
DSC190: Machine Learning with Few Labels

Case study: text generation (II)

Zhiting Hu
Lecture 18, November 30, 2021

Recap: Two Central Goals

● Generating human-like, grammatical, and readable text

! Model: Progressive generation
! Learning: Exposure bias, criteria mismatch: reinforcement learning

● Generating text that contains desired information inferred from inputs

! Machine translation
§ Source sentence --> target sentence w/ the same meaning

! Data description
§ Table --> data report describing the table

! Attribute control
§ Sentiment: positive --> ``I like this restaurant’’

! Conversation control
§ Control conversation strategy and topic

Recap: Unsupervised Controlled Generation of Text

● Sentence-level control

! Text attribute transfer (style transfer) [Hu et al., 2017; Yang et al., 2018]

! Text content manipulation [Lin et al., 2020]

● Conversation-level control

! Target-guided Open-domain Conversation [Tang et al., 2019]

Key idea:
• Decompose the task into competitive sub-objectives
• Use direct supervision for each of the sub-objectives

Recap: Two Issues of MLE

● Exposure bias [Ranzato et al., 2015]

● Mismatch between training & evaluation
criteria
! Train to maximize data log-likelihood
! Evaluate with, e.g., BLEU

LSTM! LSTM! LSTM!

<BOS>

!"!

…

!""

"!∗ ""∗

!"$

• Training: predict next token given the previous
ground-truth sequence

• Evaluation: predict next token given the previous
sequence that are generated by the model itself

[Ranzato et al., 2015] Sequence Level Training with Recurrent Neural Networks

Training:
Evaluation: <BOS> !"! !""

DecoderDecoderMulti-head Self-attention

Solution: Reinforcement learning
for text generation

Agent

Environment

Action a t
State st

Recap: Reinforcement Learning

Reward rt
Next state s

t+1

6

Recap: Markov Decision Process

Defined by:

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

7

Reinforcement Learning (RL)

• Plug in arbitrary reward functions to drive learning
• Fertile research area for robotic and game control
• But … limited success for training text generation
• Challenges:
• Large sequence space: (vocab-size)text-length ~ (10!)"#

• Sparse reward: only after seeing the whole text sequence

• Impossible to train from scratch, usually initialized with MLE

• Unclear improvement vs MLE

7

RL for Text Generation: Background

• (Autoregressive) text generation model:

8

𝜋! 𝑦" 𝒚#") =
exp 𝑓!(𝑦"|𝒚#")

∑$% exp 𝑓!(𝑦′|𝒚#")
Sentence 𝒚 = (𝑦&, … , 𝑦') logits

In RL terms: state, 𝒔"action, 𝑎"trajectory, 𝜏 policy 𝜋! 𝑎" 𝒔")

RL for Text Generation: Background

• (Autoregressive) text generation model:

9

𝜋! 𝑦" 𝒚#") =
exp 𝑓!(𝑦"|𝒚#")

∑$% exp 𝑓!(𝑦′|𝒚#")
Sentence 𝒚 = (𝑦&, … , 𝑦')

In RL terms: state, 𝒔"action, 𝑎"trajectory, 𝜏

• Reward 𝑟! = 𝑟(𝒔!, 𝑎!)
• Often sparse: 𝑟" = 0 for 𝑡 < 𝑇

• The general RL objective: maximize cumulative reward

• 𝑄-function: expected future reward of taking action 𝑎$ in state 𝒔$
𝑄# 𝒔" , 𝑎" = 𝔼# ∑"($"

% 𝛾"(𝑟"& | 𝒔" , 𝑎"

policy 𝜋! 𝑎" 𝒔")

logits

RL for Text Generation: Background

• On-policy RL
• Most popular, e.g., Policy Gradient (PG)

10

Extremely low data efficiency: most samples
from 𝜋! are gibberish with zero reward

Generate text samples from the current policy 𝜋! itself
• On-policy exploration to maximize the reward directly

• Off-policy RL
• e.g., 𝑄-learning

• Implicitly learns the policy 𝜋 by approximating the 𝑄% 𝒔$, 𝑎$
• Bellman temporal consistency:

• Learns 𝑄& with the regression objective:

• After learning, induces the policy as 𝑎$ = argmax' 𝑄&∗(𝒔$, 𝑎)

RL for Text Generation: Background

11

target Q-network

Arbitrary policy, e.g.,
training data

Regression target

• Off-policy RL
• e.g., 𝑄-learning

• Implicitly learns the policy 𝜋 by approximating the 𝑄% 𝒔$, 𝑎$
• Bellman temporal consistency:

• Learns 𝑄& with the regression objective:

• After learning, induces the policy as 𝑎$ = argmax' 𝑄&∗(𝒔$, 𝑎)

RL for Text Generation: Background

12

Arbitrary policy, e.g.,
training data

Regression target is unstable
• Bootstrapped 𝑄)!
• Sparse reward 𝑟" = 0 (𝑡 < 𝑇): no ”true” training signal

Slow updates: gradient
involves only 𝑄!-value of one
action 𝑎" (vs 10* vocab size)

RL for Text Generation: Background

• On-policy RL, e.g., Policy Gradient (PG)

• Exploration to maximize reward directly

• Extremely low data efficiency

• Off-policy RL, e.g., 𝑄-learning

• Unstable training due to bootstrapping & sparse reward

• Slow updates due to large action space

• Sensitive to training data quality; lacks on-policy exploration

13

New RL for Text Generation: Soft 𝑄-Learning (SQL)

• Goal

• Induced policy

14

• Goal: entropy regularized

• Induced policy

(Hard) 𝑄-learning SQL

𝑎$ = argmax' 𝑄&∗(𝒔$, 𝑎)

Generation model’s “logits” now act as 𝑄-values !

