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Logistics

o Office hours
o Zhiting Hu: Tuesday 3-4pm, SDSC 24/E249E
o Meng Song: Wednesday 2:30-3:30pm, CSE 4109

e Project
e Presentation



Outline

e Supervised Learning
o Maximum likelihood estimation (MLE)
o Duality between MLE and Maximum Entropy Principle

e Unsupervised learning

o Maximum likelihood estimation (MLE) with latent variables
o EM algorithm for MLE



Supervised Learning

e Model to be learned pg(x)

o Observe fulldataD = {x*}
o i.i.d: independent, identically distributed

e Maximum Likelihood Estimation (MLE)
o The most classical learning algorithm

min — By _p | logpe(x") |

e MLE is closely connected to the Maximum Entropy (MaxEnt) principle



Exponential Family

e A distribution
pe(x) = h(x) exp{@ -T(x)} /Z(0)

is an exponential family distribution

o 0 € R%: natural (canonical) parameter

o T(x) € R%: sufficient statistics, features of data x

o Z(0) = Yy yh(x)exp{@ - T(x)}: normalization factor

e Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...



Example: Multivariate Gaussian Distribution

e For a continuous vector random variable x € R¥

A (zyz)”l"’lz“ eXp{_;(x_” yz%

R { | (_1 T) N 1Mzo}mentparameter
_Wexp—gtrZ xx Hu X X—> U 2 u— og\ ‘

p(x

e Exponential family representation
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Example: Multinomial Distribution

e For a binary vector random variable x € multi(x|m)

p(xlr) ==} 7z2 T =exp{2xk lnﬂk}

= €XP9

= eXPs

Zxk Inz, +

(1 Zijln(l—Zﬁk

)
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Maximum Likelihood for Exponential Family
m(x) : the number of times x is observed in D

Zm ) log p( | 6)

_ Z m(x) (Z 0. 1;(x) — log Z(H)>
=Y m(x) Z 0:;T;(x) — Nlog Z(6)

4 )
e Take gradient and set to O At MLE, the expectations of
5 5 the sufficient statistics under
50 L(6;D) Zm(m)Tz(m) — N@H log Z(0) the model must match
€ x ¢ empirical feature average
=Y m@)Ti(x) - N Y p(z|0)T;(x) )
1S~ (o | 6V (@ S~ 1) IS 5 | 01T ()
= > pla|0)Ti(z)=) ~ Li(x) > _blz | 0)Ti(x) |



Maximum Entropy (MaxEnt)

e Given D, to estimate p(x)

e We can approach the problem from an entirely different point of view.
Begin with some fixed feature expectations:

> per =y B2nw=a

e There may exist many distributions which satisfy them. Which one should
we select?
o MaxEnt principle: the most uncertain or flexible one, i.e., the one with

rr.waX|.mum entropy - max H(p Zp ) log p(a
e This yields a new optimization problem: | »

o This is a variational definition of a distribution!
S. L. Zp

> plw) =




Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L = — Zp(a:) log p(x) — Z 0; (Z p(x)T;(x) — ozi> — (Zp(m) — 1)

O.u p(x)
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Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L:—Zp( ) log p(x ZQ (Zp —ozi> —,u(Zp(a:)—

O.u p(x)

oL
8p(w)_1+logp ZHT
p(x) = e Lexp {Z 97;f7;(iv)}
Z(0) =et 1 = Zexp {Z Hifi(a:)} (since Zp*(a:) = 1)

p(x|0) =
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Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L:—Zp( log p(x ZQ (Zp —ai) —,u(Zp(m)—l)

O.u p(x)

a?éc)_1+logp ZHT / \

e So feature constraints

*(p) = et 1 ex 0, f; + MaxEnt =
P = p{zi: f(w)} exponential family.
Z(0) =et 1 = Zexp {Z Hifi(a:)} (since Zp*(a:) = 1

e Problem is strictly
convex w.r.t. p(x), so

solution is unique.

p(x|0) =
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Solution to the MaxEnt Problem

e To solve the MaxEnt problem, we use Lagrange multipliers:

max min L = —> p(x)logp(x 29 (Zp —m) — p (Zp(fv) - 1)
eXp{ZHT } \

e So feature constraints
+ MaxEnt =
exponential family.

p(z | 0) =

plug p(x|@) back into L, and since )., m(x)T (x) == a;:
: e Problem is strictly
max L(O) = Zm ZH T,(z) — Nlog Z(0) convex w.r.t. p(x), so
solution is unique.
e Recovers precisely the MLE problem of exponential family K /

(Homework) 13



Constraints from Data

e We have seen a case of convex duality:

o In one case, we assume exponential family and show that Maximum
Likelihood implies model expectations must match empirical expectations.

o In the other case, we assume model| expectations must match empirical
feature counts and show that MaxEnt implies exponential family distribution.
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A more general MaxEnt problem

min KL(p(x)||h(z))

S @) log oy = ~H() — Y pl@) log (@)

S.t. Zp(a:)Tz(a:) = Oy




Summary

e Maximum entropy is dual to maximum likelihood of exponential family
distributions

e This provides an alternative view of the problem of fitting a model into
data:

o The data instances in the training set are treated as constraints, and the
learning problem is treated as a constrained optimization problem.

o We'll revisit this optimization-theoretic view of learning repeatedly in the
future!

max H(p Z p(x)logp(x

16



Unsupervised Learning

e Each data instance is partitioned into two parts:
o observed variables x
o latent (unobserved) variables z

e Want to learn a model pg(x, 2)

[Content adapted from CMU 10-708]
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplitied and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...

