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Outline
e Recap: EM algorithm

e Variational Inference



KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two
distributions p(x) and q(x)

KL(q() || p(x) = ) q(x) log

o a.k.a. Relative entropy
o KL>=0 (Jensen’s inequality)
o Intuitively:
= |f q is high and p is high, then we are happy (i.e. low KL divergence)
= |f qis high and p is low then we pay a price (i.e. high KL divergence).
= |f g is low then we don't care (i.e. also low KL divergence, regardless of p)
o not a true “distance”:
= not commutative (symmetric) KL(p||q) ! = KL(q||p)
= doesn't satisfy triangle inequality

q(x)
p(x)




KL Divergence

e Kullback-Leibler (KL) divergence: measures the closeness of two
distributions p(x) and q(x)

KL(q() || p(x) = ) q(x) log

o a.k.a. Relative entropy

q(x)
p(x)

e MLE is minimizing the KL divergence between the empirical distribution
and the model distribution

KL(P(x) [| po(x)) = —Ep(x)| log pg(x) | + H(B(x))

Cross entropy



EM Algorithm

e Observed variables x, latent variables z
e To learn a model p(x, z|6), we want to maximize the marginal log-

likelihood
£(0; x) =logp(x|0) = logz p(x,z|0)

o Butit's too difficult
e EM algorithm:

o maximize a lower bound of £(0; x)
o Or equivalently, minimize an upper bound of £(8; x)

o Key equation:
p(x,z|6)
q(z|x)

£(0;x) = Eq(z1x) [108 ] + KL(CI(le) || p(z|x, 3))



(Whiteboard)
e Marginal log-likelihood #(6;x) = log p(x|0) = logz p(x,z|0)

(x,2|6)
q(z|x)

+ KL(q(z|x) || p(z|x,6))

p
f(@, X) = IEq(Z|x) llOg



EM Algorithm

e Observed variables x, latent variables z
e To learn a model p(x, z|6), we want to maximize the marginal log-

likelihood
£(0; x) =logp(x|0) = logz p(x,z|0)

o Butit's too difficult
e EM algorithm:

o maximize a lower bound of £(0; x)
o Or equivalently, minimize an upper bound of £(8; x)

o Key equation::- --------------- » Evidence Lower Bound (ELBO)

p(x, 2|6 >J 4 KL(q(zl) || p(zlx, 6))




EM Algorithm

e The EM algorithm is coordinate-decent on F(q, )

o E-step: th :argmqinF(q, Qt) = p(z|x,60%)

= the posterior distribution over the latent variables given the data and the
current parameters

o M-step: g+l = arg m@inF (qt+1,6’t) = argmaxg z gttt (z|x) log p(x,z|0)
Z

p(x,z|0)
q(z|x)

£(0;x) = Egzx) [log + KL(q(z|x) || p(z|x,6))

= —F(q,0) + KL(q(zl%) || p(z|x, )) :




Example: Gaussian Mixture Models (GMMs) @

e Consider a mixture of K Gaussian components: l

o Z is a latent class indicator vector:
p(z,) =multi(z, : 7) =[] (=, )"
k

o X is a conditional Gaussian variable with a class-specific mean/covariance

1

4
(271')'"/2‘2,(‘1/2 exp{- 7 (x, - 1) 2y (x, - :uk)}

p(‘xn |Z: zl’ﬂaz) ==

o The likelihood of a sample: .
mixture component

mixture proportion

1w,2) =) p(z" =17)p(x,| 2" =1, 4, %) G
= Zzn Hk ((ﬂ_k)zj; N(x,: /ukﬂzk)Zf ): Zk T N(x| 1, 2))

p(x,



GMM E-step:

o Compute the posterior of z given x, using Bayes rule

10



GMM E-step:

e Compute the posterior of z given x, using Bayes rule

p(z* = Dp(x | 2* =1)
p(x)
p(z° = 1)p(x | 2* = 1)
S p(zd = p(e | 27 = 1)
TN (T | g, Xi)
S mN (| py, Z5)
= Tk

p(z* =1|z) =

11



GMM M-step:

e Once we have q*1(z*|x) = p(z¥|x, 8%) = y*, we can compute the
expected likelihood:

t+l = argmaxez qt*1(z* = 1|x) log p(x, z* = 1|09)
k

Eqe+1 [log (p (,2 | 9))]
_Z% logp (2" = 1|6) +1og P (x| 2* =1, 6))

