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Logistics
● Office hours
! Zhiting Hu: Tuesday 3-4pm, SDSC 247E249E
! Meng Song: Wednesday 2:30-3:30pm, CSE 4109

● Project
● Presentation
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Outline
● Supervised Learning
! Maximum likelihood estimation (MLE)
! Duality between MLE and Maximum Entropy Principle

● Unsupervised learning
! Maximum likelihood estimation (MLE) with latent variables
! EM algorithm for MLE
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Supervised Learning
● Model to be learned !! "
● Observe full data # = "∗

! i.i.d: independent, identically distributed 

● Maximum Likelihood Estimation (MLE)
! The most classical learning algorithm 

● MLE is closely connected to the Maximum Entropy (MaxEnt) principle
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Exponential Family
● A distribution

is an exponential family distribution

! ! ∈ #!: natural (canonical) parameter 

! $ % ∈ #!: sufficient statistics, features of data !
! & ! = ∑",$ ℎ % exp ! ⋅ $ % : normalization factor

● Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,... 
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Example: Multivariate Gaussian Distribution 
● For a continuous vector random variable " ∈ :&

● Exponential family representation
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Example: Multinomial Distribution 
● For a binary vector random variable " ∈ multi("|>)

● Exponential family representation
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Maximum Likelihood for Exponential Family
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● Take gradient and set to 0 

. % : the number of times % is observed in D

At MLE, the expectations of 
the sufficient statistics under 
the model must match 
empirical feature average



Maximum Entropy (MaxEnt)
● Given #, to estimate ! "
● We can approach the problem from an entirely different point of view. 

Begin with some fixed feature expectations:

● There may exist many distributions which satisfy them. Which one should 
we select?
! MaxEnt principle: the most uncertain or flexible one, i.e., the one with 

maximum entropy
● This yields a new optimization problem:
! This is a variational definition of a distribution!
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Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:
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● To solve the MaxEnt problem, we use Lagrange multipliers:

11

max
!,#

min
$(&)



Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:

12

● So feature constraints 
+ MaxEnt Þ
exponential family.

● Problem is strictly 
convex w.r.t. !("), so 
solution is unique.
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Solution to the MaxEnt Problem
● To solve the MaxEnt problem, we use Lagrange multipliers:

plug '()|+) back into -, and since ∑( )(()
* /+ ! ≔ 1+:

● Recovers precisely the MLE problem of exponential family
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● So feature constraints 
+ MaxEnt Þ
exponential family.

● Problem is strictly 
convex w.r.t. !("), so 
solution is unique.
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(Homework)



Constraints from Data
● We have seen a case of convex duality:

! In one case, we assume exponential family and show that Maximum 
Likelihood implies model expectations must match empirical expectations.

! In the other case, we assume model expectations must match empirical 
feature counts and show that MaxEnt implies exponential family distribution.
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A more general MaxEnt problem
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Summary
● Maximum entropy is dual to maximum likelihood of exponential family 

distributions
● This provides an alternative view of the problem of fitting a model into 

data:
! The data instances in the training set are treated as constraints, and the 

learning problem is treated as a constrained optimization problem.
! We’ll revisit this optimization-theoretic view of learning repeatedly in the 

future!

16



Unsupervised Learning
● Each data instance is partitioned into two parts:
! observed variables !
! latent (unobserved) variables 2

● Want to learn a model !! ", G
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Latent (unobserved) variables
● A variable can be unobserved (latent) because: 
! imaginary quantity: meant to provide some simplified and abstractive view of 

the data generation process 
§ e.g., speech recognition models, mixture models, ...
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Latent (unobserved) variables
● A variable can be unobserved (latent) because: 
! imaginary quantity: meant to provide some simplified and abstractive view of 

the data generation process 
§ e.g., speech recognition models, mixture models, ...

! a real-world object (and/or phenomena), but difficult or impossible to measure 
§ e.g., the temperature of a star, causes of a disease, evolutionary ancestors ... 

! a real-world object (and/or phenomena), but sometimes wasn’t measured, 
because of faulty sensors, etc.