' J Ys Y, Y:)s e (Y
)‘)D ek e Vo e e e e S C) | Q
T— +E E E E H E X; X,

i

Fig. 1.2 Isolated Word Problem

Loocepr: a xiogle word
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:

o imaginary quantity: meant to provide some simplitied and abstractive view of
the data generation process

= e.g., speech recognition models, mixture models, ...

3%
%
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Latent (unobserved) variables

e A variable can be unobserved (latent) because:
o imaginary quantity: meant to provide some simplitied and abstractive view of
the data generation process
= e.g., speech recognition models, mixture models, ...
o a real-world object (and/or phenomena), but difficult or impossible to measure
= e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
o a real-world object (and/or phenomena), but sometimes wasn’t measured,
because of faulty sensors, etc.
e Discrete latent variables can be used to partition/cluster data into sub-
groups
e Continuous latent variables (factors) can be used for dimensionality
reduction (e.g., factor analysis, etc.)

20



Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:

p(x,|u,2) = Zk TN (x| 14, 2,)
W N

mixture proportion  mixture component

e This model can be used for unsupervised clustering.

o This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.

21



Example: Gaussian Mixture Models (GMMs) @

e Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ (=, )" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1

A
R explL(x, - 11,) T (x, - 1)

ple; |7 =LjuP)=

Parameters to be learned:

o The likelihood of a sample: .
mixture component

mixture proportion

w2) =) p(z" =1|7)p(x,|z* =1, 1, %) G
= Zzn Hk ((”k)z'f N(x, :/ukDEk)Z: ): Zk TN (x| 1y,2,)

DI,
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Example: Gaussian Mixture Models (GMMs)
H,X) = Zk 7AZ-kN(x9! Hi>2)

o Consider a mixture of K Gaussian components: P(X,
e Recall MLE for completely observed data

o Data log-likelihood: , (0; D) = long(Zn,x ) = long(Z | m)p(x, |z, 14,0)

_ZlogHﬂ-k +ZlogHN(xn,,uk,o-)
o MLE: _Zzzklogﬂk Zzzn - Lo (x,-14) +C

Ty e = argmax ¢ (0; D),

My yp = argmax ¢ (0;D) = = Z ;
Oy e = argmax ¢ (0;D) ’

e What if we do not know z,? -



Why is Learning Harder?

e Complete log likelihood: if both x and z can be observed, then

£.(0;x,z) = logp(x,z|0) = logp(z|6,) + log p(x|z, 6y)
o Decomposes into a sum of factors, the parameter for each factor can be
estimated separately

e But given that z is not observed, £.(8; x, z) is a random quantity, cannot
be maximized directly

e Incomplete (or marginal) log likelihood: with z unobserved, our objective
becomes the log of a marginal probability:

2(0;x) =logp(x|0) = logz p(x,z|0)

o All parameters become coupled together

o In other models when z is complex (continuous) variables (as we’ll see later),

marginalization over z is intractable.
24



Expectation Maximization (EM)
e For any distribution g(z|x), define expected complete log likelihood:

Eqlc(6i%,2)] = ) a(zlx) log p(x, 216)

o A deterministic function of 9
o Inherit the factorizability of ¢.(6; x, 2)

e Use this as the surrogate objective
e Does maximizing this surrogate yield a maximizer of the likelihood?

25



Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eqlec(65%,2)] = ) q(zlx) log p(x, 216)
e Jensen's inequality ’
¢ (0;x)=1log p(x |0)

~log Y p(x,216)
_ p(x,z|0)
// -log Y (210 2T S

@Zq(z | x)log pix,210) Evidence Lower Bound (ELBO)
z 9(z|x)

=Y g(z| x)log p(x,2|0)- > g(z | X)logg(z | X)

= E,[£.(0; x,2)] + H(q) 9




Expectation Maximization (EM)

e For any distribution g(z|x), define expected complete log likelihood:

Eqlec(65%,2)] = ) q(zlx) log p(x, 216)
e Jensen's inequality ’
¢ (0;x)=1log p(x |0)

~log" p(x,Z|0)

_ p(x,z|0)
// -log Y (210 2T S
O 92| 0)10g 2X-Z210)

9(z | x)

e Indeed we have
p(x,z|6)

q(z|x)

£(6;x) = II3q(z|3|c) [log + KL(CI(le) 1 p(zlx;ze))



Lower Bound and Free Energy

e Forfixed data x, define a functional called the (variational) free energy:

F(q,0) = —E,[£.(0;x,2z)] — H(q) = £(8; x)

e The EM algorithm is coordinate-decent on F
o At each step t:
1 — argmin F (q, Ht)

q

arg m@in F (th , Qt)

