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Outline

e Meta learning (65mins)

e 2 Paper presentations (15 mins)

o Harsha Jagarlamudi: ML-MG: Multi-label Learning with Missing Labels Using a
Mixed Graph



Recap: Problem Settings

Multi-Task Learning Transfer Learning
Solve multiple tasks I ¢, «++, I pat once. Solve target task I, after solving source task 7,
. I by transferring knowledge learned from 7,
min 2 L0,
0

i=1

The Meta-Learning Problem

Given data from I, ..., I, , quickly solve new task T ¢est

In transfer learning and meta-learning:
generally impractical to access prior tasks

In all settings: tasks must share structure.
Slide courtesy: Finn, Stanford CS 330, Fall 2021



Recap: Meta-learning for few-shot learning

Th

meta-training

T2

meta-testing 7.«

Slide courtesy: Finn, Stanford CS 330,

Classify new exam

training
classes

ples

E3 - N

training data Dy, 4in

Fall 2021

o




Recap: Meta-Learning Methods

trainin .
J Untrained
test \ parameters
It’s fine for the model to —
have access to this test!
Meta-train lE -
\____

- Adaptable
training, parameters

This adaptability can take many forms
LSTM, memory, gradient update, other optimizations

Small adaptation
test

Meta-test
It's not fine for the model to have access to this test

| This is the only number we care about to measure
apply how good our model is.

Slide courtesy: Andreas, MIT 6.884



Meta-Learning Methods

e Initialization based methods
o Learning how to initialize the model for the new task

e Black-box adaptation methods

e Non-parametric methods



Recap: Model-Agnostic Meta Learning (MAML)

e Goal: train a model that can be fast adapted to different tasks via few
shots

e MAML idea: directly optimize for an initial representation that can be
effectively fine-tuned from a small number of examples

| Few Modellw
N samples
Bigdata | | Model
from multi- initialization
tasks
| Few | Model 2
samples

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

Slide courtesy: Zhang, SJTU CS420, 2019 8



Recap: Fine-tuning

/pre-trained parameters
Fine-tuning ¢ — 0 — CMV@ﬁ(@, DY

) training data
for new task

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

Slide courtesy: Finn, Stanford CS 330, Fall 2021 9



Recap: Model-Agnostic Meta Learning (MAML)

/pre-trained parameters
Fine-tuning ¢ — 0 — CMV@ﬁ(Q, DY

. ) training data
[test-time]

for new task

learning 10 - Dir), Dt
Meta-learning melﬂtzl;[f(e (XVQ,C(Q, i )7 ) )

Key idea: Over many tasks, learn parameter vector 6 that transfers via fine-tuning

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

Slide courtesy: Finn, Stanford CS 330, Fall 2021 10



Algorithm 2 MAML for Few-Shot Supervised Learning

Require: p(7): distribution over tasks
Require: «. [3: step size hyperparameters

)
- while not done do

7

Zao

3:

0:
10:

11:

randomly initialize ¢

Sample batch of tasks 7; ~ p(7T)

for all 7; do | |
Sample K datapoints D = {x'7),y"7)} from T;
Evaluate Vo LT, ( fo) using D and L7, in Equation (2)
or (3)
Compute adapted parameters with gradient descent:
0; =0 — aVeLlT.(fo)
Sample datapoints D) = {x'), y"7’} from 7; for the
meta-update

end for

Update 0 < 0 — Vo 3 1 1) LT, (fo;) using each D

and L, in Equation 2 or 3

end while

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.
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Recap: Model-Agnostic Meta Learning (MAML)

. . tr ts
min Z L(O—aVeL(0,D;"),D;)

task 17
| — meta-learning
9 ---- learning/adaptation
VL3
Vi,
VL]_ ”’¢¢. 93
S
§ ,,/ \\
1./ \.95

Slide courtesy: Zhang, SJTU CS420, 2019

* This brings up second-order derivatives

 Supported by standard deep learning

libraries such as PyTorch/TensorFlow
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Recall Lecture#7: Meta-learning data weights/augmentation

e Can we learn ¢; automatically?