ZZ% log 7y, + Z% log NV (x; puk, )
k %

e We need to fit K Gaussians, just need to weight examples by yy
12



EM Algorithm for GMM

e Initialize the means uy; , covariances X, and mixing coefficients m;,

e lterate until convergence:
o E-step: Evaluate the posterior given current parameters

ﬂ-k:N £Zr krazk
p(z* =1]x) = @ | i, ) = Yk

7
E '\:1 "TjN (z | ,U'jazj)

J

o M-step: Re-estimate the parameters given current posterior

]eq+1 [log (p (.’,E,Z ‘ 9))]
o 6 10) + 06 e = 1,0)
k

:Z’}/k logﬂk -+ ka log/\/(a:; Wi Ek)
k k
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Key Takeaways of EM Algorithm

e The EM algorithm is coordinate-decent on F(q, )

o E-step: th :argmqinF(Qa Qt) = p(z|x,0%)

o M-step: @i+l — arg m@inF (qt+1,9t) = argmaxg z q""*(z|x) log p(x, z|6)
Z

p(x,z|0)
q(z|x)

£(0; x) = IE':q(zlx) [lOg + KL(CI(le) || p(z]x, 9))

= —F(q,0) + KL(q(z|x) || p(z|x,6))

e Limitation: need to be able to compute p(z|x, ), not possible for more

complicated models --- solution: Variational inference y



Variational Inference

Content adapted from CMU 10-708 Spring 2017



Inference

e Given a model, the goals of inference can include:

o Computing the likelihood of observed data p(x™)

o Computing the marginal distribution over a given subset of variables in the
model p(x,4)

o Computing the conditional distribution over a subsets of nodes given a
disjoint subset of nodes p(x4|x5)

o Computing a mode of the density (for the above distributions) argmax, p(x)

16



Variational Inference

e Observed variables x, latent variables z

e Variational (Bayesian) inference, a.k.a. variational Bayes, is most often
used to approximately infer the conditional distribution over the latent
variables given the observations (and parameters)

o i.e., the posterior distribution over the latent variables

p(z,x|0)
Y.z p(z,x|0)

p(z|x,0) =

17



Motivating Example

e Why do we often need to use an approximate inference methods (such
as variational Bayes) to compute the posterior distribution?

e It's because we cannot directly compute the posterior distribution for
many interesting models

o l.e. the posterior density is in an intractable form (often involving integrals)
which cannot be easily analytically solved.

e As a motivating example, we will try to compute the posterior for a
(Bayesian) mixture of Gaussians.

18



Bayesian mixture of Gaussians

e The mean uy is treated as a (latent) random variable
pe ~N(0,7%) for k=1,...,K

e Foreachdatai=1,..,n
z; ~ Cat(m).
z; ~ N (ts,,07).

e We have

o observed variables x;.,
o latent variables uy., and z;.,,
o parameters {1%,m, 0%}

K n
¢ p(xl:n'zl:ni :ul:lez: 1T, 0-2) — szl p(:uk) Hi=1 p(Zz)p(CEAZZ,,U/lK)



Bayesian mixture of Gaussians

e We can write the posterior distribution as

[T (k) TTy p(20)p(wil2i, 1:1¢)
ful:x R Hf:l p(pr) Iz p(2:)p(xil 26, p1:x)

p(ﬂl:Ky Zl:n|$1:n) =

e The numerator can be computed for any choice of the latent variables

-
e The problem is the denominator (the marginal probability of the
observations)

o This integral cannot easily be computed analytically
e We need some approximation..