𝜋&∗ 𝑎$ 𝒔$) =
exp𝑄&∗(𝑎$|𝒔$)
∑' exp𝑄&∗(𝑎|𝒔$)

logits
𝑄-values

New RL for Text Generation: Soft 𝑄-Learning (SQL)

• Goal

• Induced policy

• Training objective:
• Based on temporal consistency

• Unstable training / slow updates
15

• Goal: entropy regularized

• Induced policy

• Training objective:
• Based on path consistency
• Stable / efficient

(Hard) 𝑄-learning SQL

𝑎$ = argmax' 𝑄&∗(𝒔$, 𝑎) 𝜋&∗ 𝑎$ 𝒔$) =
exp𝑄&∗(𝑎$|𝒔$)
∑' exp𝑄&∗(𝑎|𝒔$)

Efficient Training via Path Consistency

• (Single-step) path consistency

• Objective

16

Regression target

Fast updates: gradient
involves 𝑄! values of all
tokens in the vocab

SQL matches log probability of token 𝑎" with its advantage
v.s.

MLE increases log probability of token 𝑎" blindly

≈ 𝐴)! 𝒔" , 𝑎" , advantage

[Nachum et al., 2017]

Efficient Training via Path Consistency

• (Single-step) path consistency

• Objective

• (Multi-step) path consistency

• Objective

17

Regression target

Fast updates: gradient
involves 𝑄! values of all
tokens in the vocab

Stable updates: Non-zero
reward signal 𝑟' as
regression target

[Nachum et al., 2017]

Efficient Training via Path Consistency

• (Single-step) path consistency

• Objective

18

Regression target

Fast updates: gradient
involves 𝑄! values of all
tokens in the vocab

Stable updates: Non-zero
reward signal 𝑟' as
regression target

Arbitrary policy:
• Training data (if available) → off-policy updates
• Current policy → on-policy updates
• We combine both for the best of the two

Implementation is easy

19

Applications & Experiments

20

Application (I): Learning from Noisy (Negative) Text

21

• Entailment generation
• Given a premise, generates a hypothesis that entails the premise

• “Sophie is walking a dog outside her house” -> “Sophie is outdoor”

• Negative sample: ”Sophie is inside her house”

• Training data:
• Subsampled 50K (premise, hypothesis) noisy pairs from SNLI

• Average entailment probability: 50%

• 20K examples have entailment probability < 20% (≈ negative samples)

• Rewards:
• Entailment classifier

• Pretrained LM for perplexity

• BLEU w.r.t input premises (which effectively prevents trivial generations)

Application (I): Learning from Noisy (Negative) Text

22

• MLE and pure off-policy RL (GOLD-s) do not work ← rely heavy on data quality

• SQL (full) > MLE+PG (PG alone does not work)

• SQL (single-step only) does not work: the multi-step SQL objective is crucial

Entailment-rate and language-quality vs diversity (top-𝑝 decoding w/ different 𝑝)

Application (II): Universal Adversarial Attacks

23

• Attacking entailment classifier
• Generate readable hypotheses that are classified as

“entailment” for all premises

• Unconditional hypothesis generation model

• Training data:
• No direct supervision data available

• “Weak” data: all hypotheses in MultiNLI corpus

• Rewards:
• Entailment classifier to attack

• Pretrained LM for perplexity

• BLEU w.r.t input premises

• Repetition penalty

Previous adversarial algorithms are
not applicable here:
• only attack for specific premise
• not readable

Application (II): Universal Adversarial Attacks

24

• SQL (full) > MLE+PG (PG alone does not work)

• MLE+PG collapses: cannot generate more diverse samples

Samples of highest attack rate

Application (III): Prompt Generation for Controlling LMs

25

• Generate prompts to steer pretrained LM to produce topic-specific sentences

Existing gradient-based prompt tuning methods are not applicable due to discrete components

Application (III): Prompt Generation for Controlling LMs

26
Topic accuracy

Language perplexity

• Steered decoding: PPLM, GeDi
• SQL achieves best accuracy-fluency trade-off

• Prompt control by SQL, MLE+PG > PPLM, GeDi

• and much faster at inference!

• SQL (off-policy only) > MLE

Time cost for generating one sentence

Promising results on standard supervised tasks

27

• SQL from scratch is competitive with MLE in terms of performance and stability
• Results on E2E dataset

• PG from scratch fails

BLEU scores

Training curves

Promising results on standard supervised tasks

28

• SQL from scratch is competitive with MLE in terms of performance and stability
• Results on E2E dataset

• PG from scratch fails

• SQL is less sensitive to hyperparameters than MLE+PG

Training curves of different reward scales

Summary of SQL for Text Generation

29

• On-policy RL, e.g., Policy Gradient (PG)

• Extremely low data efficiency

• Off-policy RL, e.g., 𝑄-learning

• Unstable training; slow updates; sensitive to training data quality

• SQL
• Objectives based on path consistency

• Combines the best of on-/off-policy, while solving the difficulties

• Stable training from scratch given sparse reward

• Fast updates given large action space

• Opens up enormous opportunities for integrating more advanced RL for text generation

Questions?

