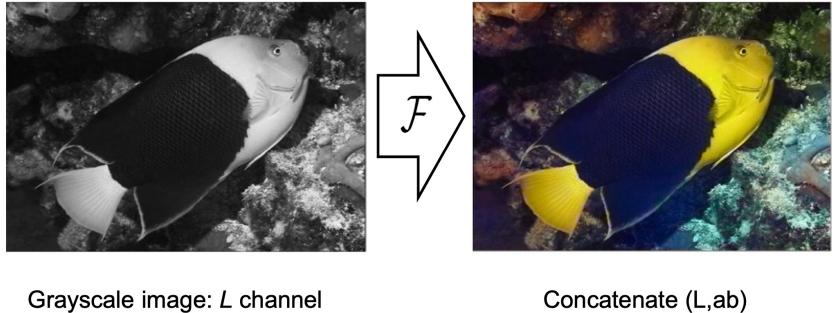
SSL from Images, EX (I): relative positioning Evaluation: PASCAL VOC Detection

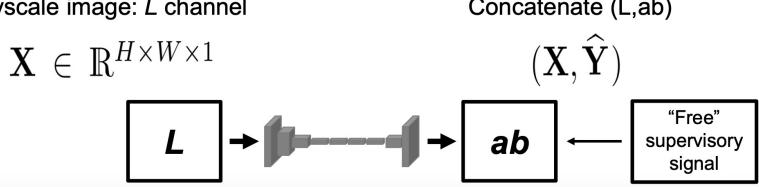


[Courtesy: Zisserman "Self-supervised Learning"]

SSL from Images, EX (II): colorization

Train network to predict pixel colour from a monochrome input



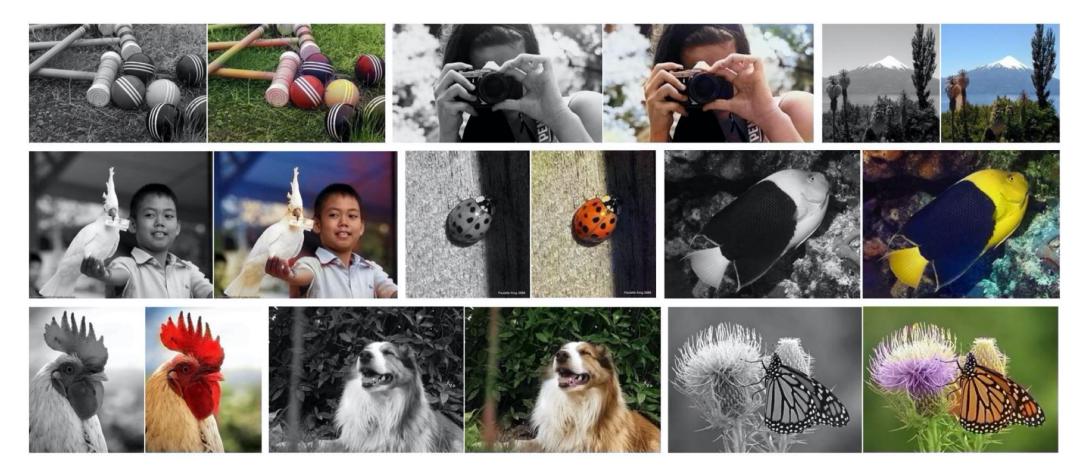


[Courtesy: Zisserman "Self-supervised Learning"]

Colorful Image Colorization, Zhang et al., ECCV 2016

SSL from Images, EX (II): colorization

Train network to predict pixel colour from a monochrome input



[Courtesy: Zisserman "Self-supervised Learning"]

Colorful Image Colorization, Zhang et al., ECCV 2016

SSL from Images, EX (III): exemplar networks

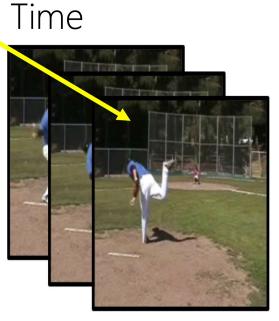
- Exemplar Networks (Dosovitskiy et al., 2014)
- Perturb/distort image patches, e.g. by cropping and affine transformations
- Train to classify these exemplars as same class

[Courtesy: Zisserman "Self-supervised Learning"]

SSL from Videos

Three example tasks:

- Video sequence order
 - Sequential Verification: Is this a valid sequence?



"Sequence" of data

[Courtesy: Zisserman "Self-supervised Learning"]

Wei et al., 2018 Arrow of Time 65

SSL from Videos

Three example tasks:

- Video sequence order
 - Sequential Verification: Is this a valid sequence?
- Video direction
 - Predict if video playing forwards or backwards

SSL from Videos

Three example tasks:

- Video sequence order
 - Sequential Verification: Is this a valid sequence?
- Video direction
 - Predict if video playing forwards or backwards
- Video tracking
 - Given a color video, colorize all frames of a gray scale version using a reference frame

[Courtesy: Zisserman "Self-supervised Learning"]

Vondfic et al., 2018

Key Takeaways

- Self supervision learning
 - Predicting any part of the observations given any available information
 - The prediction task forces models to learn semantic representations
 - Massive/unlimited data supervisions
- SSL for text:
 - Language models: next word prediction
 - BERT text representations: masked language model (MLM)
- SSL for images/videos:
 - Various ways of defining the prediction task

Questions?