20



Variational Inference

The main idea behind variational inference:

e Choose a family of distributions over the latent variables zi..,,
with its own set of variational parameters v, i.e.

q(21:m|V)

e Then, we find the setting of the parameters that makes our
approximation ¢ closest to the posterior distribution.
e This is where optimization algorithms come in.

e Then we can use ¢ with the fitted parameters in place of the
posterior.

e E.g.to form predictions about future data, or to investigate the posterior

distribution over the hidden variables, find modes, etc. o



Variational Inference

e We want to minimize the KL divergence between our approximation
q(z|x) and our posterior p(z|x)

KL(q(z|x) || p(z]|x))

o But we can’t actually minimize this quantity w.r.t g because p(z|x) is unknown

Evidence Lower Bound (ELBO)

I , 0 :
£(65%) =\Eq(a [mgp(x d )J +KL(q(z]) || p(zlx,6))

e The ELBO is equal to the negative KL divergence up to a constant £(6; x)
e We maximize the ELBO over q to find an “optimal approximation” to
p(z|x)

22



Variational Inference

e Choose a family of distributions over the latent variables z with its own set of
variational parameters v , i.e. q(z|x,v)

e We maximize the ELBO over q to find an “optimal approximation” to p(z|x)
p(x,z|6)

q(z|x,v)
= argmaxy Egzxv) llog p(x,2]|6)] — [Eq(z|x,v)[ log q(z|x,v) |

argmaxy, Eqz1x) [log

pa|x)

/KL v*) || p(z| %))

e How do we choose the variational family q(z|x, v)?

23



Mean Field Variational Inference

e A popular family of variational approximations

e In this type of variational inference, we assume the variational distribution
over the latent variables factorizes as

q(z) = q(z1,...,2m) = 1—Il€I(Zj)
il

o (where we omit variational parameters for ease of notation)

o We refer to q(z;), the variational approximation for a single latent variable, as
a "local variational approximation”

e Inthe above expression, the variational approximation q(z;) over each
latent variable z; is independent

24



Mean Field Variational Inference

I
e Note that this is a fairly general setup; we can also partition
the latent variables z1,...,2mn Into R groups 2aG,,---,2GR,
and use the approximation:

R
q(215- - 2m) = q(2a,,- -+, 2ax) = [ a(2a,)
=1

e Often called “generalized mean field” versus (the above) “naive mean field”.



Mean Field Variational Inference

I
e Note that this is a fairly general setup; we can also partition
the latent variables z1,...,2m» Into R groups 2G,,---,2GR,
and use the approximation:

R
q(215- - 2m) = q(2a,,- -+, 2ax) = [ a(2a,)
=1

e Often called “generalized mean field” versus (the above) “naive mean field”.

e Typically, this approximation does not contain the true
posterior (because the latent variables are dependent).

e E.g.:in the (Bayesian) mixture of Gaussians model, all of the cluster assignments <;
for ¢ =1,...,n aredependenton each other and on the cluster locations #1:K

given data. Lo



Optimizing the ELBO in Mean Field Variational Inference

I
How do we optimize the ELBO in mean field variational

inference?
e Typically, we use coordinate ascent optimization.

e |.e. we optimize each latent variable’s variational
approximation ¢(z;) in turn while holding the others fixed.

e At each iteration we get an updated “local” variational approximation.
e And we iterate through each latent variable until convergence.



Optimizing the ELBO in Mean Field Variational Inference
e Recall that the ELBO is defined as:
L =E;[logp(x,z)] — E;|logq(2)]

e Note that we can decompose the entropy term of the ELBO (using the
mean field variational approximation) as:

K, [log g(z1:m)] = ZE logq(zj ]

e Therefore, under the mean field approximation, the ELBO can be written:

L=EqE,q_[logplx 2)] - z Eq,| log 4(z)]

J=1
28



Optimizing the ELBO in Mean Field Variational Inference

e Therefore, under the mean field approximation, the ELBO can be written:

L= Eq,Eq_ llogp(x,2)] - ) By [logq(z)]

j=1
e Next, we want to derive the coordinate ascent update for a latent
variable z; , keeping all other latent variables fixed.

o i.e. we want the argmaxqu.

e Removing the parts that do not depend on q(z;), we can write:
L =EqE, [logp(x,2)] — E, [log q(z;)] + const.