= E-step: @

= M-step: (975“‘ 1
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E-step: minimization of F(g, ) w.r.t g

e Claim: .

q**' = argmin, F(q,0%) = p(z|x,6%)

o This is the posterior distribution over the latent variables given the data and
the current parameters.

e Proof (easy): recall

,z|0°
£(0%; x) = Eq(z)0) [logp(;zzzllx) ) + KL(q(zl|x) || p(zlx, 61))

/ | |

Independent of g —F(q,0Y > ()

o F(q,0% is minimized when KL(q(z|x) || p(zlx,6%)) = 0, which is achieved only
when q(z|x) = p(z|x, 6%)
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M-step: minimization of F(q,6) w.r.t 6
e Note that the free energy breaks into two terms:

F(q,0) = —E4[¢.(6;x,2)] — H(q) = £(6; x)

o The first term is the expected complete log likelihood and the second term,
which does not depend on g, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed g we only
need to consider the first term:

6t*1 = argmaxy E;[£.(6; x,z)] = argmaxy z qtt1(z|x) log p(x, z|0)
Z

o Under optimal ¢***, this is eﬂtjivalent to solving a standard MLE of fully
observed model p(x, z|9), with z replaced by its expectation w.r.t p(z|x, 6")
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Example: Gaussian Mixture Models (GMMs) @

e Consider a mixture of K Gaussian components: l
o Z is alatent class indicator vector:

p(z,) = multi(z, : 7) = [ [ (=, )" @

o X is a conditional Gaussian variable with a class-specific mean/covariance

1
(Zﬂ)m/lek[

p(x, |25 =1, u,%) = expli(x, - 1) S (x, - 1)}

o The likelihood of a sample: .
mixture component

mixture proportion

12) =) p(z* =1|m)p(%,| z* =1, 4,3) G
= Zzn Hk ((”k)zg N(x, ::ukDEk)Zf ): Zk TN (x| 1y,2,)

DI,
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Example: Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components
e The expected complete log likelihood

E, [€.(6; x, 2)] —ZE log p (zn | )] +ZE logp (xn | 2n, 1, Z)]
—ZZE logwk——ZZE ( —Mk)TZIZl(xn—,Uk)‘|‘10g|2k|‘|‘0>

e E-step: computing the posterior of z,, given the current estimate of the

parameters (i.e., m,u, )
p(zk = 1,x,u®,20)

2ON G, 0,50 7
Zﬂ(t)N(xn9|ﬂ(t) zl(t))\ p(x,,u(t),Z(t))

p(z, =1]x,u",20) =
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Example: Gaussian Mixture Models (GMMs)

e M-step: computing the parameters given the current estimate of z,

7, =argmax(l (0)), = 52-(1.(0))=0,Vk, st an =il

LA YLV

OF
p, =argmax(/(0)), = "= Z =

Z . (t) Fact:
non dlogA™| .
k(t) £+1) (t+1)\T oA
* Tn (xn o /u )('xn o :u )
z“k — arg max<l(9)>’ = Zg‘m) - Zn Zkrk(t) : Ox’ Ax =xx_
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Example: Gaussian Mixture Models (GMMs)

e Start: “guess” the centroid u; and covariance X of each of the K clusters

e Loop:
o L=1 . " L=4
=0 = A 8
lt :g ° s} ) [
S #7 | #
" - o o
(a) (c) (d) (e)
L=6 L=8 L=10 L =42
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Summary: EM Algorithm

e A way of maximizing likelihood function for latent variable models. Finds MLE
of parameters when the original (hard) problem can be broken up into two
(easy) pieces

o Estimate some “missing” or “unobserved” data from observed data and current
parameters.

o Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best guess (posterior)
and updating the parameters based on this guess:

o E-step: gt = arg m(}nF (q,@t)

© M-step: gt+l — argmeinF (qt+1,9t)
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Each EM iteration guarantees to improve the likelihood

p(x,z|0)
2(0;x) = E [lo + KL(g(z]|x) || p(z|x, 6)
q(z|x) 8 q(zlx) (q || p )
KLal)| [
¥ ¥ KL(q||p) = 0 ——— SEUR N DR A I
KL(q||p)

y x I S|

L(q,0) In p(X10) L(q,6°9) In p(X|6°'9) L(q, 6°%) In p(X|6"°")
E-step M-step

[PRML, Chap 9.4]
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EM Variants
e Sparse EM

o Do not re-compute exactly the posterior probability on each data point under all
models, because it is almost zero.

o Instead keep an "active list” which you update every once in a while.

e Generalized (Incomplete) EM:

o It might be hard to find the ML parameters in the M-step, even given the
completed data. We can still make progress by doing an M-step that improves
the likelihood a bit (e.g. gradient step).
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Summary

e Supervised Learning
o Maximum likelihood estimation (MLE)
o Duality between MLE and Maximum Entropy Principle

e Unsupervised learning

o Maximum likelihood estimation (MLE) with latent variables
o EM algorithm for MLE
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