min — Ey, p [ ¢; log po (x;) |

e Training set D, a held-out "validation” set D,

e Intuition: after training the model 6 on the weighted data, the model
gets better performance on the validation set

0’ = argénin —Ey~p | ¢ log e (x;) |

o @' is afunction of ¢, i.e., 8’ = 8'(¢p)

¢’ = argming — [Ey . p, [108 Por(p) (Xi) ]

Ren et al., “Learning to reweight examples for robust deep learning”
Hu et al., “Learning Data Manipulation for Augmentation and Weighting” 13



Meta-Learning Methods

e Initialization based methods
o Learning how to initialize the model for the new task

e Black-box adaptation methods

e Non-parametric methods

14



Black-Box Adaptation

Key idea: Train a neural network to represent ¢; = fe(DEr)
Predict test points with y* = g, (x")

fo y*
|
I I I I
(1, y1) (22,92) (23,93) "
v
DU D’;est

Slide courtesy: Finn, Stanford CS 330, Fall 2021



Black-Box Adaptation

Key idea: Train a neural network to represent ¢; = fe(DEr)

Predict test points with y* =

fo y"
I
T T T T
(z1,91) (22,92) (73,¥3) "
C——_ ——
D?r D’;est

Slide courtesy: Finn, Stanford CS 330, Fall 2021

XtS)

Train with standard supervised learning!

maxy ) - loggs, (ylo)

Ti (xfy)NDgeSt

|
£(¢“ D‘;est)

maXZL' fo(DLY), Dtest)
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Black-Box Adaptation

Key idea: Train a neural network to represent ¢; = fo(D}").

ts
fo J
| 1. Sample task T; (or mini batch of tasks)
T ) : | : — i gfb i 2. Sample disjoint datasets D;", Di**" from D;
ts

(z1,91) (x2,92) (3,Y3) L

t
Slide courtesy: Finn, Stanford CS 330, Fall 2021 Dir DteSt



Black-Box Adaptation

Key idea: Train a neural network to represent ¢; = fo(D}").

ts
fo J
| 1. Sample task T; (or mini batch of tasks)
T ) : B T — ¢ gfb : 2. Sample disjoint datasets D;", Di**" from D;
(z1,y1) (72,92) (3,y3) s\ 3. Compute ¢; fo(Di)
S — 4. Update 0 using VoL (¢;, D)

tr test
D; D;




Black-Box Adaptation

Key idea: Train a neural network to represent ¢;

Challenge

= fo(D;").

Outputting all neural net parameters does not seem scalable?

Idea: Do not need to output all parameters of neural net, only sufficient statistics

fo

T T T

(z1,91) (T2,92) (23,Y3)

V
D

ts

Y

A

9o

A

X

test
Di

ts

(Santoro et al. MANN, Mishra et al. SNAIL)

low-dimensional vector h;
represents contextual task information

84 fiiters 32filters 32 filters
7777777 N & E fully fully fully
X side 2 | [, 5x5conv| [ ]y5x5 conv
I I ° RelU RelU ReLy _. B Rretu RelU _ [H linear y
re c a [ ]

general form: Y = fo (Dfra ’)

Slide courtesy: Finn, Stanford CS 330, Fall 2021 What architecture should we use for f9?



Meta-Learning Methods

e Initialization based methods
o Learning how to initialize the model for the new task

e Black-box adaptation methods

e Non-parametric methods

20



Non-parametric methods

Key Idea: Use non-parametric learner.

, t
training data D}" test datapoint T

Compare test image with training images

Slide courtesy: Finn, Stanford CS 330, Fall 2021 7



Non-parametric methods

Key Idea: Use non-parametric learner.

, t
test datapoint L >

training data D"

Compare test image with training images

In what space do you compare? With what distance metric?

¢, distance in pixel space?

Slide courtesy: Finn, Stanford CS 330, Fall 2021 7



In what space do you compare? With what distance metric?

¢, distance in pixel space?