● Discrete latent variables can be used to partition/cluster data into sub-
groups 

● Continuous latent variables (factors) can be used for dimensionality 
reduction (e.g., factor analysis, etc.) 
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Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:

● This model can be used for unsupervised clustering. 
! This model (fit by AutoClass) has been used to discover new kinds of stars in 

astronomical data, etc.  
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Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
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Parameters to be learned:



Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
● Recall MLE for completely observed data
! Data log-likelihood:

! MLE:

● What if we do not know H)? 23



Why is Learning Harder? 
● Complete log likelihood: if both " and G can be observed, then

! Decomposes into a sum of factors, the parameter for each factor can be 
estimated separately

● But given that G is not observed, ℓ* J; ", G is a random quantity, cannot 
be maximized directly

● Incomplete (or marginal) log likelihood: with G unobserved, our objective 
becomes the log of a marginal probability: 

! All parameters become coupled together
! In other models when 2 is complex (continuous) variables (as we’ll see later), 

marginalization over z is intractable.
24

ℓ* J; ", G = log ! ", G J = log ! G J+ + log !("|G, J#)

ℓ J; " = log ! " J = log?
+
!(", G|J)



Expectation Maximization (EM)
● For any distribution M(G|"), define expected complete log likelihood: 

! A deterministic function of 3
! Inherit the factorizability of ℓ% 0; %, 3

● Use this as the surrogate objective
● Does maximizing this surrogate yield a maximizer of the likelihood? 
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Expectation Maximization (EM)
● For any distribution M(G|"), define expected complete log likelihood: 

● Jensen’s inequality
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Expectation Maximization (EM)
● For any distribution M(G|"), define expected complete log likelihood: 

● Jensen’s inequality

● Indeed we have

27

≥

ℓ J; " = ),(.|') log
! ", G|J

M G "
+ KL M G " || ! G ", J

), ℓ* J; ", G =?
+
M G " log !(", G|J)



Lower Bound and Free Energy

● For fixed data ", define a functional called the (variational) free energy: 

● The EM algorithm is coordinate-decent on Q
! At each step 4:

§ E-step:

§ M-step: 
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E-step: minimization of ! ", $ w.r.t "
● Claim:

! This is the posterior distribution over the latent variables given the data and 
the current parameters. 

● Proof (easy): recall

! 7 8, 0& is minimized when KL 8 3 % || < 3 %, 0& = 0, which is achieved only 
when M G " = ! G ", J1
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M-step: minimization of ! ", $ w.r.t %
● Note that the free energy breaks into two terms:

! The first term is the expected complete log likelihood and the second term, 
which does not depend on q, is the entropy.

● Thus, in the M-step, maximizing with respect to J for fixed M we only 
need to consider the first term: 

! Under optimal 8&'(, this is equivalent to solving a standard MLE of fully 
observed model < %, 3 0 , with z replaced by its expectation w.r.t '(2|!, 3,)
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Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components:
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Example: Gaussian Mixture Models (GMMs)
● Consider a mixture of K Gaussian components
● The expected complete log likelihood

● E-step: computing the posterior of H) given the current estimate of the 
parameters (i.e., > , U, Σ) 
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Example: Gaussian Mixture Models (GMMs)
● M-step: computing the parameters given the current estimate of H)
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Example: Gaussian Mixture Models (GMMs)
● Start: “guess” the centroid U& and covariance Σ& of each of the K clusters 
● Loop:
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Summary: EM Algorithm
● A way of maximizing likelihood function for latent variable models. Finds MLE 

of parameters when the original (hard) problem can be broken up into two 
(easy) pieces 
! Estimate some “missing” or “unobserved” data from observed data and current 

parameters. 
! Using this “complete” data, find the maximum likelihood parameter estimates. 

● Alternate between filling in the latent variables using the best guess (posterior) 
and updating the parameters based on this guess: 

! E-step:

! M-step: 
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Each EM iteration guarantees to improve the likelihood 
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[PRML, Chap 9.4]



EM Variants 
● Sparse EM 
! Do not re-compute exactly the posterior probability on each data point under all 

models, because it is almost zero. 
! Instead keep an “active list” which you update every once in a while. 

● Generalized (Incomplete) EM: 
! It might be hard to find the ML parameters in the M-step, even given the 

completed data. We can still make progress by doing an M-step that improves 
the likelihood a bit (e.g. gradient step). 
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Summary
● Supervised Learning
! Maximum likelihood estimation (MLE)
! Duality between MLE and Maximum Entropy Principle

● Unsupervised learning
! Maximum likelihood estimation (MLE) with latent variables
! EM algorithm for MLE
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Questions?