29



Optimizing the ELBO in Mean Field Variational Inference

e To find this argmax, we take the derivative of £ w.r.t q(z;) and and set the
derivative to zero :

ar
dq(z;)

e From this, we arrive at the coordinate ascent update:

= Eq.Eq_; llogp(x,z)] —log q(zj) —1=0

q'(z) « exp{ Eq_,llog p(x,2)] }

30



Optimizing the ELBO in Mean Field Variational Inference

e The coordinate ascent update:

q*(zj) o exp { ]Eq_j llog p(x,z)] }

o The optimal solution for factor q(z;) is obtained simply by considering the log
of the joint distribution over all observed and latent variables and then taking
the expectation with respect to all of the other factors q(zx), k # j, then
taking exponential and normalizing

e Note that the only assumption we made so far is the mean-tield
factorization: i

q(z) = q(z1,..-,2m) = [ [ a(z;)
j=1

o We haven't yet made any assumptions on the form of q(z;) 31



Simple example:

o Consider a univariate Gaussian distribution p(x) = N (x|u, %), given a
dataset D = {xq, ..., xn}:

N
P(Dlp,7) = (L)N/z exp < —gZ(xn —w)* 0

27 — )
p(ult) = N (plpo, (Ao) ")
p(t) = Gam(7|ag,by)

o Gaml(t|ag, bg) = ﬁb“ﬂ“‘lexp(—bl) : gamma distribution

e For this simple problem the posterior distribution can be found exactly.
But we use it as an example for tutorial anyway

32



q*(zj) < exp { IEq_j llog p(x,2)] }
Simple example:

p(D|u, 7) = (%)N/2 exD {_Z i(x" _ M)2} p(plr) = N (ulpo, (Aom) ™)

2 p(r) = Gam(t|ag,bo)

n=1

e Introduce the factorized variational approximation: q(u,7) = q,(1)q.(7)
e Solution to qy:

Ing, (1) = E:[Inp(Dly, )Jrlrlp(ulf)]Jrconst

[]{)\O,u Lo) —I-Z }-I—const.

o We can see q, is a Gaussian N(x|,uN,A;,1):
Aopo + NT
Mo+ N
)\N — ()\O—FN)E[T] 33

pUN =



q*(zj) < exp { IEq_j llog p(x,2)] }
Simple example:

p(D|u, 7) = (%)N/2 exD {_Z i(x" _ M)2} p(plr) = N (ulpo, (Aom) ™)

2 p(r) = Gam(t|ag,bo)

n=1

e Introduce the factorized variational approximation: q(u,7) = q,(1)q.(7)

e Solutionto q;: Ing*(r) = E, [Inp(D|w, 7) + Inp(p|r)] + Inp(7) + const
N
= (ao — 1)1117' — b07'+ EIII’T
- N
BERG Y (@n —p)® + Xo(p — o)* | + const
n=1

o We can see g7 is a gamma distribution Gam(t|ay, by):

N
aN = ao+?

N
by = bo+ E [Z )2+ Xo(k — Mo)]

n=1

34



Quick Recap

e We often cannot compute posteriors, and so we need to approximate
them, using variational methods.

e In variational Bayes, we'd like to find an approximation within some
family that minimizes the KL divergence to the posterior, but we can't
directly minimize this

e Therefore, we defined the ELBO, which we can maximize, and this is
equivalent to minimizing the KL divergence.

p|x) Evidence Lower Bound (ELBO)

7 KL(g(z:v*) || pz| %))

I , 9 :
£63.%) =\ Eq(ape Llog”(x d )J -+ KL(q(z12) || p(zlx, )

35



Quick Recap

e We defined a family of approximations called “mean field”
approximations, in which there are no dependencies between latent

variables m
q(z) = q(21,--+,2m) = HQ(Zj)
j=1

e We optimize the ELBO with coordinate ascent updates to iteratively

optimize each local variational approximation under mean field
assumptions

q (Z ) X exp{ [log p(x,z)] }

36



Key Takeaways

o KLDivergence  KL(G(0) [l px)) = ). q(x) log 22
X
o The key equation of EM and VI Evidence Lower Bound (ELBO)
I p(x,2]0)]
4 B |08 ] K10 1 (215 )

o Free energy F(q,0)

e EM: E-step and M-step optimizing ELBO w.r.t g and 6
e Mean-tield VI: optimizing ELBO w.r.t factorized g components
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