Slide courtesy: Finn, Stanford CS 330, Fall 2021 8 Zhang et al. (arXiv 1801-03924)



Non-parametric methods

Key Idea: Use non-parametric learner.
: ts
training data D" test datapoint T

Compare test image with training images

In what space do you compare? With what distance metric?
Question: What distance metric would you use instead?

| | |ldea: Learn to compare using meta-training data
Slide courtesy: Finn, Stanford CS 330, Fall 2021



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

Slide courtesy: Finn, Stanford CS 330, Fall 2021 10 Koch et al., ICML ‘15



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

Slide courtesy: Finn, Stanford CS 330, Fall 2021 1 Koch et al., ICML ‘15



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

Slide courtesy: Finn, Stanford CS 330, Fall 2021 12 Koch et al., ICML ‘15



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

Slide courtesy: Finn, Stanford CS 330, Fall 2021 13 Koch et al., ICML ‘15



Non-parametric methods

Key Idea: Use non-parametric learner.

Prototypes: aggregate class information to create a prototypical embedding

=g 2. Hw=n
(z,y) €D}
B ~exp(—d(fo(z),cn))
Poly =nlz) = S o d(fo(@) o))

d: Euclidean, or cosine distance

Slide courtesy: Finn, Stanford CS 330, Fall 2021 16 Snell et al. Prototypical Networks, NeurlPS ‘17



Summary: Meta-Learning Methods

e Initialization based methods

Key idea: embed optimization inside the inner learning process

+ structure of optimization - typically requires

embedded into meta-learner second-order optimization
Slide courtesy: Finn, Stanford CS 330, Fall 2021



Summary: Meta-Learning Methods

e Black-box adaptation methods
fo

2.
Q
3

Key idea: parametrize learner as a neural network

Sice courtey:Firn, Starford G5 30, el 2021+ @XPF@SSIVE - challenging optimization problem



Summary: Meta-Learning Methods

e Non-parametric methods

tr
Di

Key idea: non-parametric learner with parametric embedding / distance
(e.g. kNN to examples/prototypes)

+ easy to optimize, - largely restricted to
Slide courtesy: Finn, Stanford CS 330, Fall 2021 computaﬁona"y fast CIaSSiﬁcation



Key Takeaways

e Learning with multiple tasks:
o Multi-task learning, transfer learning, mete-learning

e Meta-learning problem setting

e Meta-learning methods
o Initialization-based methods
o Black-box adaptation

o Non-parametric methods .--- ,

meta-training

meta-testing
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Recap: ML solutions given few data (labels)

e How can we make more efficient use of the data?
o Clean but small-size
o Noisy
o Qut-of-domain

e Can we incorporate other types of experiences in learning?

T s

Lype2 Al

diabetes is 90% E— 83//-: %

more common R k. ,\-'gﬁ*iésing/

than type-1 g 2
B

Data examples  Rules/Constraints Knowledge graphs Rewards Auxiliary agents

And all combinations thereof

Adversaries Master classes

34



Machine learning solutions given few data (labels)

e (1) How can we make more efficient use of the data?
o Clean but small-size, Noisy, Out-of-domain, ...

e Algorithms
o Supervised learning: MLE, maximum entropy principle
o Unsupervised learning: EM, variational inference, VAEs
= Key concept: ELBO

o Self-supervised learning: successful instances, e.g., BERT, GPT-3, contrastive

learning, applications on image/video/text
o Distant/weakly supervised learning: successful instances
o Data manipulation: augmentation, re-weighting, curriculum learning, ...

o Meta-learning
35



Machine learning solutions given few data (labels)

e (2) Can we incorporate other types of experiences in learning?

o Learning from auxiliary models, e.g., adversarial models:

= Generative adversarial learning (GANs and variants)

o Learning from structured knowledge

= Weakly supervised learning, Posterior regularization

o Learning from rewards

= Reinforcement learning: MDP, Bellman equation
= policy gradient, Q-learning

o Learning in dynamic environment (not covered)

= Online learning, lifelong/continual learning, ...
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